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M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz and L. Pottier

Laboratoire de Spectroscopie Hertzienne (*) de l’Ecole Normale Supérieure, 24 rue Lhomond,
F-75231 Paris Cedex 05, France

(Reçu le 27 mai 1988, accepté le 14 septembre 1988)

Résumé. - En vue d’améliorer la précision des mesures de violation de parité dans le césium,
nous avons étudié le « système interdit à trois niveaux » 6S-7S-6P3/2, dans lequel un premier laser
excite la transition interdite 6S-7S pendant qu’un deuxième faisceau, colinéaire au premier, sonde
les atomes excités dans le niveau 7S. Dans cet article, nous présentons un calcul analytique de la
fluorescence du niveau 7S, ainsi que de l’amplification du faisceau sonde, en fonction des
fréquences des lasers. Nous prenons en compte les collisions dans le niveau de résonance

6P3/2, ainsi que la multiplicité des niveaux et les polarisations des lasers. L’accord quantitatif avec
l’expérience est satisfaisant ; les spectres sans effet Doppler sont correctement décrits. Nous
obtenons les amortissements de la cohérence 7S-6P3/2 et de la population emprisonnée dans
6P3/2. Nous présentons de nouveaux procédés de détection de l’orientation du niveau 7S, qui
doivent pouvoir être étendus directement à la détection d’un alignement.

Abstract. - With a view to improved parity violation measurements in Cs, we have considered
the 6S-7S-6P3/2 « forbidden three-level system », in which one laser excites the forbidden 6S-7S
transition while a second, colinear laser probes the excited 7S atoms. This paper presents an
analytical calculation of the 7S ~ 6P ½ fluorescence intensity and of the probe amplification as
functions of the laser frequencies. The collisional processes in the 6P3/2 resonance level, as well as
the level multiplicity and the laser polarizations are taken into account. The quantitative
agreement with experiment is good ; in particular, the observed sub-Doppler structures are
correctly described. The damping rates of the 7S-6P3/2 cohérence and of the trapped
6P3/2 atoms are extracted. New détection schemes for detecting a 7S orientation, with direct
possible extension to an alignment, are demonstrated.
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1. Introduction.

In recent years, atomic physics parity violation (PV) experiments [1] have contributed to the
knowledge of weak interaction processes. Experiments in which a laser beam excites a
forbidden transition have succeeded in measuring the so-called « weak charge » of the cesium
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nucleus. This is the additive parameter, analogous to the electric charge, that characterizes
the Zo-nucleus vector coupling [2, 3]. The result of the measurements [4, 5] matches the
prediction of the Standard Model of weak, strong, and electromagnetic interactions.
However, the weak charge is a fundamental parameter. Its value is sensitive to higher order

corrections that involve virtual emission or absorption of particles. Measuring the nuclear
weak charge of cesium a factor ten more accurately gives access to these corrections, and
dramatically changes the significance of the comparison between experiment and theory.

In order to improve the statistical accuracy, the detection of the excited atoms has been
reconsidered [6]. Rather than analysing fluorescence light, monitoring a transmitted probe
beam allows in principle the detection of all excited atoms, in a single direction and a single
transition, thus leading to better detection efficiency. This is the direct motivation for the
present work, which deals with the interaction of a vapour with two laser beams : one excites
the forbidden 6S-7S transition ; the other probes the final state of the transition. Ultimately,
since parity violation takes place in the excitation process, the second laser will serve to detect
the resulting breaking of mirror symmetry in the final state.
The present stage is preliminary. It aims at exploring the potentialities of this method and at

fully understanding the parity conserving processes in this situation. Since the excitation laser
connects two states of the same parity, the distribution of parities in this three-level, two-laser
system is quite unusual. For that reason we call it a « forbidden three-level system ».

In this paper we present a theoretical approach to the forbidden three-level system formed
by Cs vapour in the presence of two resonant single-mode cw lasers, one of which excites the
6S-7S forbidden transition, while the other probes the 7S-6P3i2 transition. Agreement with
experimental data is illustrated, and damping rates of the system are obtained. Moreover it is
shown that even PV measurements by fluorescence detection can benefit from the use of the
7S-6P3/2 probe.

1.1 THE ATOMIC TRANSITIONS. - As in the previous PV experiments in Cs, a cw laser beam
excites the 6S-7S highly forbidden Ml transition (oscillator strength = 10- 15) in the presence
of a transverse electric field Es (a few hundred V/cm ; oscillator strength up to

10-1°). The 6S and 7S hfs splittings (level diagram in Fig. la) are much greater than the
Doppler width, and only one component is excited. The Stark-induced El transition is
described by the scalar and vector polarizabilities a and /3 (j/3 1 ===== 1 a 1/10) [2].

In this paper we first consider an excitation laser of linear polarization £e//Es ; 13 is not

involved, and the only effect of the laser is to bring population in the 7S state. There is no
orientation. Later on, when the laser is polarized circularly, we shall deal with a 7S
orientation proportional to {3/ a.
The allowed 7S-6P 3/2 transition has a large oscillator strength : = 0.44. The hfs in

6P3/2 is only = 200 MHz and cannot be resolved in Doppler-broadened spectroscopy. The
7S --&#x3E; 6P spontaneous emission populates the 6P3/2 and 6P 1/2 levels with branching ratios of
roughly 2/3 and 1/3. The Norcross model [7] predicts 0.649 and 0.351. But to our knowledge
there is up to now no precise empirical determination.

1.2 THE FORBIDDEN THREE-LEVEL SYSTEM. - The basic concept of a three-level system
driven by two resonant lasers has attracted a great deal of experimental and theoretical efforts
in the past twenty years (an excellent list of references can be found in [8]). In spite of the
apparent similarity, the forbidden three-level system differs from the systems considered in
usual three-level spectroscopy. This results from the unusual distribution of the parities
among the system. One obvious difference lies in the very small excitation rate of the
forbidden transition, which requires only a lowest order treatment. Furthermore, while the
coherent process (here, direct 6S --&#x3E; 6P3/2 two-photon excitation) dominates in usual three-
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Fig. 1. - a) Relevant energy levels of the Cs atom with their hyperfine structure (not to scale. Natural
cesium contains only 133CS, with I = 7/2). b) Radiative and collisional couplings between the levels.
Straight lines indicate the laser couplings ; wavy arrows indicate spontaneous emission. The outer box
delimits the two-level system mentioned in § 1.2. Precise definitions of the transition and damping rates
are given in section 1.2.

level systems, the forbidden three-level system essentially undergoes incoherent stepwise
processes (6S--&#x3E;7S absorption, then 7S ---&#x3E; 6P3/2 induced emission). The efficiency ratio of
stepwise to coherent processes is known to be comparable to the ratio F7S/Fr of the damping
rates of the intermediate (7S) level and of the two-photon (6S-6P3/2) coherence [9]. The
collisional broadening of the 6S-6P resonance lines [10,11] is known to be very efficient at the
Cs densities of interest here (several x 1014 at/CM3) while the 7S level is nearly unaffected by
Cs-Cs collisions [12]. As a consequence, the relative contribution of the coherent process is
significantly reduced as soon as collisional broadening takes place. In addition, a quantitative
calculation shows that the coherent contribution is further reduced by the energy ratio of the
forbidden transition to the 7S-6P3/2 transition (= 2.72). Therefore the contribution of the
coherent two-photon process is smaller even at Cs densities low enough for no significant
collisional broadening to take place. As a result, the vapour under the action of the two laser
beams, behaves merely as a two-level system (the 7S-6P3/2 system, outer box in Fig.1b)
coupled to the probe beam. Because of resonance radiation trapping, population escapes this
two-level system by 7S --. 6P 1i2 spontaneous decay more easily than by emission of

6P3/2 - 6S resonance photons.

1.3 THE MODEL. - In the experiments, both the 7S --&#x3E; 6Pl/2 fluorescence intensity and the
intensity and polarization of the transmitted probe beam have been detected. Special
attention has been paid to contributions proportional to the helicity of the excitation beam.
All observed signals are calculated below. The hyperfine structure and the collisional
redistribution in 6P3/2 are taken into account. The following assumptions are made :

i) The two cw single-mode lasers, whose frequency jitters do not contribute to the widths
by more than 1 MHz each, are considered to be monochromatic. Their intensity is assumed to
be uniform over the volume of vapour.

ii) Each population or coherence is calculated at the lowest non-zero order of the
forbidden transition.

iii) The coherent two-photon effect is neglected. The validity of this assumption is checked
in appendix A.

iv) The collisional redistribution in the 6P3/2 resonance level is described by a collision
model where a 6P3/2 atom transfers its excitation to a 6S atom while their velocities remain
unchanged. After the collision, the distribution of the velocity of the new 6P3/2 atom is
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therefore assumed to be thermal. This « strong collision » model is a good description of
resonance collisions as well as of emission and reabsorption of a resonance photon. Since the
collision time is smaller than the inverse 6P3/2 hfs splitting, the hf momentum is also assumed
to be redistributed over all values (F’ = 2 to 5) with probabilities proportional to the
multiplicities 2 F’ + 1.

v) The effect of Cs-Cs collisions on 7S atoms is considered to be negligible.
vi) The collisional transfer between 6P1/2 and 6P3/2 is neglected (see discussion in § 3.5.2).
vii) Due to the complexity that results from large angular momenta, one has to omit the

higher order tensors (K &#x3E; 3). This approximation restricts to low saturation values (s  1) the
domain of quantitative validity of the solution, but allows an analytical treatment to all orders.

viii) The width of the probe transition is considered to be large as compared to the width of
the 7S population source, but small as compared to the Doppler width. As long as the
saturation broadening remains moderate, the integrations over the velocity distribution then
simplify and an analytical solution is obtained.
The good agreement between experimental and theoretical data allows us to extract from

theoretical fits the damping rates of the 7S-6P3/2 system, and the value of the 7S orientation
created by a circularly polarized excitation laser.

2. The atomic évolution in the présence of the two cw resonant lasers.

2.1 FORMULATION OF THE PROBLEM. - We shall develop a semi-classical treatment of the
problem. The main notations are illustrated in figure 1b.

2.1.1 The lasers fields. - The cw lasers are described by classical fields :

where j = e represents the (green) laser exciting one hf component of the 6S-7S transition,
and j = d represents the (I.R.) detection laser probing the 7S-6P3/2 transition. The 6S--&#x3E;7S
transition is highly forbidden, even in the presence of the Stark field. As a result, 7S atomic
densities in the experiments remain small. Therefore we neglect in this first stage any
alteration in the field amplitude, polarization and phase caused by propagation ; this problem
will be treated in section 5.

For an atom of velocity v, the frequencies of the fields in the atom’s frame are shifted by
longitudinal Doppler effect :

We have assumed that the two beams propagate in exactly the same direction of unit vector
k. We define the quantity

which is the Doppler shift for the probe beam. From now on, it will be convenient to call
« velocity » the quantity v instead of v. So, for an atom of velocity v, the time dependence of
the laser fields reads
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The frequency of the probe beam is swept over frequency intervals of at most 3 GHz, so that
in practice we/wd never deviates from the approximate value 2.72.

2.1.2 The cesium vapour. - Each velocity class of the atoms in the vapour is described (in
the interaction representation) by a density matrix p ( v ). The number of Cs atoms per unit
volume whose velocity lies between v and v + d v is tr {p ( JI )} dv . Finally only the subspace
spanned by the 6S1i2F, 7S1/2F, and 6P3/2F’ levels (1) is considered.

2.1.2.1 The populations and their relaxation. - Using the notation l?(aF)ae Lia, Fm&#x3E;
m

 a , Fm 1 for the projector over the «F hfs level, we define the density matrices and the
populations of the involved levels by :

Since the fraction of excited atoms is always very small, the ground state remains thermally
populated and we can write :

Here I = 7/2 is the nuclear spin of 133CS ; ncs is the atomic Cs density and

is the normalized Boltzmann velocity distribution; nD == Cù7S-6P312 .J kT / Mes C2 is the

Doppler half-width at 1/ à ( = 21T x 110 MHz for the temperatures of interest here).
The only relaxation process in the 7S state is the radiative 7S ---&#x3E; 6P decay :

where 1/ r 7S = 48 ns is the radiative lifetime of the 7S level [12]. The same relation holds for
n7FCv ).
For the resonant 6P3/2 states, on the contrary, resonant collisions as well as resonance

radiation trapping have to be taken into account. The equation that governs the evolution of
the population under relaxation contains several contributions :

The first term describes the 7S --&#x3E; 6P3/2 spontaneous emission. For the branching ratios of
the 7S --&#x3E; 6P3/2 and 7S --&#x3E; 6P,/2 fluorescence we use the values 2/3 and 1/3 (which take no
account of spin-orbit effects). The relative oscillator strengths FI are defined so that

2: C FI F = 1 (App. B). 
F’

(1) The hyperfine momentum is indicated by F (= 3 or 4) in the 6S and 7S levels, and by
F’ (= 2, 3, 4, or 5) in the 6P3/2 levels.
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The second term describes the global decay of the 6p3/2 population. Because of radiation
trapping, the rate r p is much less than the radiative decay rate of an isolated 6P3/2 atom [13]
(typically by two orders of magnitude, as shown in our data analysis, given below).
The third term of equation (5), in which

is the total 6P3/2 population, and

the relative degeneracy of the 6P3/2F’ level, describes the redistribution of the 6P3/2 atoms over
all thermal velocities and over all hfs levels. One can easily check that the third term does not
give rise to any global decay of the 6P3/2 population. On the other hand, a velocity class
relaxes with a rate Tp + F col’.

while the 7S-6P3/2 coherences

are damped

with a rate y which reflects both radiative and collisional processes.

2.2 THE MASTER EQUATION AND THE STEPWISE APPROXIMATION. - For the class of

velocity v, the evolution of the density matrix is given by

where X(t, v) is the Hamiltonian for the atom-field coupling in the interaction representation :

(D is the electric dipole operator, X o the Hamiltonian of an atom in the Stark field).
Applying the rotating wave approximation, we neglect the non-resonant terms in the matrix
elements of H(t, v), that is, the coupling between atomic states for which the detuning is much
greater than the Doppler width (all other widths are smaller than f2D), We obtain
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where Ve = {úJe - (E7sF - E6sF)/h} /2.72 is the velocity of the atoms resonant with the green
(excitation) laser, and wFF = (E 7SF - E6P 3/2, F’ )/h. Here we assume that the two lasers are
resonant for the same 7SF level (the opposite case will be studied in § 3.3) and that the green
laser drives a àF = 0 transition.

As indicated in section 1, we shall neglect the 6S-6P two-photon coherence (except in
appendix A where the validity of the approximation is checked). The first stage of the step-
by-step excitation involves the 6S -+ 7S transition. In view of its high forbiddenness (oscillator
strength _ 10- 9 for electric fields Es :5 1000 V/cm), a lowest order calculation is fully
appropriate. The green laser is represented by a source term for the 7SF population. This
term is :

where n6F(v)=ncsf(v)(2F+1)/2(2I+1). The transition dipole matrix element d is

defined as d - (6F, Fm 1 9). êe 7S, Fm) where 1 , Fm&#x3E; denotes the states in the presence
of the Stark field. We assume Ëe // Es, so that d involves only the scalar polarizability :
d = « ( Es . Ëe 1 = a Es ; the vector polarizability 8 plays no rôle. (The case of circular
polarization will be treated in section 4.) The quantity d is then independent of m. We do not
give the details of the calculation leading to equation (8a) since it is very similar to the
calculation leading to the coupling with the probe laser (Eq. (14)).
The source term turns out to be the product of a sharp lorentzian shape and a much broader

gaussian shape f (v). To a good accuracy, we may replace v by ve in the gaussian
n6F( v) factor and rewrite equation (8a) as

where the total excitation rate A is a constant and g ( v ) is a normalized lorentzian function.
Now we just have to solve the master equation for the density matrix restricted to the 7S

and 6P3/2 levels. Defining OFF, =- P(7SF) S) ’ Êd P(6P3/2 F’), this equation becomes

2.3 THE ATOMIC DENSITY MATRIX IN STEADY STATE. - Let us derive, from equation (9), the
equations governing the evolution of the coherences and the populations :

We are interested in the steady state of the vapour, for which the populations are constant in
time and the coherences PFF’ (v) oscillate like ei(WFF’ - (J)d + V) t Any other term would bring
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oscillatory terms in the right hand side of equations (11) and (12). Then, from equation (10),
one easily gets an expression for the coherences :

which can be carried back in equations (11) and (12). Finally the steady-state equations for
the 7S and 6P 3/2 populations are

where we have introduced the notation àj, - (úJ FF’ - wd + v )/ y.
In equations (14), (15), it appears that then steady-state populations are not only coupled to

the populations, but also to other elements of the density matrices of the 7S and

6P3/2 levels. Writing a detailed expression for the operators DFF’ DFF’ (which acts on the 7SF
level) and ’D:FI Dpp (which acts on the 6P3/2 F’ level) will clarify the couplings between
populations, orientations, alignments, etc...

2.4 THE COUPLINGS OF POPULATION TO ORIENTATION AND ALIGNMENT. - Let us consider

F F
two tensor operators ...g! and...g t of rank 2, such that for any two vectors u, v, the following

F’ F’
relations hold :

F
Then one has Dpp’ DFF = ed ’c fI. In Appendix B we have performed the decomposition

F’

of ..g and É î on the basis of the irreducible tensor operators p(O), p(1), and

p(2), of ranks 0, 1, and 2, defined by
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The decomposition of ’G- 1 reads :

The coefficients C, a ~, b 1 (and the corresponding coefficients a t and b t in the

decomposition of r 1 ) are given in § 2 of Appendix B. This results in a convenient expression
for the operator DFF’ DFF’ :

According to equations (14), (15) the observable quantities coupled to the populations are
Tr {DFF’ DFF,P7F(v)) and the analogous quantity involving PPF’(V)’ Using equation (20) it is
reexpressed as a combination of three terms : i) Tr { F(F3+ 1) P7F( JI)} oc n7F( JI) : the probe
beam couples the populations, independent of its polarization. ii) Tr {F. (êd A Ê!) P7F( v)} :
if the probe is circularly or elliptically polarized, it couples the populations to the orientation.
iii)

the alignment along êd is also coupled to the populations.
In some of our experiments, the probe beam was circularly polarized [14] ; the correspond-

ing calculation is developed in section 4. Here, with a view to interpreting all spectra recorded
with a linearly polarized probe beam, the population-orientation coupling will be omitted.
Although the green laser does not create any alignment in the geometrical configuration
considered here, yet the alignment may not be a priori neglected. The reason is that the probe
beam, when it saturates the 7S-6P3/2 transition, creates an alignment in the 7S level (2). The
alignment itself is coupled to the rank-4 tensor and the exact solution would require to take
into account all the even rank tensors.
All the spectra from which quantitative values have been extracted were obtained with a

weakly saturating probe beam. As shown more explicitly in section 4, it is then justified to
restrict ourselves to an approximate solution which omits the alignment and results in

important simplifications. Actually, as will appear in section 4, we have been able to take into
account the laser-induced alignment (but not the higher-order tensors). The corresponding
correction to the spectral shape is less than 10 % for the saturation levels of the experiments
(see Fig. 2). No qualitative modification results, even for strong saturation.

Neglecting the alignment we write

and

(2) So does it in the 6P 3/2 level as well ; but all tensor quantities in the 6P levels are quickly washed off
by resonant collisions.
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Fig. 2. - Fractional increase of fluorescence caused by the probe beam, versus probe frequency.
Example spectra calculated without (solid line) or with (dashed line) the alignment-induced corrections.
Values of the parameters : s = 0.8 ; y/27r = 18 MHz ; rcoll/21T = 36 MHz ; rp/21T = 100 kHz.

This gives

where

To conclude this section, we can now write the steady-state equations for the 7SF and the
four 6P3/2 F’ populations :

where we have introduced

The quantity f2 R = 1 Ed (7811211 9) ,,6P3/2) III J61 I is the « Rabi pulsation » for the 7S-

6P3/2 transition. Note that the Rabi pulsation for a particular 7SF ---&#x3E; 6P3/2 F’ transition is

actually nR CF,. Since CF, ranges from 0.10 to 0.61, we expect different saturation levels
from one hfs component to another. (On the other hand, neglecting the alignment, we are led
to neglect the variations of the Rabi pulsations associated with different Zeeman components
belonging to the same hfs component).
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3. Calculation of the « inhibited fluorescence » spectra.

Starting from equations (23) and (24) we are now going to calculate the total 7S population in
order to obtain the 7S --+&#x3E; 6P,/2 fluorescence in the presence of the probe beam.

3.1 CALCULATION AT THE LOWEST ORDER IN THE PROBE INTENSITY. - In absence of the

probe beam (R’ (v) = 0), the expression nj$( v ) = Ag (v)/r7s for the 7S population can be
inserted in equation (24) to obtain :

Next we get the modification of the 7S population to first order in RFF(v) :

and the resulting increase of the 75 - 6P 1/2 fluorescence :

This expression involves two different integrals. Instead of a numerical study (the first integral
cannot be expressed analytically) we shall use an approximation. Taking advantage of the
hierarchy between the half-widths of g (v), RFF(v), and f ( v )

we consider that RFF(v) is broad as compared to g(v), but sharp as compared to

f(v ). Then the integrations are carried out easily by treating the sharper factor as a ô-
function :

In addition to the usual saturation parameter

we shall introduce two dimensionless parameters :
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and the « contrast » parameter

Finally, at the lowest order, we write the increase of fluorescence

where the summation 1 reduces to three terms (CF, = 0 for F’ = F ± 2), corresponding to
F’

the three dipole-allowed transitions from the populated 7SF level to the 6P3/2F’ levels.

Interpretation. - The fluorescence increase (as a function of wa) is the sum of sharp, negative
lorentzian terms, and of broad, positive, gaussian-shaped terms. The sharp holes reflects
« inhibition » (actually reduction) of the fluorescence intensity due to the competition of
stimulated emission (« inhibited fluorescence » holes). The broad contribution corresponds to
the reexcitation of the population trapped in the 6P3/2 resonance level. These reexcited atoms
get a new chance to be observed in spontaneous decay.
The holes are not exactly centered on the frequencies wFF/2ir of the 7SF ---&#x3E; 6P3/2F’

transitions, but are all Doppler-shifted by a quantity ve/2r proportional to the velocity of the
atoms excited in the forbidden transition. The hole depth is affected by a factor

1-2 KCF 1£F /3 : this accounts for the presence of velocity-selected atoms in the

6P3/2 levels caused by spontaneous decay of the 7S atoms. Since K  1 (Eq. (26b)), this factor
actually remains close to unity, except at very low Cs pressure.
We define the « contrast » of the spectra as the ratio of the hole depth to the height of the

corresponding Doppler line. Omitting the factor rcoll/ (r p + rcoll), very close to one since
rp « rcoll, the contrast is C/It F’WF’ F e x 32/(2 F + 1). It does not depend on F’.

3.2 NON-PERTURBATIVE SOLUTION. - First subtracting equation (24) (summed over F’)
from equation (23), we get

Then, defining the total 7S population we obtain the relationship (3) :

which expresses the balance between the numbers of atoms excited to the 7S level (source

(3) Throughout sections 3 to 6, we make frequent use of the relations
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term A) and of atoms which leave the system, either by 7S --&#x3E; 6P,/2 fluorescence (jTys fi7/3), or
by 6P3/2 --&#x3E; 6S decay (r p nP). We can now calculate the 6P3/2 population.

Inserting in equation (24) the expression of n7F ( v ) obtained from equation (28), we obtain
an expression for nPF(v) as a function of s nPF’(V) and nP, which leads to

where

and

Introducing the dimensionless quantities (functions of the laser frequencies -we and

we obtain the total 6P3/2 population :

In the absence of the probe beam, this result is consistent with the zero-order value

since, as we shall see later, F, 9 oc s when s - 0.
Finally, equations (29) and (32) allow one to calculate the total 7S population, and the

fractional increase of the fluorescence intensity caused by the IR laser :

Let us recall that, if one forgets the two-photon processes, equation (33) is exact for an

unpolarized probe beam.
We have obtained a very simple form for the fluorescence increase. But the quantities Y

and 19 are given by rather intricate definitions. A numerical interpretation would not allow an
easy physical interpretation. On the contrary, an approximate but analytical expression
appears to be very useful.

Approximate expressions for 19 and :F. - The same kind of approximations as for the lowest
order calculation (§3.1) will be used for the velocity integrals. The sharp function

9 (v) is replaced by 5( v - v e) . This remains valid at high saturation (see App. A). Then we
have simply
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It is useful to separate the w d-independent part in I(ve). This leads to :

where à§, = (úJFF’ - úJd + Ve)!Y. One finally gets

where we have introduced the lorentzian-shaped function :

To obtain an approximate expression for [f, we insert equations (30) in equation (31b), and
write

The integral involves the product of f(v), the thermal distribution, by a function

corresponding to three resonances of much smaller widths. We note that the saturation
broaderiing of the Lorentz functions (width 2 y .JI + IL:’ CF, Ks) appears only at strong
saturation (s &#x3E; 1), since

In addition, saturation induced overlapping of the Lorentz functions (for s &#x3E; 1) makes the
denominator in equation (37) nearly constant between the two extreme hfs components. Thus
only the high (resp. low) frequency wing of the F’ = F - 1 (resp. F’ = F + 1) component
brings additional broadening.
We now proceed in the « Doppler limit », that is, supposing that f ( v) can be taken as

constant over the width of a resonance. This approximation is quantitatively valid for low or
middle saturations. For strong saturations, it still provides a very useful description of the
behaviour of the fluorescence signal. In the Doppler limit, we have

where

(We have assumed that the resonances are well resolved.)
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Now, remembering that we finally obtain

The weights ’TTF" close to 1 at low saturation, embody all saturation effects ; they are given by

Interpretation. - The fluorescence increase induced by the probe beam (Eq. (33)) involves
the two quantifies 9 and 37, whose respective significances are clear :

i) 9 (Eq. (31a)) is related to the sharp function g (v) which describes the 7S velocity
distribution in the absence of the probe laser (Eq. (8b)). The presence of 9 in Jf/JlO)
describes the decrease of the fluorescence due to the 7S --&#x3E; 6P3/2 stimulated emission (minus
sign in (Eq. (33)).

ii) 37 (Eq. (31b)) is related to the thermal distribution f(v). Equation (39) shows that Y is
proportional to 1/C, that is, to the lifetime 1 /rp of the trapped 6P312 population (Eq. (26c)).
The term Y in equation (33) describes the reexcitation of 6P3/2 atoms, which results in an
increase of the fluorescence.
As opposed to the lowest-order expression (Eq. (27)), the non perturbative solution is not

the sum of three independent terms for the three allowed transitions, and this is due to
saturation. Saturation takes place in g, in F, and in the denominator (1 + :F/2).

In g, saturation appears in two different manners. From equation (35), when s£ --. oo at

strong saturation, then g --&#x3E;. 1. In this case - 19 = - 1 means that the fluorescence is totally
inhibited : stimulated emission has induced all 7S atoms to decay to the 6P3/2 level. But
stimulated emission cannot be that efficient if the 6P3/2 atoms are not quickly quenched or
redistributed by collisions. This is the reason of the term £F’ F’ Ks -5 rcs) in the denominator
of equation (36), which prevents sf from taking large values if K - r 7S/ (r p + F"11) is not
very small compared to unity.

While g remains always smaller than 1, 37 grows to infinity as S1/2. Hence from equation (33)
the upper limit of the fluorescence increase AJf/Jf is 2 - or more precisely the branching ratio
r -+3/2/ r -+ 1/2 of the 7S -. 6P fluorescence. The interpretation is that when the 6P3/2 --. 7S
reexcitation rate is high, the only possibility for the atoms to leave the 7S-6P3/2 system is the
7S -. 6Pl,z fluorescence, which is then multiplied by a factor 1 + (r -+ 3/21 r -+ 1/2 ) - 3.
One notes that the term 19 in equation (33) is also affected by the denominator

(1 + F/2), which means that the depth of the inhibited fluorescence holes decreases at very
strong saturation. The trapped 6P 3/2 atoms can be easily reexcited to the 7S state and this
reduces the efficiency of the induced 7S -. 6P3/2 emission when the probe field is saturating.
As will be seen in § 3.4 , this behaviour has been observed experimentally, in good agreement
with the prediction.
As an example of the results of this calculation, we show a theoretical spectrum for

A34Wd)13f obtained from equations (33), (35), (36), (39) and (40) (solid line of Fig. 2). The
parameters s,k,y,C have been assigned values corresponding to typical experimental
conditions. The dotted line displays the spectrum obtained when the 7S alignment is taken
into account by the same method as in section 4.
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3.3 PROBE FIELD RESONANT WITH THE UNPOPULATED 7S hfs LEVEL. - We now consider the
case of a green laser exciting the 7S, F, hfs level, and of a detection laser probing the
6P3/2 F’ H 7S, Fd transitions, with Fe =1= Fd. The hfs splitting in 7S is 2.2 GHz ; so there is no
overlap between the two hfs levels. The master equations are similar to equations (23)-(24).
The only differences are the following : i) there is no source term for the 7S, Fd population
(Ag(v) in Eq. (23) disappears) ; and ii) in the spontaneous 75 - 6P emission term of

equation (24), r 7S C:, n7P( v) is replaced by {CFe Ag( v) + r 7S C: n7P( v) } .
The method that led to equation (33) now leads to

where Y is defined as before (Eq. (31b) with Fd replacing F), and

(là’F’ =- ( - F, F’ - W d + ve )/ y) replaces equation (35). Instead of the previous three (inhibited
fluorescence) holes (- 19 in Eq. (33)), the term + g now gives rise to two positive bumps (9’
involves the product C Fe C Fa which is zero unless F’ = 3 or 4). The two bumps indicate the
presence, in two of the 6P3/2 hfs levels coupled to the probe field, of a velocity-selected
population resulting from the spontaneous decay of the 7S atoms (Fig. 3a). This velocity-
selected population is strongly damped by resonant collisions ; so the two corresponding
bumps are expected to be nearly washed off by collisions, except at very low Cs pressure. A
typical low pressure spectrum is given in figure 3b.

3.4 COMPARISON WITH EXPERIMENT. - The comparison between theory and experiment
has been given in a previous paper [15]. We will recall it briefly here.
Numerous inhibited fluorescence spectra have been recorded at relatively low saturations.

All were found in good agreement with the calculated spectra. Only one slight discrepancy
has been detected on the wings of the spectra : the calculated fluorescence increase is slightly
less than the experimental one (see for instance Fig. 5 in [15]). This is connected with the
Doppler limit in the calculation of Y.
The agreement remained good in quite different experimental conditions :

i) Excitation selecting a class of atoms of non-zero velocity ( ve 0 in Eq. (34)). In this
case the holes turn out to be shifted by the expected amount with respect to the Doppler
profile (Fig. 4 of [15]).

ii) Cs density varied from 5 x 1012 to 6.4 x 1014 at/cm3. The strong collisional broadening
of the 7S-6P3/2 coherence does not spoil the agreement between theory and experiment (Fig. 6
of [15]) ; neither does the modification of the trapping of the 6P3/2 population.

iii) Probe field resonant with the unpopulated level (Fe= Fd). The experimental spectrum
(Fig. 3c) displays the two expected peaks, just like the spectrum calculated in 3.3 (Fig. 3b).
We formed the ratios between the heights of the two bumps and the depths of the
corresponding inhibited fluorescence holes (when Fe = Fd), which are, up to an angular
momentum factor, nothing but the ratio K = r7S/(rp + rcoll). The low pressure value thus
obtained for TP + rcoll is close to the 6P3/2 radiative relaxation rate, as expected when Cs-Cs
collisions are negligible.
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Fig. 3. - Probe laser resonant with the unpopulated level a) Level diagram illustrating the case where
the green laser excites the 7S, F = 3 level while the IR laser probes the 7S, F = 4 - 6P3/2 F’ transitions.
b) Theoretical spectrum for the fluorescence increase at low Cs density. c) Experimental spectrum. Cs
density 5 x 1012 at/cm3 ; IR intensity 13 mW/cm2 ; electric field Es = 1 800 V/cm.

Having firmly established the quantitative validity of the calculated spectral shape for low
or moderate saturation, we also tested the validity at strong saturation. The most salient
features predicted for s --&#x3E; oo are i) the equality between the maximum value for the
fluorescence increase and the branching ratio r -+ 3/2/ r -+ l2 of the 7S fluorescence (theoretical
value 1.85 [7]) ; ii) the decrease of the hole depth ; iii) the radiative broadening of the holes.
At first sight the maximum value of Jf/jf is a very direct measure of the branching ratio.

However, the above model assumes the 6P3/2 and 6P,/2 levels to be uncoupled. Actually,
collisions with ground state atoms induce excitation transfers between them [16]. When the
6P3/2 level is depopulated by the strongly saturating probe laser, transfer takes place from
6P1/2 to 6P3/2. This gives some chance to an atom that has decayed to 6P1/2 to be cycled once or
more. Present lack of information about the transfer cross section at the temperature of our
measurements prevents quantitative conclusion. But we believe that this explains why we
have observed, at strong saturation, values of Jf/Jf larger than r -+ 3/2/ r -+ 1/2 (for example
= 2.1 for ncs = 2 x 1014 cm- 3 and = 2.4 for ncs = 6 x 1014 cm- 3).
The predicted decrease of the hole depth when s - oo has been evidenced owing to a

detection procedure particularly sensitive to non-linearities. The probe intensity (and
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consequently the saturation) was modulated sinusoidally between zero and a strongly
saturating intensity, and the resulting modulation in the fluorescence intensity was detected at
the same frequency. Qualitatively, the information obtained this way is the difference
between the fluorescence intensities for high and low saturations, i.e. roughly the derivative
d3flds. In the linear regime (modulation amplitude 6s « 1), this procedure gives of course the
same spectra as the bare fluorescence increase. But as soon as saturation effects become

significant, the non-linear s-dependence of the hole depth manifests itself in a reversal of the
holes (Fig. 4a). At very large modulation amplitudes, the reversal is such that the holes are
turned into sharp peaks (Fig. 4b), indicating that the holes are deeper for s = 1 than for
s &#x3E; 1. The agreement with the corresponding calculated spectra demonstrates the qualitative
validity of our theoretical model at strong saturation.

Fig. 4. - Lock-in detection of saturation induced non-linear effects. The probe intensity is modulated
sinusoidally. The resulting modulation in the fluorescence intensity is plotted as a function of the probe
frequency (Cs density 5 x 1012 at/cm3) . The theoretical spectra are obtained by numerical calculation of
the integration performed by the lock-in detection.

3.5 QUANTITATIVE RESULTS OBTAINED WITH THE HELP OF THE MODEL. The most

important for us was to study the modification of y and T P with the cesium density
ncs. This was achieved by fitting, to each experimental record, the theoretical spectrum
obtained by adjusting the damping rate y of the 7S-6P3/2 coherence, the lifetime

TP of the trapped 6P3,2 population, the saturation parameter s, and the detuning
Ve of the excitation laser. This quantitative analysis includes only spectra taken with a non-
saturating probe (s = 1).
3.5.1 Evolution o f y with ncs. - The parameter y plays an important rôle in determining the
optimum conditions for the future parity-violation experiment [6]. While the collisional

broadening of the resonance lines was known [10, 11], that of the 7S-6P3/2 transition was not.
Figure 5 shows the plot of y versus ncs obtained from our measurements. The solid line is a
best fit to the experimental points, and gives

with a slope uncertainty mainly associated with the Cs density calibration. The collisional
broadening of the 7S-6P3/2 transition turns out to be slightly less than the corresponding values
found in the litterature for the 6S-6P3/2 transition : 7.2 [10] and 8.1x10-14 ncs [11].
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Fig. 5. - Damping rate of the 7S-6P3,2 coherence as a function of the Cs density. The dots and crosses
were obtained in two different sealed glass cells.

Taking into account the spectral widths of the excitation line and the coherence damping
rate of the detection transition, one computes the natural half-width of the holes :

The difference with our experimental result (5.9 ± 1 MHz) sets an upper limit of 2 MHz for
the instrumental broadening, possible origins of which are : residual frequency jitter of the
lasers, residual Doppler width (due to imperfect alignment of the lasers), or traces of a foreign
gas in the sealed glass cell.

3.5.2 Evolution of Fp with ncs. - The height of the observed Doppler profile yields a value
for the damping rate r p of the global 6P3/2 population. This value was later confirmed by a
direct measurement of the time relaxation of the probe beam absorption after a pulsed
excitation of the forbidden transition.

In figure 6 the obtained values of Fp/2-r are plotted as a function of ncs. One sees
2013 a rapid decrease when ncs increases from 5 x 1012 to 5 x 1013 at/cm3 ;
2013 a slow increase with ncs when ncs&#x3E; 1014 at/CM3.
At the minimum value r p/2’TT  30 kHz the lifetime for the trapped atoms is 100 times

larger than the radiative lifetime. As early as 1927, a similar behaviour had been observed by
Zemansky for the damping rate of the 6 3p level of mercury which is strongly affected by
resonance radiation trapping [17] like the 6P3/2 level of cesium. The use of a laser source
exciting a forbidden transition allows us to work with a much better defined distribution of
excited atoms in space.
The problem of calculating the « trapping factor », i.e. the ratio between the radiative

lifetime and the lifetime for the trapped atoms, has been solved by Holstein [13] with certain
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Fig. 6. - Damping rate of the trapped 6P3/2 population, as a function of the Cs density. Diamonds and
crosses were obtained in two different cells, but with the same probe radius 1.4 mm. Triangles and
squares were obtained with probe radii of 0.3 and 0.8 mm respectively.

approximations, and has been reconsidered many times [18]. Holstein noticed that, up to a
geometrical factor close to unity, the trapping factor is

where k( v ) is the absorption coefficient of the resonance line, and d the smallest dimension of
the medium. T(d) is a decreasing function of d, as confirmed by experiments performed with
different probe radii. It is worth observing that, since k ( v ) d &#x3E; 1 at the center of the

resonance, T(d) takes its dominant contribution from the wings of the line, where

k ( v ) d = 1. Hence T(d) can be determined by the pressure (homogeneous) broadening, even
when the latter is much smaller than the Doppler broadening.
When applied to the atomic level (Cs 6P3/2) and geometry (cylindrical, defined by the probe

beam) relevant here, Holstein’s theory predicts for r p at low density a decrease as

1/ncs, followed at higher densities by a constant value : 27T x 27 kHz for a probe waist of
1.4 mm (more details are given in [19]). This matches the experimental curve (Fig. 6) up to
densities of 1014 at/cm 3, but does not predict the slow increase at higher densities. A similar
increase at high density was observed by Zemansky (Fig. 6 of [17]).

This increase at high density might involve two different collisional processes.
i) Excitation transfer from atom to dimer Cs *(6P) + CS2 --&#x3E; Cs(6S) + Cs2 . A study by

Lam et al. of the collisional excitation transfer between Na and Na2 [20] has shown that some
of the involved molecular levels can lead to the reverse process and partly restore the excited
level’s population. Then two different damping rates show up, the smaller one increasing less
than quadratically with the atomic density.

ii) Emission of a resonance photon during a collision Cs *(6P) + Cs(6S). In this case,
emission occurs at a wavelength slightly shifted from the resonance [21] and the emitted
photon can escape the vapour. An estimate of the resulting contribution to Fp indicates a
linear increase with the atomic density and a contribution larger than process i) in the
pressure range of present interest.

For process ii) the order of magnitude of the corresponding decay rate matches the values
of r p observed at high density.



177

3.6 ZEEMAN SPECTRA. - We have recorded a few Zeeman spectra in a transverse dc

magnetic field (32 G). Owing to the sharpness of the holes at low Cs density, the Zeeman
splittings are resolved. The observed and calculated spectra agree well ([19], Fig. 20). Yet no
extensive study has been performed.

4. The helicity-dependent inhibited fluorescence signal.

Investigations of two- and three-level systems driven by two lasers have already demonstrated
the sensitivity of sharp spectral structures to the polarizations of the two optical fields. The
detection was performed by observing the fluorescence [22] or the transmitted probe
beam [23].

In the calculation of sections 2 and 3, we have assumed that all atomic levels involved in the
problem had no orientation. We now reconsider the problem when,a circularly polarized
excitation laser creates a 7S orientation along the probe beam : P7F = tr {P7SF F . kd} =1= 0 .
Then the 75 - 6P 3/2 emission rate, and hence the fluorescence intensity, are functions of the

product ed P7F, where ed = Jm [kd. (ê d * A êd) 1 is the probe beam helicity. Modulation of

ed and synchronous detection of the fluorescence thus offers a new possibility of measuring
the 7S orientation, without fluorescence polarization analysis. This is interesting since the
statistical accuracy of the ENS parity-violation measurement had up to now been ultimately
limited by the need of analysing the polarization of the fluorescence [24].

In order to test the possible advantages of this new method of detecting orientation, we
have recorded spectra while modulating the helicities ee and ed of the excitation and detection
beams, and detecting the cross-modulated ee ed contribution in the fluorescence. The linear
polarizations were also modulated, at the same frequencies as the helicities, but in phase
quadrature with them. This generates no spurious ee ed-type modulation, as proved by the
absence of signal when only the linear polarizations are modulated.

This section is devoted to the calculation of the theoretical spectrum, and to its use in

exploiting the experimental data. A constant rule is applied throughout this section : in the
density matrix, we omit all terms that do not contribute to the signal of interest, i.e. to a 7S
population having the ee ed signature.

4.1 LOWEST-ORDER CALCULATION. - In absence of the probe beam, the contribution
proportional to ee in the 7S density matrix is expressed as :

The expression for the orientation source term A (1) is given in [19]. Here A (1) can be
considered as an overall normalization constant. We now insert equation (42) in equation (14)
and obtain the first order contribution

We have omitted the 6P3/2 contribution because i) at lowest order, the 6P3/2 population is not
modulated as ee ; ii) the 6P3/2 orientation brought by spontaneous decay is destroyed by
collisions, as shown by experiments. We calculate the trace using equation (20) ; we then
obtain three contributions, only the second of which is non-zero (helpful trace formulae are
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given in [19], App. C). Finally the ee ed-modulated contribution in the integrated 7S
population is written as 

The integration has been performed using approximation (25a). Unlike the population signal
(Eq. (27)), the lowest-order calculation of the orientation signal has no Doppler broadened
contribution.
When compared to experimental spectra recorded at a saturation level s = 1, the lowest

order spectral shape turns out to predict the respective signs of the three hfs components and
the order of magnitude of the signal, but fails to predict the ratios of the components, with
discrepancies up to a factor 2.

In fact the orientation signal is more heavily affected by saturation than the population
signal previously calculated. The reason is that, in addition to the saturation of the

populations, that affects both signals, the orientation signal also reflects the effects of

saturation acting upon the 7S orientation. This signal thus requires a more complete
treatment of the saturation effects, which is now to be presented.

4.2 NON-PERTURBATIVE TREATMENT INCLUDING ALIGNMENT. - In this section we present
the starting points and the results of the more complete treatment and we discuss its validity.
Technical details are deferred to appendix C.

4.2.1 Assumptions. - Three assumptions are made. We assume that :

i) in the 6P3/2 resonance level, orientation and alignment are completely washed off by
resonant collisions.

ii) The density matrix can be expanded in powers of Fk - F . k (k is the unit vector along
the direction of the beams) because the system is invariant in any rotation around the

direction of the two circularly polarized beams.

iii) Tensors of order higher than 2 are negligible. The validity of these assumptions is

checked in § 4.2.3.

We now write the density matrix in terms of populations in the 7SF and 6P3/2 levels, of
orientation (p7F(v)) and alignment (q7F( v)) along k in the 7SF level :

Next we neglect the effect of Cs(6S)-Cs(7S) collisions on the orientation and alignment as we
already did for the populations. From previous Hanle effect measurements, we know that this
effect is small at our operating densities [12]. Then n7F(p), P7F( JI), q7F( JI), and npF’( JI) obey
the steady-state equations written in appendix C (Eqs. (C.1)). From these we deduce the
relation :

which reflects the absence of any population source with e,, ed dependence (compare with
Eq. (29)).
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4.2.2 Results. - There is no basic difference between the new steady-state equations and
equations (23)-(24) ; so the calculation follows the same method (see App. C). The solution
reads :

Exact definitions of Gg and Yj are given by equations (C.4). At low saturation, the plot of
gg versus Wd is composed of three resolved Lorentz-shaped resonances. The quantity
57e is a Doppler-broadened function similar to Y. It only affects the heights of the resonances
when saturation effects cannot be neglected.

In appendix C, the notations adopted to write 37e and Ge aim at emphasizing the corrections
introduced by taking the alignment into account. For s = 1, these corrections affect the value
of ii7 by 1.5 to 13.5 %, depending on the hfs component. We also give approximate analytical
expressions of Ige and 37g, by using the same kind of arguments as in § 3.2.

4.2.3 Validity of the solution. - We have performed an approximate, analytical treatment
that aims at providing a quantitative theoretical basis to interpret and exploit helicity-
dependent spectra recorded with saturations up to s = 1. We now discuss the accuracy of the
solution obtained in this way.

i) We have assumed that the 6P3/2 orientation and alignment, strongly damped by
collisions, can be omitted. The validity of this assumption is evidenced by probing the
transitions between the 6P3/2 F’ levels and the 7S hyperfine level not populated (and not
oriented) by the excitation laser. In this way we detect only the 6P3/2 orientation. The spectra
then turn out to be always consistent with mere noise, even at strong saturation. Thus the
6P3/2 orientation, too small to be detected, cannot give any contribution to the signal.

ii) We have restricted the 7S density matrix to the irreducible tensors of rank 0, 1, and 2.
The contribution of the omitted higher order tensors cannot be isolated as in i). However the
7S atoms are prepared with tensors of orders 0 and 1 and one interaction with the probe beam
couples the tensors of order K with those of orders K, K ± 1, and K - 2. Consequently one
easily convinces oneself that the omission of the tensor of order K in the 7SF density matrix
has no consequence before the sK-term in the perturbative development. Recalling that the
parameter of the expansion is not s but SCFF, (and that CFF, lies between 0.1 and 0.6), we expect
the corrections for the omitted terms of order 3 to be smaller than the aligment induced
corrections, i.e. smaller than = 10 %. Actually, explicit evaluation of this correction yields
5 % for s = 1. So we believe that, up to s = 1, our solution is correct to better than 10 %.

4.3 COMPARISON WITH EXPERIMENTAL LOW SATURATION SPECTRA. - Figure 7 displays
experimental spectra recorded with a saturation s close to 1. The lower curves are a
theoretical fit and reproduce the spectra satisfactorily. That our non-perturbative model
correctly describes the saturation effects, is more easily seen in figure 8, where we have
plotted the heights of the six hfs components as a function of the saturation parameter. A
lowest order treatment would completely fail as soon as s é- 0.4. Two theoretical curves are
displayed. The solid curve have been calculated with the value r p/2 7T = 100 kHz obtained
from the inhibited fluorescence spectra recorded in the same conditions. For s 2: 0.4 a value
= 75 kHz (dashed curve) gives a better agreement, especially on the F = 4 ---&#x3E; F’ = 5

component, which is the most affected by saturation.
A certain difference in the spatial distribution of the atoms probed in the inhibited

fluorescence and helicity-dependent spectra may be the reason for this tendency of the two
kinds of spectra to lead to slightly different values of r p. We have not tried to account for this
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Fig. 7. - Helicity-dependent spectra. Excitation and detection helicities are modulated. The amplitude
Ai, of the resulting cross-modulation in the fluorescence intensity, normalized to the bare fluorescence
intensity 3f(o), is plotted vs. the probe frequency. Cs density 1014 at/cm3 ; electric field Es =

1000 Vlcm ; probe intensity 17 mW/cm2. The theoretical spectra are calculated with s = 1.2 and
-Y /2 ir = 12 MHz.

Fig. 8. - Heights of the six hfs components of the helicity-dependent signal versus saturation

parameter s. Experimental points : ncs = 2 x1014 at/cm3. Theoretical curves are obtained for y/27r =
18 MHz, rp/27r = 100 kHz (solid line) and 75 kHz (dashed line).
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effect. In fact, the important point for us is that the two values of TP lead to the same
optimized overall normalization of the spectra. The latter yields the orientation source term
A (1).

4.4 QUANTITATIVE RESULTS.

4.4.1 Dependence of the 7S-6P3/2 damping rate on the Cs density. - A value of y can be
obtained from the fit of the ee ed-dependent spectra. Five measurements have been

performed from 0.8 to 20 mtorr (Fig. 9). The resulting linear law

is in good agreement with equation (41), obtained from the inhibited fluorescence spectra.

Fig. 9. - Damping rate of the 7S-6P3/2 coherence versus Cs density as extracted from the helicity-
dependent spectra, and linear fit.

4.4.2 Determination of the vector-to-scalar polarizability ratio. - The angular momentum
transfer from the (circular) photons to the 7S atoms operates through spin-orbit coupling. As
a result, the orientation source term A (1) differs from the population source term A by a factor
which, up to a known angular momentum factor, is nothing but the vector-to-scalar

polarizability ratio /3 / « of the 6S-7S transition. This ratio has been measured to a precision of
one percent : a / f3 = - 9.9 ± 0.1 [25].
From the value of A (1) that optimizes the fit of figure 8, we have deduced 1 a / f3 1 =10

(± 15 %), which agrees with the previous measurements. The uncertainty accounts for the
noise on the experimental data and for the uncertainty in the saturation parameter as well as
in the theory.
A strong motivation for this study was its possible natural extension to a measurement of a

parity-violating 7S orientation (4) using detection of the 7S-6P fluorescence. In the ratio of the

(1) The PV orientation in 7S results from interference between the PV and Stark-induced

El amplitudes in the 6S-7S excitation. It is created in a direction normal to the excitation beam. By
Hanle effect in a suitable magnetic field, it acquires a component along the beam. It can be probed like
the parity-conserving orientation, and discriminated owing to a different behaviour under reversal of E
and H.
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PV orientation to the orientation detected here (accurately known from previous measure-
ments of B/a) the accuracy would be mainly limited by noise. In the measurements

presented here, the measuring time was short (= 10 s). Moreover, since the use of a probe
beam makes fluorescence polarization analysis unnecessary, one can expect better collection
efficiencies than in the previous parity violation measurement performed in our labora-
tory [24]. Which sensitivity can ultimately be attained, becomes a matter of ingenuity in
designing an optical detection system best suited to this new scheme.

4.5 THE C-DEPENDENT SIGNAL AT STRONG SATURATION. - As usual, saturation broadens
the resonances. But while the low saturation spectra are formed by three Lorentz-shaped
resonances, at strong saturation a new feature appears (Fig. 10). The F -+ F’ = F + 1
components undergo a self-reversal, while the others do not. For s = 60, the signal is close to
zero at the center of the 4 --&#x3E; 5 résonance. -

Fig. 10. - Evolution of the helicity-dependent spectra with the saturation parameter. Cs density
2 x 1013 at/cm3 ; electric field Es = 2 000 V/cm. The theoretical spectra are calculated for the nuclear
spin I = 7/2, except the dashed one which is calculated for I = 3/2.

In section 3, we saw that our model remains qualitatively predictive at strong saturation,
though some of the approximations then become unjustified. One may now wonder whether
the calculated §dependent signal can be extrapolated to saturations much greater than the
saturations s  1 for which it was built. The theoretical spectra of figure 10 show that the
agreement with experiment remains fairly good, at least qualitatively, up to s c-e 8. For
s = 60 however, the model fails to reproduce the behaviour difference betwéen the
F - F’ = F + 1 component and the other components : it predicts that all resonances are
more or less reversed, which is not confirmed by experiment.
As will be shown now, the specific behaviour of the F - F’ = F + 1 component takes it

origin in the way the Zeeman sublevels of the (oriented) 7SF level are coupled to the
6P3/2 F’ sublevels by the circularly polarized probe beam.
When F’ - F + 1, all 7S,Fm sublevels are coupled by the probe laser, whatever the probe

helicity. If the probe beam is strongly saturating, its effect is the same on all 7S,Fm sublevels :
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it equalizes the populations. So the 7S population is the same for a probe beam of helicity
ed = - 1 or + 1. There is no signal associated with the reversal of Çd. This explains why the §
dependent signal goes down to zero at the center of the F - F’ - F + 1 resonances for strong
saturation.
The conclusion is different if one considers a F -+ F’ = F component : then there is one

unpaired sublevel (m = ç d F) which is una ffected by the probe beam. Since the 7SF level is
oriented by the excitation laser, the populations of the m = + F and m = - F states are
different. Therefore the reversal Ôf ed necessarily gives rise to a non-zero signal, even at
strong saturation. The same argument holds when F’ = F - 1, in which case two Zeeman

sublevels (m = ed F and ed(F - 1)) remain unpaired.
So we understand the physical origin of the different behaviour of the F’ = F + 1

components. And we also understand that the model, which omits the higher-order tensors,
cannot account for the specific effect of one or two sublevels. When applied to the

F = 1 F’ = 0, 1, 2 transitions of an alkali of I = 3/2, the model should be correct since it
accounts for all tensors (population, orientation, alignment) in an F = 1 level. The

corresponding theoretical spectrum (dashed line of Fig. 10) shows the expected features :
only the 1 --+ 2 component is reversed.

5. Calculation of the transmitted probe beam.

In some of the experiments we also observed the intensity and polarization of the transmitted
probe beam [26]. The helicity of the excitation beam, is modulated as before. The

polarization of the probe beam is now linear and fixed. We now consider that the excited
vapour gives rise, at the wavelength of the probe transition, to amplification, circular

dichroism, and optical rotation. These are calculated using the semi-classical, steady-state
propagation equation

This equation relates the amplitude of the probe electric field, defined so that the electric field
is given by

to the amplitude of the macroscopic polarization of the vapour, defined so that the

macroscopic polarization is

We can assume that (9)) (z ) does not depend on z since the fractional intensity change never
reaches one percent for the probe beam, and is even much smaller for the excitation beam.
The macroscopic dipole is obtained from velocity integration :

(the notations are the same as in the previous sections).
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5.1 THE AMPLIFICATION SPECTRUM. - We shall see that the probe amplification is related to
the fluorescence increase. Multiplying both sides of equation (48) by &#x26;d* (z), one finds

Then, using equation (11) and 1Î7F = 0, one easily derives the equation

which expresses the conservation of the total number of (induced or spontaneous) emitted
photons. In other words, amplification occurs at the expense of a fluorescence decrease.
Finally, in the low absorption limit valid here, we relate the fractional intensity change at the
probe wavelength to the fluorescence increase

The two beams are supposed to have the same dimensions. f is the length of the excited
vapour, and 1/137 represents the fine structure constant. The factor in curly braces is easily
recognized as the induced emission cross section on the 7S --+ 6P3/2 transition. The propor-
tionality of ÀIII to âJf/Jf has been evidenced by simultaneous recording of the fluorescence
intensity and the transmission of the probe beam (Fig. 11). The proportionality, including the
minus sign in equation (49), is quite conspicuous.

5.2 MODIFICATION OF THE PROBE BEAM POLARIZATION. - Let us denote Éd the (linear)
polarization of the incoming probe beam, and write Ed (0 ) = gd(O) éd. Passing through the
oriented vapour, the probe beam acquires a component along the perpendicular polarization
ê-L -= kd A êd, and we write

Since the optical density is small we have

We use equation (13) and express 61 (f) in terms of td (0) and the density matrices in the 7SF
and 6P3/2 F’ levels. We shall neglect the 6P3/2 contribution since i) we know that orientation or
alignment do not survive in the 6P3/2 level (see § 4.2.3.i) ; and ii) as shown below, a

population cannot contribute to E_L - We use the operator 13 (App. B), to write
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Fig. Il. - Simultaneous recording of the fluorescence intensity (upper curve) and of the probe
amplification (lower curve). The green laser excites the 7S, F = 3 level. The probe frequency is swept
over the 7S, F = 3 - 6P3/2 F’ resonances. Cs density 3 x 1013 at/cm 3 ; electric field 2 000 V/cm. The
fluorescence intensity baseline is slightly affected by a slow intensity drift of the excitation laser.

From equations (18) and (B.7), and with the definitions el(2) = ed + ( - ) £.L’ we obtain

This operator contains only tensors of orders 1 and 2. So, only an orientation (along
k), or an alignment (with axes at ± 45° with respect to Êd) can contribute to &#x26;.1. In the present
case, none of the lasers can create such an alignment. We only have to take into account the
7S orientation

As in section 3, we have to solve the steady-state equations for the density matrix. But a
great difference arises from the fact that the probe beam interacting with the Cs atoms is now
polarized linearly. As a result the orientation is not coupled to the population. Omitting the
tensors of rank &#x3E; 3, the steady-state orientation now obeys the equation

(the coefficients À ij are defined in App. C). The expression for P7F is then easily obtained.
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Once inserted in equation (50) it gives 61 . The result is more conveniently expressed in terms
of a difference between the refractive indices n+ and n- for photons of respective helicities

(the integration has been approximated, as previously, using Eq. (25a)).
As expected, the circular dichroism spectrum (imaginary part of n+ - n- ) has a dispersion

shape. But now, despite saturation effects, the spectral shape remains fairly simple, much
simpler than the helicity-dependent signal observed by fluorescence (App. C).

Comparison with experiment. - Figure 12a illustrates the agreement between theory and
experiment on the optical rotation signal. As expected from equation (51), no Doppler-
broadened signal can be observed. The excellent S/N ratio allows accurate comparison
between theory and experiment. The agreement is good, despite large saturation effects : a
lowest order solution, which predicts heights 69 % higher for the 4 --+ 5 resonance and
= 15 % higher for the 4 - 4 and 4 --+ 3 resonances, would fail to reproduce the experimental
spectra. Circular dichroism spectra also lead to a good agreement (Fig. 12b). As in the case of
the helicity-dependent spectra of section 4, the overall normalization of the spectra leads to
the correct value la //3 1 = 10 of the scalar-to-vector polarizability ratio of the forbidden
transition.

Fig. 12. - Transmitted probe beam analysis. The probe intensity is detected behind an analyzer nearly
crossed with the incoming probe polarization (uncrossing angle 7.5 x 10-2 radian). The excitation
helicity g e is modulated. The amplitude of the resulting modulation is plotted versus the probe
frequency. a) Optical rotation spectra ; b) circular dichroism spectra (a quarter-wave plate is inserted
before the analyzer). Cs density 1014 at/cm3 ; electric field 2 000 V/cm. Theoretical spectra for s = 1, and
’Y /27T = 12 MHz.
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6. Conclusion.

In this paper we have presented a theoretical approach to the Cs 6S-7S-6P3/2 forbidden three-
level system, and illustrated the agreement with experiment. We have chosen an approximate
but analytical resolution of the master equations. This was possible owing to the highly
forbidden character of the transition used to excite the Cs atoms. Several approximations
were therefore justified : the excitation has been treated at the lowest order ; the coherent 6S-
6P3/2 process has been neglected as compared to the stepwise 6S--&#x3E;7S--+6P3/2 process, which
largely dominates ; the hierarchy between the width of the forbidden transition, the width of
the 7S-6P3,2 transition and the Doppler width, has allowed simplified integration over the
velocities. Finally, omitting tensor orders é- 3, we have achieved a non-perturbative
resolution, quantitatively valid up to values s = 1 for the saturation parameter. Only in
strongly saturating laser fields, in the case of fluorescence spectra characteristic of the 7S
orientation, and only for the AF = 0 and - 1 transitions, does the omission of the higher
order tensors lead to a conspicuous difference between calculated and observed spectra. At
moderate or low saturation the calculated and experimental spectra show good agreement.
Theoretical fits of the data have yielded numerical values of several parameters of the
forbidden system, such as the damping rate of the 7S-6P312 coherence.
The 7S orientation has been measured by detection of the 7S --+ 6P fluorescence without

polarization analysis, and by detection of the transmitted probe polarization as well. The first
technique appears interesting since it could help to improve the detection efficiency of the
method used in our laboratory for previous parity violation measurements. Yet the second
method appears to be more promising : observation of the transmitted probe beam allows one
to detect almost all excited atoms. With the PV orientation (or alignment) in the excited level
is associated to a circular (or linear) dichroism for both the excitation and probe beams. But
the optical density for the probe can be much greater since it is proportional to the density of
excited atoms and to the induced emission cross section. The fractional intensity change
A//7 can even reach or exceed 1 after a pulsed excitation of the forbidden transition. In this
case the photon noise associated with the probe beam will no longer dominate the noise
associated with the atomic signal itself. In addition, when A/// &#x3E; 1, the propagation through
the vapour can lead to an amplification of the left-right asymmetry [6]. These attractive
features have led us to an experimental set-up adapted to the pulsed excitation and to the
detection of the resulting transient probe modifications. Experiments using this new method
are presently under way in our laboratory.
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Appendix A.

Throughout this paper, we assume that the system undergoes only step-by-step processes.
Taking advantage of the strong collisional broadening of the 6S-6P3/2 coherence, we omit the
coherent two-photon (Raman) effect [27, 9]. Appendix A, aiming at establishing this

assumption on a firm basis, is devoted to a calculation of the inhibited fluorescence signal
including the coherent two-photon effect. For the sake of simplicity, we omit the angular
degeneracy of the levels, as well as the hyperfine structure.
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1. The steady-state équations for the system.

As sketched on figure (13), we now call úJi/27T’, úJr/27T’, and Ù)7P/2-r the frequencies of the
6S-7S forbidden transition, of the 6S-6P3/2 resonance transition, and of the 7S-6P3/2 transition
used for detection respectively. We call y i, y r, and y the damping rates of the corresponding
coherences. The frequency of the excitation (detection) laser is denoted ù),,(d)/21r, and we
define là £O = úJ e - úJ d.

Fig. 13. - Simplified level diagram with the notations used in appendix A.

We consider the steady state of the system. The populations n6, n7’ and np of the 6S, 7S, and
6P3/2 states are constant in time. The coherences P76, P7P, PP6 (in the interaction

representation) oscillate, under the action of the laser beams, as

where the Pi/S are constant in time. Since the two laser beams propagate in the same
direction, the Doppler shifts have identical signs. The steady state equations are written as

Here d and D are the dipole matrix elements of the forbidden transition and of the 7S-
6P3/2 transition respectively (d « D). The damping rates of the 7S population, of the

6P3/2 population, and the collisional redistribution rate in the 6P3/2 state are defined as in
section 2, and are noted r7s, TP, and rcoll respectively. At the lowest nonzero order of the
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forbidden transition (§ 1.3.iii), n6 remains unaffected (i.e. n6 = ncs f (v)) ; in equation (A.1),
n7 is negligible as compared to n6 ; in equation (A.3), the last term is negligible as compared
to the other.
A relation between p’P6 and P76 is thus obtained. Carrying this relation in (A.1), one finds

that the frequency and width of the forbidden transition are modified by the two-photon
effect according to

Equations (A.1) to (A.3) allow one to eliminate the coherences and, from equations (A.4)
and (A.5), one obtains the master equations for the populations

where

The excitation rate Ag’(v) now replaces AF(v) (Eqs. (8)). The distribution g’(v) coincides
with g (v) in absence of the probe beam, but is modified by the coherent effect through
wi and y; (Eqs. (A.6) and (A.7)). ACOh(v) plays the rôle of a source term for the population
difference np - n7. Even when neither g’ ( v ) nor R ( v ) is resonant (that is, when neither laser
is resonant for a single-photon transition), A coh( v) acquires a resonant behaviour for a
velocity group such that Aw = We - Wd = Wr + 1.72 v (two-photon resonance).

Before solving equations (A.8) and (A.9), let us prove that, despite the modifications of the
frequency and width of the forbidden transition (Eqs. (A.6) and (A.7)), the normalization
relation f g’ ( v ) d v = 1 is not affected by the presence of the probe beam. Assuming, as in
section 2, that y Ç is small as compared to the Doppler width, f g’ ( v ) d v can be written as a
quantity of the form



190

where a, which is proportional to the saturation parameter s, b, and c are real

(a, b &#x3E; 0). One can easily show that this quantity does not depend on s : its derivative with

respect to a is the integral of a quantity whose poles lie in the lower half of the complex plane
(as soon as a &#x3E; - 1). Therefore the derivative with respect to s is zero and the result

f g’(v) dv = 1, obvious for s = 0, remains true at any saturation level.
2. Lowest order solution.

The calculation is very similar to that of § 3.1. The presence of Acoh in (A.8) and (A.9) simply
results in an additional term - Acoh (1’) dvIA in the previously obtained solution

(Eq. (27)). We define

A residue integration (omitting higher orders) gives

At the center of a resonance, the ratio of the coherent to the step-by-step contributions is
easily calculated to be

To take into account the hyperfine structure of the 7S-6P3/2 transition, we inserted in the
denominator the usual oscillator strength C F, . Since y is not very different from

Y" u 
coh turns out to be roughly equal to (W7P/£Ùi) (F7S/y,), as previously indicated. Owing

to the reduction factor ù)i/£07P e 2.72, the stepwise process always dominates, even when the
6S-6P3/2 coherence is not strongly damped by collisions.

Figure 14a and b shows the calculated spectral shape of the inhibited fluorescence holes,
with and without the contribution of the coherent effect, in the conditions where the coherent
effect is maximum (30 %). The coherent effect results in a smaller width and a larger depth for
the holes.
The computer code previously used to extract y from experimental spectra, was run later

with the theoretical shape including the coherent effect. For all values of the Cs density for
which spectra were recorded, the coherent effect modified the best fit value of y by only
= 1.5 MHz. Hence the reported value for the collisional broadening (Eq. (41)) is in practice
not affected by the coherent effect. The values of Fp are not affected either, since the
coherent effect is not involved in the 6P3/2 - 7S reexcitation rate.

Let us briefly mention that, if the two beams were propagating in opposite directions, then
the three poles of A coh(v) would lie in the lower half of the complex plane. The integral

f Acoh(v) dv would vanish, and coherent effect would give no contribution at the lowest
order. The disappearance of the coherent effect for counterpropagating beams has been
verified by other authors in conditions where the effect for copropagating beams is large [28].
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Fig. 14. - Spectral shape of the inhibited fluorescence hole with (a) and without (b) the two-photon
contribution. Curve c) is the spectral shape of the two-photon contribution.

3. Non-perturbative solution.

The non-perturbative resolution of equations (A.8), (A.9) follows the same method as in
§ 3.2, and results in the substitution 9 -+ g + gcoh in equation (33), with

We find that Igcoh/19 does not vary significantly between weak and strong saturation.
A large Autler-Townes effect [29] could in principle result in an observable splitting of the

sharp function shapes (Cf)d) and co’Cf)d). In fact, we have found that the Autler-Townes
splitting of g (v ) is always small enough to vanish when velocity integrations are performed.
For reasonable values of the collisional damping rates, a non-zero splitting is predicted for
Gcoh(wd) ; but the amplitude of the splitting remains negligible as compared to the spectral
width of the two-photon contribution.
So our conclusion is that two-photon effects cannot lead to an observable splitting of the

inhibited fluorescence holes, and this matches the results of the experiments performed on the
forbidden three-level system in quite a wide range of Cs densities (where y and
y ranged from their radiative limits to = 8 times these limits).

Appendix B.

F
On several occasions during the calculations, we have used the operator ’G (defined by

F’
F

(Eq. (16)) which acts inside the 7S1I2F level. We also defined É 1 (Eq. (17)) which acts inside
F’

6P3,2F’. Then the quantities to be calculated (e.g. the radiative transition rates) are of the form

tr {pû . i .v} , where û, v, are polarization vectors, and p is the density matrix in the 7SF or
6P3/2F’ levels. The calculations are greatly simplified when the operators -6, of rank 2, are
developed on the basis formed by the irreducible tensor operators pO) , F(1) and

p2) defined by equations (18). In this appendix we first calculate the coefficients of the
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decomposition in the general case of a transition between any two levels of an arbitrary atom
and then apply the results to the7S H 6P3/2 transitions of Cs.

1. Général case.

We consider an arbitrary 7jF -+ T’ j’ F’ transition of an atom of nuclear spin I. We define

(rjF is assumed to be the upper level of the transition), and

(9) = - 1 e 1 r is the electric dipole operator ; P(rjF) is the projector on the multiplicity F of
level Tj). We now calculate

We use the Wigner-Eckart theorem ([30], App. C), written in the form

(the operator T(K) is assumed to act only in the subspace of angular momentum
jl). It is convenient to write

where

The spherical coordinates J’q,’ are then equal to

From W one can construct three irreducible tensor operators, of rank 0, 1, and 2 following the
three terms of the identity
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(the coefficients itij are the cartesian coordinates of S). The result is written

Where a 1 and b 1 are real coefficients depending only on F and F’ :

Finally, from equations (B.3) and (B.6), one obtains the expression for

involve 6 j coefficients (Eq. B.4)). Let us give the expressions of the 6 j’s for a

j = 1/2 level (often considered in alkali atoms).

We now consider the reverse (absorption) process operator

(Eq. (B.2)) is developed according to

The A i , a 1 , and b î coefficients are related to the A  , a 1 , and b 1 appearing in
equation (B.7). Using trace invariance properties, one easily shows that
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We further take into account the relation

which holds since 9) is an irreducible tensor operator of rank 1, and obtain [19]

2. The 7S-6P 3/2 transitions of the Cs atom.

We now apply equations (B.4), (B.7), (B.9), and (B.10) to the 781/2 F --+ 6P3,z F’ transitions of
133Cs (1 = 7/2). The corresponding values of the A, a, and b coefficients are listed below (in
view of Eq. (B.8), we omit the arrow for coefficients A) :
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Finally we define the coefficients

Defining 5 2 we obtain the simple summations rules

Appendix C.

In this appendix we summarize the non-perturbative calculation of the helicity-dependent
fluorescence signal. Our treatment includes the alignment induced by the probe laser.
We express the density matrix in terms of the populations in 7SF and 6P3/2 F’, and of the

orientation and alignment in 7SF (Eqs. (44), (45)). Defining F n F (F + 1 )/3 and Fk - F . k,
we write

For simplicity, we now drop the explicit z,-dependence of the variables n7F, P7F,
Q7F, and nPF-. Within the assumptions presented and discussed in § 4.2, these quantities obey
the steady-state equations :
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where the À/s are functions of F and F’ :

We introduce

Equations (C.1) then become

Summing equation (C.2d) over F’ and subtracting from equation (C.2a), one obtains, after
velocity integration, the simple conservation relation mentioned in the text (Eq. (46)). Then
straightforward substitution of P7F, q7F, and n7F leads to
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in which

These expressions for I(v) and J(v) differ from equations (30) by factors (curly braces)
which originate in the alignment and bring higher-order corrections. Then, one easily obtains

iip, and (using Eq. (46)) ii7:

where

In order to obtain an (approximate) analytical expression for Igg and Ye, we use the same
approximation as in section 3. Then g g is simply given by 3 1 e / (1 + I -. I é ) 1&#x3E; = ,r . . The
quantities I, Ié and Ig can be expressed in terms of the functions CF, (LiF, ) (Bq. (36)), of the
bare lorentzian shape LF, (aF, ) = CF/ (1 + aF2), and of the frequency-dependent coefficients
ij- ij-xiokoj + KSIL’ LF’). This notation allows us to emphasize the modifications
introduced by taking the alignment into account. We obtain
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In these quantities, including the alignment does not contribute by more than 13 % at
s=1.

Now, considering equation (C.4b), one notices that :F is not very different from 37

(Eq. (31b)) : I,(v), and the alignment-induced corrections to I(v) and J(v), only bring
small modifications (1 to 15 % at s = 1, depending on the transition). Therefore we calculate
ye - ’-;- at the lowest order in these corrections. We also omit the very small fraction of non-
thermalized 6P3/2 atoms (approximations KSC F « 1 and rcoll &#x3E; r p). It should be recalled that
these approximations will not affect the shape of the resonances, but only their heights. The
calculation follows the same assumptions as in the calculation of :F, i.e. :

2013 f (v ) is assumed to be constant over the width of a resonance ;
the resonances are supposed to be well resolved.
The resulting expression for Yj is very close to equation (39), except that the weights

1/ 7T F’ have to be replaced by (1 + ç J ’PlF’ + ’P2F’)/’TF’, where

Finally, the alignment-induced corrections at s = 1 amount to less than 13 % in

Ige and less than 15 % in Y,.
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