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Résumé. 2014 La théorie quantique des collisions en présence d’un champ de rayonnement est maintenant bien
établie, notamment dans le cas des champs faibles qui nous intéressent ici. Certains résultats concernant les
sections efficaces radiatives et la redistribution de polarisation se comparent très bien aux résultats

expérimentaux. Les approches semi-classiques permettent souvent une meilleure interprétation physique, par
contre les résultats montrent que les effets de trajectoire ou de réorientation de l’axe internucléaire au cours de
la collision sont très importants, ce qui nécessite le développement de méthodes semi-classiques très élaborées.
Dans cet article (article 1), les équations couplées semi-classiques ainsi que les sections efficaces radiatives sont
obtenues comme limite aux grands moments angulaires des expressions quantiques correspondantes ce qui
permet de s’affranchir d’une hypothèse de trajectoire rectiligne. Un choix adéquat des systèmes d’axes permet
d’ établir une correspondance exacte avec l’ approche semi-classique directe. Ceci nous a conduit à interpréter
physiquement les branches spectroscopiques P, Q, R en termes de rotation de l’axe internucléaire durant la
collision.

Abstract. 2014 The quantal theory of atomic collisions in a radiative field is now well established for weak fields
which we consider here. Several calculations of radiative cross sections and redistribution of polarization
compare extremely well with experimental results. Semi-classical approaches often allow a better physical
interpretation. However, the above mentioned results show that trajectory and internuclear reorientation
effects during the collision play an essential role so that sophisticated methods have to be developed. In this
paper (paper 1), we derive the semi-classical close coupled equations in the limit of large quantum numbers of
the quantal equations thereby avoiding the rectilinear trajectory assumption. An adequate choice of the axis
frame of reference allows us to show the exact correspondence between this approach and the direct semi-
classical derivation of the close coupled equations. This leads us to interpret physically the P, Q,
R spectroscopic branches in terms of the rotation of the internuclear axis during the collision.
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1. Introduction.

The physical interpretation of collision theory is
easier when the relative motion is described in a
semi-classical approach. Many results have been
obtained in a rectilinear trajectory approximation
concerning various total cross sections which com-
pare well with experimental results. At low energies,
however, and in the presence of inelastic processes,
small angular momenta play an important role so
that trajectory effects should be considered. Then,
the application of semi-classical methods may appear
somewhat arbitrary since it is impossible to define a
single trajectory. In the Hund’s case a (or c)
collisional molecular picture, one may consider that

the relative motion of the nuclei is determined in
each channel by the channel electronic energy, but
this description is not valid for all internuclear
distances R and, it is known that the Hund’s case (e)
representation is well adapted at large R values
corresponding to a mixing of the molecular channels.

So, it would appear quite unreasonable to try to
define a trajectory and to develop semi-classical
methods since each considered reaction channel has
a different potential energy curve. However, since
the transition region is well localized, the potential
curves are similar around the curve crossing (or
pseudo curve crossing).

Inelastic contributions arising from other regions
located far from the curve crossing are expected to
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be very small so that the actual choice of one
common potential to describe the collision dynamics
is far from critical. Thus, in a semi-classical picture,
we can define one common trajectory.

In this paper, we start from the quantal equations
and we derive their limit at large values of the
relative orbital angular momentum which yields the
semi-classical formulation. This process allows us to

interpret physically the different branches P, Q,
R in terms of the rotation of the intemuclear axis.
The method used is based on the original work of

Berson [1] and is related in some aspects to the work
developed by Gaussorgues et al. [2] for atomic

collisions without radiative field. Our purpose here
is to emphasize the radiative coupling treatment
owing to the difficulty of the unspherical symmetry
after the collisional orientation average.

Section 2 gives a rapid summary of the close

coupled quantal theory of atomic collisions in the
presence of a radiative field, section 2 describes the
main aspects of the method leading to the semi-
classical limit of the quantum theory. We focus our
attention on the radiative contribution and we

establish the expression of the relevant radiative

cross-sections.

2. Quantum mechanical description : summary of
the theory.

We consider the collision of two atoms A and B and
we assume that B is a structureless ISO atom whereas
A is characterized by angular momentum quantum
numbers jmj. The collision in the presence of light is
described by the reaction :

where n is the number of photons of energy
fiw in the incident field.

2.1 HAMILTONIAN. - Since the details of the

theory have been described by several authors [3-6],
we will only present a summary of the theory. The
total Hamiltonian H is given by :

where H" is the total molecular Hamiltonian (in
barycentric coordiriates) :

where T is the kinetic energy operator, He is the
electronic Hamiltonian whose eigenvalues are the
Born Oppenheimer molecular potentials W I A (R )

B (R ) Q2 is the rotational operator with

f==J-L-S.L and S are the electronic orbital and

spin angular momenta with the corresponding ap-
proximate quantum numbers for the molecular
Hamiltonian. Hs° is the spin orbit operator. Hraa is
the free radiative field, and V d is the dipole
interaction operator given by :

with Eo = (2 7T hw 0 Ic)"2. 0 is the photon flux, and
the polarization vector Êo is taken along the space
fixed Oz direction. We will consider here sufficiently
weak incident radiative field so that V rad will be
treated as a perturbation. Typical magnitudes are
fiw 0 , 106 W cm- 2 for absorption in the wings of an
optical collision, and IíCù cP « 109 W cm- 2 for a radia-
tive collision [4].

2.2 BASIS STATES. - At low kinetic energies, the
total wave function of the system is expanded on a
molecular basis. At large interatomic distances

R, the molecular Hamiltonian is diagonal in a

Hund’s case (e) basis I ajf, JMp). Here J and
M are the total angular momentum and its space
fixed projection, p is the parity. j is the electronic
angular momentum of A, well defined for R - oo.
At small R values, it is convenient to introduce a
case (a) or case (c) molecular basis to represent the
electronic rotational states. Since these two basis are
connected by a unitary transformation involving the
approximate electronic quantum numbers only, both
are equivalent from the point of view of semi-

classical limit. For simplicity, we have chosen here to
expand the wave function on the Hund’s case (c)
molecular basis dressed by the radiation field with
energy fiw :

where Ii i = In i I .
In this basis, the molecular wave functions are

quantized with respect to the intemuclear axis OZ in
the rotating frame OXYZ. The parity pi corresponds
to the operation E* of inversion of space fixed

Cartesian coordinates of all particles. Larsson [7] has
clearly established that the symmetry operation
E * operating on the Hund’s case (a) molecular basis
is given by :

where s = 1 for X - states and zero otherwise. This
relation leads to the following definition for the

Hund’s case (a) basis of definite parity p :
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From the active point of view (Brink and Satchler
[8]), the rotational wave functions I JMf2 ) are given
by :

Following the usual conventions in the scattering
theory, the Euler angle y is taken equal to zero
which corresponds to the symmetry operation
C2(X) applied to the rotational variables. With this
particular choice (y = 0), one has to consider the
reflexion operator av(yz) for the electronic wave
function [7]. This point will be important in the semi-
classical limit.
The usual transformation between Hund’s case (a)

and case (c) basis states may be written :

where (LÃS! j/7 ) is a Clebsch Gordan coefficient.

Using relations (8) and (10), we may now define the
Hund’s case (c) basis states of parity p :

where e- (_ ly-j+L.
The rotation of Euler angles (0, 0, 0) brings the

space fixed (Oxyz) frame onto the body fixed

(OXYZ) frame. The relation between the case (c)
and the case (e) basis states is given by [9] :

2.3 CLOSE COUPLED EQUATIONS. - For each initial

channel i and total energy E, the total wave function
is expanded as following :

The sums Y. and 2: include all channels that can
i f

be reached by collisional or radiative coupling. The
radial wave functions F satisfy the coupled
equations :

where Ui and U f represent the diagonal parts of the He matrix. Vii, and Vff, are the electronic coupling
terms given from (4) together with the unitary transformation (10), or the rotational matrix elements. They
are diagonal in J, M, and p.

It can be shown that the rotational matrix elements are given by :

and :

The derivation of the radiative coupling terms is detailed in appendix 1.
In absorption, we find :
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k? and k f satisfy the relation of conservation of the
total energy E :

where Ei and E f are the total internal energies of
atoms A and B at large R internuclear distances.

In the limit of large angular momenta (/ or

f), the diagonal rotational terms are :

These terms are identical among the initial states

i, i’ or the final states f, f ’ and they may differ for
radiatively coupled states according to the P,
Q, R spectroscopic branches.

3. Semi-classical limit.

Many studies have been devoted to this problem,
and we avoid here all difficulties connected to the
existence of the different turning points. We assume
further that the turning points relevant to different
channels are the same : Ri = Ro.

3.1 EQUATIONS. - We introduce an average poten-
tial Uo and an average momentum Jo, 7 so that the
system (14) can be written as :

with

Following Berson [1], we write :

where Si (R) is the reduced radial action :

The unknown functions a:’ (R) and a- (R ) are ob-
tained through the method of variation of par-

ameters. We assume that the usual semi-classical

condition :

is satisfied and that the relation

holds between two coupled channels.
We further choose the relation which simplifies

the equations without any further constraint :

leading to the following equations :

At this point, it is convenient to introduce a new
set of coefficients bi :

with :

Finally, we assume that the kinetic energy is large
enough to write K a - Kj - K o except for the differ-
ences K i - K j, so that we can write the relation
between the internuclear distance R and the time
t associated to a trajectory of a particle of mass
Ix moving in a potential Uo with an angular momen-
tum Jo + 1 :2
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The hi coefficients satisfy the equations :

where

and

These semi-classical equations are valid provided
that :
- the turning point is approximately the same for

all coupled channels,
- the JWKB condition (22) is satisfied,
- high frequency oscillations are negligible,
- K is approximately the same Ko in all channels.
It is interesting to examine particularly the semi-

classical limit of the rotational and the radiative

coupling terms, since they involve the relative orbital
quantum number.

3.2 ROTATIONAL COUPLING TERMS. - In this case,
the total angular momentum is the same for the two
coupled channels i, i’ or I, f ’. So, the argument of
the exponential factor is :

For large values of Ji, Vii’ (Eq. (15)) becomes :

The factor Ji/ .LR2 is related to the time derivative
6 = d 0 /dt of the rotation angle 0 of the internuclear
axis :

so that the semi-classical rotational coupling term in

(28) is equal to :

in agreement with the direct semi-classical result

(see appendix 2).

3.3 RADIATIVE COUPLING TERM. - For two chan-

nels i and f coupled by the radiative field at

frequency w, the conservation of the total energy
leads to the relation :

where Aw = to - oi o represents the detuning of the
incident radiation related to the asymptotic differ-
ence fiw o of molecular potential curves. The + sign
corresponds to absorption and - sign to emission.
According to the branch B = Jf - Ji, the total

angular momentum is different for the channels
i and f and we can write :

so that the exponential factor in (28) becomes :

with : O O

0 0 is the initial value of 0.
For the low intensities of the radiative field

considered here, the Wigner Eckart theorem may be
used to remove the explicit M dependence from the
coupled equations. The full formalism first intro-

duced by De Vries and George [3] and then discus-
sed by Mies [4] will not be detailed here. The

complete radiative coupling term (17) is expressed in
the following form :

and the coupled equations are solved with the
reduced radiative coupling  f II V rad II i &#x3E; .
We now use the asymptotic form of the Clebsch

Gordan coefficients (8) :

with J2, J3 &#x3E;&#x3E; Ji and cos (- /3 ) -M3 to evaluateJ3

and

Ji and J f are large, and f2 and f2 f are small so that
IT

p - 2 *
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So, the reduced radiative coupling term Wfi is :

The particular choice 0 0 = - "r leads to the semi-
2

classical result obtained directly in appendix II, if we
use the relations :

The method presented here gives the exact corre-
spondence between the quantal and semi-classical
equations. It is particularly interesting to note that
the P, Q, and R branches can be physically inter-
preted in terms of the rotation of the molecular

dipole during the collision. This result was not

obvious a priori since the total angular momentum is
not preserved in the semi-classical methods.

4. Radiative cross-sections. 

As mentioned by Gaussorgues et al. [2], aT has the
meaning of a probability amplitude of excitation to
the state j when the incident particles move in a
convergent wave from infinity and aj’ has the same
meaning for a divergent wave, so that aT (aJ ) =
Bji where i denotes the initial channel. aj- and

aj+ are connected through the continuity relation :

The asymptotic form of the radial wave function (21)
gives the relation between the S-matrix in the

Hund’s case (c) representation and the amplitudes

a + or b+. For large values of R, Ff (R) can be
written as :

where

In the limit of large angular momenta Ji or

J f, one can immediately deduce : 
-

with : O O

0 represents the rotation of the internuclear axis at
the end of the collision. « i is a constant phase shift
which disappears in the expression of the radiative
cross-section after we sum the contribution of the

. initial states.

Using the notations of Julienne and Mies [12], we
now introduce the linear transformation (12) to

obtain the reduced S-matrix elements in the case (e)
basis : ,

Further use of the asymptotic form of the Clebsch Gordan coefficients leads to :
I 
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It follows that :

with

The states I a j Mj) are related to I ajf2Jp) through the transformation:

(a f j f Mil I S’ I a i ji Mi;) represents the S-matrix relative to a space fixed frame which can be deduced from
the OXYZ axis (at the end of the collision) by the rotation R- 1 ( 0- 2 ’ 2 ,0 ) This corresponds to the2 2
usual « collisional axis » (see appendix 2). Consequently, Mi; and Mil denote the projection of

ji and j f in the space fixed collision frame.
Standard scattering theory techniques (Julienne and Mies [12]) lead to the expression of the radiative

cross-sections in terms of the SB matrix elements for each branch B :

where :

Ji, JI’ Jí and t f are large.
In the large angular momenta limit (8) :

with cos I

The relation of contraction of rotation matrices gives :

For large values of Jf, the sum E can be replaced by an integral :
Mf

This relation is equivalent to the angular average in the direct semi-classical approach.
J JfIf we introduce the impact parameter b = - = j , we find that the cross-sections (47) are : i
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JL is related to Mj and Mif through :

Similarly to the quantum expression [12] we may rewrite (47) as :

where :

This expression is exactly the same as the semi-
classical expression obtained directly in appendix 2.

If we are only interested in the total rate of

absorption (or emission) resulting from single colli-
sions, we need the cross-sections defined by :

The sum over m f in (52) is easily performed since

m f occurs only in a 3 j coefficient :

with u  (j f) given by (55). Furthermore, we may
now sum over t. Thus :

When the S-matrix is obtained in the Hund’s case

(c) basis (particularly in the case of asymptotically
forbidden transitions), we may transform expression
(58) according to (A. 11) relating the (e) and (c) basis
states. The total cross-section is :

5. Conclusion.

A systematic treatment of the semi-classical limit of
the quantum scattering theory allows us to obtain
the usual set of coupled time dependent differential
equations. The calculation of the radiatively assisted

cross-section for production of the final state

j f m f presents no particular difficulty. These cross-
sections may be used to determine the absorption
coefficient of the incident radiation and to calculate
the orientation or alignment of the excited atom.
One of the main results of this study is to interpret
the spectroscopic P, Q, R branches of the quantum
approach in terms of the rotation of the molecular
dipole during the collision. This rotation is essential
for polarization studies. We have also established
the equivalence between the sum over M and the
angular average of the semi-classical theory. It is

important to notice that the step by step quantal-
semi-classical correspondence (in particular for

coupled equations) involves the choice of the same
body fixed frame (with the Ox axis perpendicular to
the collision plane). This non standard choice for the
collision frame is the only one which enables to
directly connect the quantal to the semi-classical
channels.

Appendix 1: radiative coupling between molecular
channel states.

The radiative coupling between the molecular field
channel states is induced by the operator vrad [4]

where d represents the dipole moment of the system
(A - B ), a and a+ are respectively the annihilation
and creation operator of a photon with pulsation
co and unit polarization vector z-q. The matrix

elements of a and a+ between radiation field

eigenstates InúJq) and I n’ w q ) vanish unless
n’ = n - 1 :

The quantity 2 7ThúJ (n + 1)/qY represents the

amplitude Eo of the incident field.
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The vector gq is defined in the space fixed frame
whereas the dipole interaction operator d is most

easily known in the molecule fixed frame. So we use
the rotation matrix tl)’* (0, 0, 0) to obtain :

where d, represents the dipole moment in the body
fixed frame. If Oz is chosen along the direction

gq for a linearly polarized radiation or along the
direction of propagation for a circular polarization,
the space fixed unit vectors ê: verify the following
relation :

Then the radiative coupling operator is given by :

which leads to :

For each R value, we define the molecular transition moments as follows :

and

When we contract the rotation matrices as in [8] and after some algebra, we finally obtain :

The second term exists for fli = f-2 f = 1 only.
2

Appendix 2: semi-classical calculation of radiative

cross-sections.

We consider collisions in the presence of a radiative
field and our goal is to derive an expression for the
relevant cross-sections. We adopt a molecular de-
scription of the collision.

1. BASIS SETS. - Let us define (Fig. 1) :

- the laboratory frame OxL YL ZL with OZL as the
quantization axis, 6q is the radiation field polariz-
ation in this frame ;
- the collisional frame Oxyz such that Oz is

perpendicular to the collision plane. The Oxyz frame
can be deduced from the OxL yL zL frame by the
rotation of Euler angles (a /3 y ) = D 
- the body fixed frame OXYZ such that OZ is

along the internuclear axis. Contrarily to the usual
conventions, we choose the OX axis perpendicular
to the collision plane in order to define molecular FIGURE 1. - Frames of reference and Euler angles.
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states with symmetry o-y(yz) according to our

conventions for the Hund’s case (c) molecular basis
in the quantum approach. This last point is very
important for the comparison between the two

methods. The OXYZ frame can be deduced from
the Oxyz frame by the rotation of Euler angles

0 - -f , - 2 ,0 ) where 0 represents the rotation2 2

angle at time t of the molecular axis, 0 = 0 at the
beginning of the collision.
We note :

lajd) the kets in the rotating frame

a jMj) the kets in the collisional frame

a jmj) the kets in the laboratory frame .

From the active point of view [8], we can write :

On the analogy of the quantum approach, we may
introduce the Hund’s case (c) basis states of parity 7T
relative to crv(YZ) symmetry :

where Ii = I d2 1. .
The relation between these I cijfltr) states and

the I ajMj) states is :

with ;

2. SEMI-CLASSICAL COUPLED EQUATIONS. - Using
the same method as in the quantum approach, we
expand the total wave function on the Hund’s case
(c) molecular basis dressed by the radiation field [13]

The

and

states are coupled by the dipole radiative field.
The a (t) coefficients are solutions of the time

dependent Schr6dinger equation:

The internuclear distance R is a function of t so that
. the time derivative ð.p. includes terms f = da

at t

together with terms :t I a j ä 7T &#x3E; . The « time t » statedt 

l a j Ii ’IT &#x3E; t can be deduced from the «time t = 0 »

state I a j Ii ’IT &#x3E; 0 by a rotation of angle 0 around the
OX axis.

Thus :

where jx is the OX projection of the angular
momentum j and 6 is the time derivative of 0. This
derivative term leads to the rotational coupling.
The a (t ) coefficients are solutions of the following

coupled equations :

Let us introduce a new set of coefficients hi (I) (t) :

with
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The bi(f) coefficients satisfy the equations

where

and

Using expression (A.10) for the basis states, the
rotational coupling term is obtained as :

The polarization vector tq of the incident radiative
field may be expressed in terms of the unit vectors

EQ of the rotating frame as :

so that the radiative coupling operator is equal to :

Similarly to the quantum approach, we may intro-
duce a reduced radiative coupling in the collisional
frame :

Then the radiative coupling terms in equation
(A.17) are given by :

3. RADIATIVE CROSS SECTIONS. - In equation (A.17) we expand the reduced S-matrix elements

( a f j f fi f ar f ( Sw I a i jj f2 i 7T i) in the Hund’s case (c) basis and relations (A.9) may be used to derive the
a f jf Mjf I SP. I aijiMi;) elements in the collisional frame. A perturbative treatment of the radiative

coupling gives the S-matrix in the laboratory frame :
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When we average the transition amplitudes over the initial states, we find :

The closure relation of the rotation matrices yields :

Using the contraction relation of two rotation matrices

We obtain :

When we integrate over final scattering angles, we find that the radiative cross-sections are :

We may rewrite (A.28) as follows :

with
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The total cross-section

It is easy to sum a. (jf mf +- ji ei q ) in (A.24) over the final states mf, so that after some angular algebra we
find the total cross-section is :
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