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Résumé. 2014 Une structure en bâtonnets arrangds sur un réseau hexagonal est proposée dans des solutions et
gels d’ionomères perfluores. Deux différentes approches ont permis l’obtention du diamètre des bâtonnets. Le
déplacement du pic d’interférence obtenu en diffusion aux petits angles permet de définir ce diamètre à partir
de considérations géométriques. L’analyse du facteur de structure, sur des solutions très diluées, permet
l’obtention directe du diamètre. Une bonne cohérence a été obtenue à partir de ces deux techniques d’analyse.
Les rayons varient entre 18 et 31 Å selon la nature du solvant. Ces bâtonnets seraient formés par un noyau
perfluoré plus ou moins organisé et les charges seraient rassemblées sur la surface. Le rayon ne dépend pas de
la valeur de la constante diélectrique mais plut6t de la tension interfaciale entre le solvant et le polymère
perfluoré. Ces structures pourraient correspondre à un état d’equilibre entre l’énergie élastique de

déformation du groupe latéral et l’énergie interfaciale.

Abstract. 2014 A hexagonal packing of rod like structures is proposed in solutions and gels of a perfluorinated
ionomer. The diameter of the rods has been obtained by two different approaches either geometrical from
shifts of the interference peak versus concentrations in small angle scattering experiments or direct from
analysis of the structure factor in diluted solutions. Consistent results give values between 18 and 31 Å for the
radius of the rods, depending on the solvent. The rods have a perfluorinated core with the charges on the
surface and the diameter depends on the surface tension rather than on the dielectric constant of the solvent.
The structure may result from a balance between elastic and interfacial energies as it is shown by calculations.
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1. Introduction.

The aim of this paper is to bring new evidences
concerning the rod like structure in solutions of

perfluorinated ionomer membranes. A model of the
structure involving the presence of such colloids had
been proposed in a previous paper [1] from geometri-
cal considerations associated with the ionomer peak
shift versus concentration in small angle neutron and
X-ray scattering experiments. The influence of the
solvent, characterized by its dielectric constant and
its surface tension, on the size of the rods will be
studied here in order to define what is the driving
force for the rod diameter. The form factor of the

scattering objects will also be analysed at very high
dilutions in order to have direct information on the

geometry and the diameter of the perfluorinated
ionomer rods.

2. Experimental.

2.1 SAMPLE PREPARATION. - Dissolution of 117
native Nafion (E. I. du Pont de Nemours, Inc [2])
acidic membrane (EW 1100) has been achieved by
using the classical procedure described by Grot [3]
and Martin et al. [4] : small pieces of membrane are
swollen in a 50/50 water-ethanol mixture and heated
for 1 h at 250 °C under pressure. The hydroalcoholic
homogeneous solution is then carefully concentrated
by slow evaporation around 80 °C. Upon evapor-
ation of the solvent, the viscous solution becomes a
gel which cracks and forms solid transparent par-
ticules when dried. By milling at room temperature
in an agate mortar, a fine white powder is obtained
that readily dissolves at room temperature in many
polar solvents at various concentrations [5]. Samples
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with a volume fraction of polymer cpv ranging from
0.28 % to 25 % have been prepared in water,
ethanol, N-methylformamide (NMF) and formamide
(FA) ; cpv is deduced from the weight percentage
assuming constant bulk densities for all solvents

(Pwater = 1, P etnanol = 0.785, P NMF = 0.999, PFA =
1.129 and Ppolymer ’" 2 g/cm3, the density of the start-
ing bulk membrane). The experimental upper limif
of the concentration range, which depends upon the
solvent, is reached when the sample becomes a stiff
gel and bubbles appear when the container is tightly
closed.

Lithium samples have also been prepared by
exchanging against Li+ for 1 h. The native acidic
membrane is placed in an aqueous hot solution

(- 90 °C) of LiCl 1 M ; then the same preparative
procedure is performed. Lithium and acidic dialized
samples have been prepared in the same solvents in
order to prevent the drying of the colloidal hydroal-
coholic starting solution which may possibly induce
structural transformations. After dialysis, the sol-
ution concentrations are determined by weighing the
dry polymer after evaporation by heating between
80 °C and 150 °C depending upon the solvent. Ad-
justments by dilution are made before the scattering
experiments. No difference in the small angle scat-
tering patterns were observed between identical
concentrated solutions obtained by these two routes.
Most of the solutions studied in this paper were
therefore obtained from powders.

2.2 SMALL ANGLE NEUTRON (SANS) AND X-RAY
(SAXS) SCATTERING SPECTROMETERS. - Samples
were examined with the SANS spectrometer PACE

(Orphde Reactor of the Leon Brillouin Laboratory,
Saclay, France) over a wide range of momentum
transfer Q (Q = 4vsinO/A, 5 x 10- 3 _ Q * 2 x
10-1 A-I) by using the wavelengths A associated
with four sample detector distances d (a = 7 A with
d = 2.5 m and A = 6.4 A with d =1.4 m for the

high Q range, A = 12 A with d = 3.50 m and 4.75 m
for the small Q range). Sample containers were
quartz disks separated with 1 mm thick spacers,
hermetically closed when fixed in the metallic holder.
SAXS experiments have been performed with the

D22 synchrotron radiation spectrometer (DCI,
LURE, Orsay, France) over a nearly identical

Q range (8 x 10-3  Q * 2.8 x 10-1 A-1) with
A = 1.549 A. Sample containers consisted of PTFE
rings, 1 to 5 mm thick, surrounded by two capton
thin films which were held in place by metallic

holder.

3. Analysis of the results.

3.1 THE IONOMER PEAK. - The analysis presented
here is consistent with the previous paper [1]. We
start from the position Qmax of the ionomer peak

which is attributed to an interference between the

scattering objects and therefore gives a spacing
d = 2 7T /Qmaxo An example of the scattering curve
dependence is given in figure 1. The volume fraction
of the polymer is obtained from the assumption that
the density of the scattering objects is the same as

Fig. 1. - Example of the small angle neutron scattering
curves obtained for different volume fractions of acidic

perfluorinated ionomer in formamide : 0 4.0 % ;
0 5.9 % ; L 12.4 % ; + 19.5 % ; * For Q &#x3E; 0.14, the inten-
sity is zero in every solution.

Fig. 2. - Ln (d ) versus Ln (~v) for different solvents.
The d values are obtained from the peak position using the
Bragg relation : d = 2 7T /Qmax
x (a) H20 1100 H+ ; A NMF 1 200 Li+; . FA
1100 H+ ; 0 NMF 1 200 H+ ; V (a) C2HSOH 1100 H+ ;
0 NMF 1 100 H+ ; + NMF 1100 Li+ ; theoretical slopes
and calculated slope (----) from appendix A are indicated.
(a) These data are taken from previous paper [1].
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that of the starting bulk membrane i.e. 2 g/cm3. The
d spacings as a function of wv for different solvents
and polymer counterions are given in Table I. In

figure 2 is plotted Ln (d) versus Ln (ov) for the
different samples. If the scattering objects have a
constant mass or shape independent of the dilution,
one can have an indication on the dimensionality of
the arrangement from the slope
x = - Ln (d )/Ln (q;y). A three-dimensional ar-

rangement of isotropic scatterers, like spheres,
would give a slope with x = 1/3 ; a two-dimensional
arrangement of cylinders or rods would give x = 1/2
and finally x = 1 would correspond to a lamellar
structure of sheets. As shown in this figure, the
slopes are nearly the same for all series and the

averaged value is 0.42, an intermediate value be-
tween 0.33 and 0.5.
At this point, it should be noted that the observed

intensity is the product of a structure factor

1 F (Q) 12, characteristic of the scattering object and
corresponding to a decreasing function of Q in the
observed Q range, by an interference function

S(Q). The true values associated with the S(Q)
maxima are therefore shifted towards lower values
of Q. A calculation presented in the appendix A
shows that this effect has the consequence of lower-

ing the absolute value of the theoretical slope. In the
case of a two-dimensional hexagonal lattice with a
hard core repulsion, for low concentrations, the
overall slope is x = 0.43. We therefore conclude in
favor of a two-dimensional arrangement of rods
which must have a perfluorinated hydrophobic core
with their surface covered by the S03 hydrophilic
groups.
To obtain microscopic information on the diame-

ter of the rods, one has to assume their density and
one has to choose a geometrical arrangement giving
a relation between the d values and the volume

fraction of the polymer. The simplest two-dimen-
sional geometrical arrangements of rods are hexag-
onal or cubic as already discussed [1]. With the
assumption that the density of the rod is about that
of the starting bulk polymer, one can therefore

define the diameter of the rods and the specific
surface [a] occupied by one charge on the surface of
these rods. We recall some geometrical formulae : in
the two-dimensional hexagonal array of rods, the
true distance D between the nearest neighbor paral-
lel rods is obtained from the equation D = 2 x
3-1/2 x d = 1.155 d with d = 2 7T /Qrnax. From the
assumption of cylindrical rods having a density close
to 2 gl cm3, one gets the radius r of the cylinder,
r = (2 x 3-112 x 7T - 1 )112 dq; 112 = 0.606 dp 1/2, where

q; = 0.01 cp v.
The specific surface a occupied by one charge on

the surface of the rod is given by a = 2 V r- 1 where
V is the polymer volume per unit charge. It is also
possible to define the rod length associated with one

Table I. - Table gathering the scattering data
obtained for different samples. The d values obtained
from the peak position and the specific surface
associated with one charge are given for different
polymer concentrations.

(a) The values of cp v and d are taken from previous
paper [1].

charge I = (’1T r2)- 1 V. In table I a value of a is

given for each sample by considering only the

samples for which the concentrations are larger than
0.03 since the location of the peaks becomes uncer-
tain for more diluted solutions. The average value of
o- and r for each series is summarized in table II. The
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Table II. - Table giving the average specific surface
if, the radii obtained from geometrical considerations
(r) and direct measurements (R), for different sol-
utions.

analysis for a cubic phase of rods would give
a ’ and r’ ; these values are related to the correspond-
ing values for the two-dimensional hexagonal array
of rods by o-’ = 1.861 Q and r’ = 0.537 r.

3.2 THE STRUCTURE FACTOR. - For Q &#x3E; Qmax, the
interference term should tend towards unity so that
I (Q ) in that region should become proportional to
1 F (Q) 12, the structure factor of an isolated scat-

tering object. Direct information on the geometry of
these objects can therefore be obtained from the
scattering curves of diluted solutions where the peak
maximum is shifted towards Q values smaller than
the considered Q range. If there were small isotropic
objects, we should have IF(Q)12 =
exp (- Q2 Rg2/3 ) in that Q region [6, 7], if Q  1/Rg
where R is the radius of gyration R2 = 3R2) for
an homogeneous sphere of radius R. If the objects
are long cylinders or flat discs whose overall dimen-
sion is larger than 2 7T /Qmin = 103 A, (Qmin being
the minimum experimental Q value) then in the
experimental Q range the scattered intensity
is proportional to 1 F (Q) 2 = Q- n exp( - Q 2
gl (3 - n )) with n respectively equal 1 or 2.
By drawing plots of Ln [Qn I(Q)] versus Q2 we

have obtained a linear dependence for n = 1 only,
which corresponds to the form factor of a long
cylinder. A typical example of such plot is shown in
figure 3. Such a result is an important confirmation
of the above geometrical analysis ; it also allows a
direct determination of Rg or of R, the radius of a
homogeneous cylinder : R2 = 2 Rg. The values of
R so obtained are listed in table II together with
if and r.

This absolute determination of R is very helpful
because it allows us to select, among the different
two-dimensional arrangements giving values of
r differing only by a proportionality coefficient, the
one which gives the best agreement between

r and R i.e. the hexagonal arrangement. The possibi-
lity of a cubic phase of rods has to be excluded since

Fig. 3. - Extended Guinier plot of a diluted sample
(0.28 % Nafion 1100 H+/FA) showing the rod like struc-
ture and giving the radius of the rods from the slope.

r’ = 0.537 r gives values too small to fit with the
R values. This conclusion is opposite to the con-
clusion obtained in our preceding paper [1] from
geometrical considerations only and with the

hypothesis that each rod contained only one macro-
molecule ; such a hypothesis is probably not realistic
and the rods must be made from several polymer
chains.
A last remark can be made about the specific

surface associated with a charge on the surface of the
rod. The value obtained for water solutions is
59 A2. A very similar value had been obtained in the
water swollen starting membrane [8]. The structures
of the solutions correspond to micelles compared to
the structure of the starting material which form
inverted micelles [9, 10] as in many other ionomer
systems [11, 12].

4. Discussion.

The results of the analysis led to the conclusion that
the solutions consist of long cylinders having a more
or less perfluorinated organized core and internal
structure with the ionic charges on the surface.

Reasonably constant values of the specific surface
are obtained when changing the concentration. How-
ever the confidence in such a result has to be
attenuated because of the experimental uncertainties
in the peak position which was taken without any
correction. The specific choice of a hexagonal ar-
rangement led to an absolute determination of the

geometrical parameter in agreement with the values
obtained from the extended Guinier plots of the
scattered intensity for the diluted solutions. Anyway
the comparison between the values of the specific
area obtained in different solvents is independent of
the absolute determination. Having obtained a

diameter for the rods, the question arises concerning
their length. The linear dependence of Ln [QI (Q)]
versus Q2 in diluted solutions is valid down to very



2105

small Q values which gives an inferior limit of 
- 103 A for the length of the rods. The present status
of the experiments does not allow us to give better
precision about the length as well as about the
diameter distribution.
The choice of the solvents was suggested by their

wide range of dielectric constant: E (NMF) = 180 ;
E(FA) = 111; e(H20)=80; e(C2H50H)=25.
The most striking feature is first the relative change
of Q from one solvent to another and above all its

apparent erratic variation upon E. This behaviour is
quite different from that observed in polyelectro-
lytes. In our previous paper [1] we had underlined
the importance of the interfacial energy y between
the solvent and the polymer. We have two different
series of y values. The first series corresponds to the
interfacial energy between the solvent and air:

y (C2HSOH ) = 22 cgs ; y (NMF) = 39 cgs ;
y (FA) = 58 cgs ; y (H20 ) = 72 cgs. The second
series corresponds to the interfacial energy between
the solvent and the polytetrafluoroethylene polymer
and has been defined from contact angle measure-
ments [16]: y (C2H5OH) = 3.6 cgs ; y (NMF) =
19 cgs ; y (FA) = 21.6 cgs ; y (H20 ) = 49.7 cgs.
Figure 4 shows that a linear variation is observed in
both cases when plotting Ln (o-) versus Ln (y) but
different slopes are obtained ; - 1/3 if one considers
the values of -Asolvent-air), 1/4 if one considers
the values of y(solvent-PTFE) and if one discards
ethanol solutions.

Fig. 4. - Plot of the specific surface associated with one
charge versus the interfacial energy between the solvent
and respectively the PTFE polymer (0) and the air (+).

The important result is that the radius of the rods,
or the specific surface a, depends on the interfacial
energy and not on the dielectric constant. If the

surface energy was acting alone, one should observe
a collapse of a or an increase of r = 2 V/o-. The
problem now is to find the balancing force which
prevents such a collapse. One could think, first,
about the electrostatic repulsion between the

charges. There are two naive ways to calculate its
effect ; the first one is to consider the length
I along the rod associated with one charge and to
scale (like in polyelectrolytes) the electrostatic repul-
sion as 1 /l ; the second wa is to consider the

charges as being distant by a on the surface of the
rod. The total energy per charge is therefore :

in the first case and

in the second case. In these equations y is the

interfacial energy, E the dielectric constant, V the
volume of polymer per charge, A and A’ constant
values. One can minimize the sum and get the

specific surface at equilibrium a = K(Ey 3 with
n = 1 in the first case and n = 2 in the second one.
In both cases this dependence does not fit with the
experimental results. In the appendix B we have
estimated the electrostatic energy in the more sophis-
ticated cell model. The conclusion is that its magni-
tude is not large enough compared with the inter-
facial energy. It must be emphasized that, if this

electrostatic energy does not play a major role in the
diameter definition of one rod, it remains fundamen-
tal to explain the repulsion between the rods which
gives this hexagonal arrangement.
Another possible balancing force we can imagine

is of entropic origin due to the large constraints
associated with the location of the charged groups on
the surface of the rods where the electrostatic self

energy is lowered by several tens of kilocalories per
mole. It is however difficult to force every charged
group on to the surface especially if the diameter is
large and if the charged groups are associated with
chains whose backbone is located in the center of the

cylinder. The theory for such constraints does not
exist. It is clear that such an effect opposes the

collapse of u and does not depend on the solvent but
depends only on the polymer flexibility, equivalent
volume, etc. We just present here a very speculative
estimation of this effect which is mainly associated
with the elongation of the side chains. As an

approximation one can use the formula giving the
free energy F of a Gaussian chain having a free end-
to-end distance A, when it is elongated to a distance

2

p : F = 3 kT P . The elongated distance has to be2 A 

connected with the radius of the cylinder. For a
homogeneous cylinder of radius r, the average
distance of any point to the surface of the cylinder is
p 2 = r2/6. Taking into account the relation

r = 2 V /Q, one has as the average
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energy per charge. By adding the contribution of the
interfacial energy l’ u, we obtain by minimization of
the sum: a = (2 kTV 2 À - 2)1/3 l’ - 1/3 which gives a
dependence in y- 1/3 consistent with the results. A
numerical application by taking the following
values : y = 70 cgs or 0.1 kcal mole-I/A2 ; kT =
0.6 kcal mole-1 ; u = 60 A2 ; V = 1000 A3 gives a
value of 7.45 A for this end to end distance, which
value is quite consistent with the length of the side
chain. The model also predicts a small variation of
the specific surface with the specific volume or
equivalent weight: o- = V2/3, which dependence is
consistent with the measurements. The predicted
temperature dependence is (T/y)1/3. One feature
that this model cannot explain is the influence of the
neutralization which seems, in the case of Li, to

increase the specific surface by 10 %.

5. Conclusions.

The new experimental results presented in this

paper, together with the analysis of the scattered
intensity for Q values above the ionomer peak
domain, have confirmed the presence of cylindrical
rods within the perfluorinated ionomer solutions and
are in favor of a structure close to a hexagonal array
of parallel rods. The diameter of these rods is a few
tens of Angstroms and their length is larger than
~ 103 A. This hexagonal order does not extend over
long distances but rather corresponds to a local

order which therefore broadens the interference

peak. A tentative picture of such structure is given in
figure 5. By using polar solvents covering a large
range of dielectric constant, we have found no

Fig. 5. - Tentative picture of the rod like structure.

correlation between the diameters of the rods and
the dielectric constant values. The equilibrium value
for the diameter of the rods seems to result mainly
from a balance between elastic and interfacial ener-

gies. The elastic energy corresponds to the energy
needed to form the rod like structure with the

perfluorinated groups inside the rod and the ionic
charges on the surface. The interfacial energy corre-
sponds to the phobicity of the polymer towards the
solvent which therefore tends to lower as much as

possible the contact surface between the PTFE and
the solvent. The net result from these two contri-
butions is an equilibrium for the diameter which
depends mainly on the side group length and on the
interfacial energy. The structure that is proposed for
these solutions is therefore very different from the
inverse micellar structure which has been proposed in
the starting bulk material [8, 9, 10]. This model can
be used as a starting model to understand the
structural changes which occur upon reconstruction
of the membranes by casting followed by annealing
[13].
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Appendix A [17].

We examine here the shift between the apparent
maximum qrn = qo + Aq of the product
IF(q)12 S(q) and the true maximum qo of S(q). For
that purpose we need a model for S(q) which has a
finite width in the vicinity of the maximum. The
paracrystal which gives a numerical relation between
q and d is of no help since a Bragg peak (a delta
function) is not displaced by multiplying with a
varying function IF(q) 12.
The simplest model is that of a liquid of parallel

infinite cylinders with a hard core repulsion leading
to a correlation cylindrical hole of radius a. A trivial
extension of the Debye calculation [6, 14] for

spheres gives : 

where J1 (x) is the ordinary Bessel Function of order
1, and s the average section occupied by one
cylinder.
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The first minimum of J 1 (x ) / x, which gives rise to
the ionomer peak is located at xo = 5.2 where

Jl (x )/x can be approximated by :

The choice of the numerical coefficient 2 -ga 2/s will
be done in the following way. We first adjust a, the
closest distance, in such a way that the peak coincides
with that of a paracrystalline lattice (here we limit
ourselves to a hexagonal lattice). As qo D =
4 ’IT 3-1/2 = 7.2552 in the hexagonal lattice (we recall
that D is the distance between rods) and as

qo a = 5.2 in the hard core model one obtains :

This adjustment is quite acceptable, because the
electrostatic repulsion a is not related to 2 R (geo-
metrical contact of the rods), and since a = D is a
too strong statement.
As in the hexagonal lattices = 31/2 D2/2 one finds

for the ratio 27Ta2/s a numerical value : 3.73

independent of the volumic fraction cp of polymer.
One recalls also the relation:

which relates cp to D or a, or qo.
The structure factor of an infinite homogeneous

cylinder [6, 7] of radius R is given by :

By derivation one solves for dq, the shift in

q.. As a first approximation

or

qo varies like cp 1/2.
The logarithm of the term in parenthesis cannot

’ be assigned to a constant slope in function of

Ln ( cp). Nevertheless, for not too large values of
cp, for which the first (linearized) approximation
may be valid, one can draw a straight line through
the calculated points. Between cp = 10-2 and 10- 1,
for example its slope is about - 0.07 which gives for
Ln (Qm )/Ln ( cp ) an apparent slope of - 0.43, close
to the observed one. The above, rather crude,
calculations show simply that the slope for the

apparent maximum, even for a two-dimensional

array of rods, is smaller than 0.5 and lies between 0.5
and 0.33.

Appendix B.

In this appendix we calculate the effect of dilution on
the electrostatic free energy of the system and its

possible consequence for the equilibrium radius
r of the rods, or in a more convenient way for the

specific area a of each charge on the interface with
the solvent.
The model which is the best adapted to the

physical situation described in this paper, is the well
known cell model, for which we refer to the basic
Katchalsky’s review [15]. Since it has been often

discussed, mainly in its relation with the conden-

sation of the counterion atmosphere, we shall limit
ourselves to the numerical calculation of the dilution
effect in a solvent of dielectric constant e.

The model by itself consists of an infinite cylinder
of radius r. V is the equivalent volume of the

polymer or the volume of polymer for one charge,
1 the height of the cylinder corresponding to one
charge, a the specific surface, cp the volumic fraction
of polymer in the solution. The rod is supposed to be
embedded in a cylindrical cell (radius R) of solvent
containing the mobile counterions. The system is
neutral and the electrical field at R is zero ; this last
condition represents in the simplest way the presence
of the other rods in the solution.
One has some simple geometrical relations :

with r , r’ , R.
The counterions are distributed in a heterogeneous
way, being partly attracted by the negatively charged
rod. Per height 1 (for one charge) we call T (x ) the
probability of finding the cation between x and
x + dx. iT (x) is the fraction of catioriic charge
between Xo = cp 1/2 (the surface of the rod) and

x. One has

In terms of rand 7T, the free energy of the system
can be calculated as the sum of the electrical density
energy, easy to calculate in the cylindrical geometry,
and the entropy of the heterogeneous gas of charges.
Starting from the entropy of an homogeneous gas of
n particles in a volume V :

one solves easily for the total free energy of the rod
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(per charge) :

Here A is the dimensionless charge parameter
A = 2 e2/ elkT (e = electronic charge).

In the calculation of G one may discard the last
term which is constant for a given material. G is a
function of T. The minimization of G leads to

which is an unusual form for the Poisson-Boltzmann

(P.B.) equation for the counterions. We have devel-
opped a numerical procedure to solve this non linear
system which is basically the following : one starts
with a trial function 7ro, from which by using the
above equation (B.5) one can get a first approxi-
mation r1. This first function is defined up to a

multiplication constant A, 1 which is fixed so that

7Tl(X) = f (p 1/2 r1(x)dx is normalized or 7r(l) = 1.cp 1/2

Then 7T 1 is used in a second iteration instead of

7T o. This procedure avoids the delicate problem of
limiting conditions often encountered in the solution
of the P.B. equation. At each step G is calculated.
Within a few iterations (most often of the order of
ten to twenty) one obtains G with a precision better
than 10-6 which allows safely the calculation of its
derivatives. The results are shown in figure 6 for
values of A ranging from 0 to 100, and cp from 0.7 to
10- 3-10- 4. It is for A = 0 ( E = oo ) that G /k T varies

Fig. 6. - Free energy of the rod per charge versus the
polymer volume fraction for different A values (A =
2 e2/ elkT where e, £, k, T have the usual meanings and
I is the rod height associated with one charge).

the most rapidly with ’P. This is expected since in
that case the cation gas is free, homogeneous, and
expanding. There is no condensation which refrain
its expansion.
We need at a given dilution, at constant ’P, the

variation of G with cr, or I or A. If a increases, from
(B.1), I increases and A decreases. One sees on

figure 6 that this always leads to a decrease in

G/kT. In other terms the polyelectrolytic effect

(electrostatics plus entropy) favors the elongation
I of the rod, or increases a (in opposition to the
interfacial free energy yo-).
From figure 6 one gets easily the derivative

d(G/kT)/dA, and as

it can be easily converted in d (G / kT).du ( 
We present in figure 7 the results relative to NMF

(E = 180). Two series of values are possible depend-
ing upon if one chooses the hexagonal arrangement

Fig. 7. - Derivative of the free energy versus the specific
surface associated with one charge. The curves correspond
to the NMF solutions (e = 180) and are plotted for
different solution concentrations.

(Ao = 12.95) (o- = 73.8 A2) or the cubic phase of
rods (Ao = 3.74) (o- = 137.4 A2). For the hexagonal
lattice d G is of the order 2.4 x 10- 2 A- 2 fordor kT
cp = 10-1 and 3.4 x 1O- 2 A- 2 for w = 10-2. With
kT = 0.6 kcallmole, the value for the hexagonal
lattice corresponds to 1.44 x 10- 2 kcallmole
(cp = 10-1) and 2.04 x 10- 2 kcallmole (cp = 10-2).
Expressed in cgs units, to compare with y, this gives
10.8 cgs and 14.28 cgs. These values are inferior to
the interfacial coefficient with air (39 cgs) or with
polytetrafluorethylene (19 cgs).
The situation is the worst for water (e = 80),
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A = 45.44, a = 59.1 Å 2 and for cp = 10-1 1 or 10-2
6.72 cgs and 9.45 cgs are found respectively.
For ethanol (e = 25 ), A = 66.3, o- = 87.5 A2, the

large value of A leads to a strong condensation of the
counterions close to the rod and a poor convergency
of our numerical iterations at small dilution. We
estimate a very small effect, at most of the order of
1 cgs.

In conclusion of this appendix we see that the
polyelectrolytic effect is not in 1/E as a naive

argument would predict. It is in fact stronger for
large e and this is linked to a weaker condensation of
the counterions. We have not found in any case that
the polyelectrolytic effect could oppose the surface
effect ; at most, it can reduce by a small amount the
bare value of y.
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