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Résumé. — Quoique les réseaux de polymeéres soient habituellement étudiés dans le cas totalement flexible,
des réseaux sont maintenant synthétisés a partir de polymeres de cristaux liquides dans lesquels le seul degré de
liberté correspond a la rotation aux points de jonction. Ce sont les exemples les plus simples de systémes avec
éléments rigides ou presque rigides ; ils présentent également un intérét supplémentaire a la lumiere des
expériences récentes de diffusion de neutrons sur des réseaux habituels. Dans cet article, nous étudions des
réseaux de batonnets rigides d’abord comme une extension de réseaux souples, ensuite par des méthodes
nouvelles inventées pour ce probléme. Les résultats montrent que, pour de petites déformations, I’énergie
libre est trés semblable a la loi en Z A7 des réseaux habituels mais que, pour de grandes déformations, la

variation est exponentielle en A. Nous étudions aussi les enchevétrements et nous prédisons une singularité en
log {1 —£&/a(A —1)} ou a est 'espacement entre les batonnets reliés a la concentration et £ est la longueur
des batonnets.

Abstract. — Although polymer networks are usually studied in the fully flexible case, there are many networks
now being synthesized from liquid crystal polymers, where the only freedom lies in the hinging at the junction
points. These provide the simplest examples of systems with rigid or nearly rigid members, also of interest in a
view of recent neutron scattering experiments from conventional networks. In this paper we study rigid rod
networks firstly as an extension of flexible networks, and secondly by new methods invented for this problem.
The results show that for small deformations the free energy is very similar to usual Z A?law for conventional

networks, but for large deformations the variation is exponential in A. Entanglements are also studied and a
singularity which behaves like log {1 — £ /a(A — 1)}, where a is the spacing of the rods related to the
concentration and ¢ the rod length, is predicted from the free energy.

1. Introduction. \

There are many reasons for studying the entropy of a
rod network. The first is that they are tempted to be
synthesized by Aharony [1] and Wegner [2]. It is
now possible to have a network, whose basic ingred-
ient is a liquid crystal polymer, with a freely or near
freely hinged crosslink, of the type as given in the
following figure 1.

Maxwell [3] long ago showed that the rod network
of this type is not rigid unless six or more members
form a crosslink, hence the network has an entropy.
The simplest theory of conventional rubbers, consist-
ing of Gaussian chains (i.e. fully flexible polymers
chains), is that of Wall [4] in which the crosslinks are
assumed to be fixed in space as far as Brownian Fig. 1. — A model of a rod network with flexible hinges.
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motion is concerned. Further they are assumed to
transform affinely during macroscopic deformation.
Thus the Wall-Flory theories have an entropy of the
rubber residing in the chains and not in the
crosslinks. This underestimates the entropy of the
network by a factor of 2. In more general theories,
such as in that of James and Guth [5] half of the
entropy can be ascribed to the motion of the
crosslinks. We make this point to show that there is a
large amount of entropy in the rod network, even
though at the first sight it would appear to contain
£ /¢ fewer degrees of freedom compared to the fully
flexible case. { is the Kuhn step length of a corre-
sponding polymer and ¢ the length of the rod.

The problem may be significant elsewhere. Rods
or rather stiff molecules are often found from
biological origin, e.g. collagen, carrageenan and
many various other polysaccarides. This crosslinkage
is however very complex, and their chemistry and
chemical physics may be obscured by many simul-
taneous effects, so that their proportion of the free
energy, which is enthalpic and entropic is not
known. Nevertheless these substances must be more
complicated than in the present study.

Finally we mention the actual origin of this paper
which are surprising neutron scattering results of
Bastide and Boué [6, 7], who do not find the results
as expected from the classical theories, as for
example given by Warner and Edwards [8] or Vilgis
and Boué [9]. They find, after letting the permanent
crosslinked system relax a long time, that the
crosslink positions seem to keep their mutual dis-
tances constant and do not transform affinely. In-
stead they appear to move rather like the pins of a
pantograph. The network of rods certainly does
keep the crosslink positions at constant distances,
and so, although we are not putting the present
paper forward as a new theory of rubber elasticity,
we are faced with the problem that experiments ;
although at short times Stein [10] obtains good
agreement with the classical affine deformation
model. Therefore the present calculation may serve
as a useful ingredient as some comprehensive future
treatment of this problem.

The plan of the paper is to do our best with the
conventional theory in section 2, and then apply
some custom built new methods, introduced in the
preceding paper before this one (hereafter refered as
1) in section 3, finally we incorporate as best we may
at present the problem of entanglements in section 4.

2. An extension of the current theory for rods (« first
quantization » approach).

The most conventional process for crosslinking rub-
bers leads to the functionality of four, as shown in
figure 2.

If we are concerned with very long chains with
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Fig. 2. — Conventional crosslinking of two objects, for
example polymer chains leads to a four-functional links.

many crosslinks along their length, we can consider
the rubber to consist of one huge molecule, self
crosslinked, occupying the volume of the material
with approximately uniform density. If these
crosslink are at the arc points s; of the (giant) chain
R(s), the problem is to evaluate the number of
configurations of R(s) assuming it to be completely
flexible apart from the crosslinks R(s;) = R(s;) and
the space filling condition. Then suppose the system
to be deformed by a matrix (A);; = A; §;;, i.e. the
principal strains are A; — 1, and calculate the new
entropy in this deformed state, but with the same
crosslink positions.

The entropy experimentally observed in the unde-
formed state is given by a very general expression
(12]

Sp = f S(is]) P ([s]) s 2.1)

where s is the matrix of intersections, i.e. if
s; meets s; we may label them sl s} to form the
crosslink. P ([s]) is the probability to place the
crosslinks at all {s/} and {s;} along the contour.
S([s]) is given by the number of configurations
0 ([s]) with s via Boltzmann’s famous equation

S([s]) = kg log 2 ([s]) -

The simplest hypothesis for the probability P ([s])
assumes

2.2)

P([s])=([s])/2 (2.3)
with 2 = Y 2 ([s]). Thus we find
[s]
J ds 2 ([s]) log 2 ([s])
Sexp = (2.4)
J ds' 2 ([s'])

which is the usual formula for quenched averages
[11-14]. In the following we will consider {2 to be
normalized and the integral in the denominator is
equal to 1.

The same equation holds also for the calculation
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of the free energy in the deformed state where
Sexp(A) can be written as

Sexp(N) = J ds 2 ([sDlog 2([s],A) . (2.5)

Hence 2 has to be initial state of the distribution
and does not contain the deformation tensor A, but
the log-term does. This becomes clear if we think of
calculating the free energy of deformation a particu-
lar network with configuration s at formation con-
ditions and then averaging over all possible values of
s with the appropriate weight. The replica method
[11-13] is available to handle the averaging of the
logarithmic term, in which log £ is replaced by
(d2"/dn), _,. Taking the average of 2" is much
simpler, and the final answer for the free energy is
given by the coefficient in an n-expansion of

S, = J ds 2 ([s]) 2"([s], ) . (2.6)

For flexible polymers it can be shown easily that
02"([s], A), or more generally, the partition function
in the deformed state has the version of the repli-
cated Edwards Hamiltonian written in the Wiener
integral form [12, 14, 15]

dpu M! . ()
zm = J'——-J‘ S8R X
< > 27Ti,“‘M+1 al:[()

x exp | — i—3- LR’(")st+
L0026 ),

+u JL JL 1'[ ds ds' 8 {R@)(s) — (“)(s’)})
0 0 a=0
(2.7)

where the R corresponds to the undeformed state
and all variables R®), & =1 ... n are « polymers » in
the rubber deformed by a tensor A, and u is the
fugacity for M, i.e. the number of crosslinks inserted.
b is the Kuhn length. An evaluation of this integral
and expanding in n « readily » gives the James and
Guth result [5], i.e.

S=12MMA2+A2+23) (2.8)
where M is the number of crosslinks. For details see
[11, 12, 14].

The great simplification in (2.6) is the Gaussian
structure of the integrals which enables one to guess
a trial approximation which says that if we assume
that each of the R(*) is coupled by an harmonic
constraint to the affinely deformed R, so that a
managable calculation is ensured.

In the present problem we only carry the crosslink
points since for an intermediate point within the rod
no deformation occurs. Thus taking the network to
be a huge polymer of straight segments, each of

THE ENTROPY OF A NETWORK OF ROD MOLECULES
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Fig. 3. — A rod tree network with three-fold crosslinks.
A path with links at labels m — 1, m, m + 1 is crosslinked
with the pathn—1, n, n +1 at R, = R,,. The path with
the 1 labes is crosslinked with the path of n labels at
R, = R,_;, and so on.

length £, the whole network can be considered as a
set of points Ry, Ry, R,, ..., where there is a crosslin-
kage of the form R, = R, (see Fig. 3).

The network is all connected but labelling suggests
particular strands crosslinking as in the hatching of
the diagram. Thus if

AR,LR ) =1/A7EH (R, —R; 4| — £)
2.9)
describes the elements of the network with the

appropriate crosslink positions the new structure of
the network is given by

[T AR R, y) l_[ (R, -R;), (2.10)

k=0

where n A describes the giant network, and the

product (i,j) is over those places which are
crosslinked. N is the number of rods and M the
number of crosslinks. We can now introduce a
fugacity u (as given in detail in references [11, 12,
14] and in I) to replace the product over the crosslink
positions. The partition function for the undeformed
state can the be written as

du M!
(Z) = § ﬁM—H J ﬂ R, AR, Ry, 1) X

X exp (;w Z 5(R; — Rj)) . 2n)

This has to be extended to a replicated form and the
precise form is given by

du M!
2y = § M A h

x | T1 T1 8RS ARS, RS ) x

a=0 m

xexp(u Yy z s{R}‘*)—R}a)}) . (2.12)

i,ja=0
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This partition function is not easy to evaluate, but
it can be done in a two stage approximation. Again
one might try an harmonic constraint in modelling
the effect of the crosslinks. The harmonic trial
potential has to give the « best fit » to the crosslinks
and the function A. « Best fit » means a variational
principle of the Feynman type [16], and for Gaussian

chains an harmonic trial potential U ~ g& j R2(s)
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leads to minimizing the free energy. This process
determines g, In the case of flexible chains
qo turns out to be g, =1/ <R§> , i.e. the inverse of
the mean square of the radius of gyration of a rubber
strand between two crosslinks.

For rods this variational method turns out to be
akin to a cluster expansion in usual statistical mech-
anics, now in 3 n + 3 dimensional space. We leave
an outline of the analysis to the appendix and quote
only the result here. The free energy is given by

F/ky T = %32 aa(q0)/ {1 +qd(t* o )/36}"* — M/21log {a(q0)/7}** + M/2 Y A+

+ M{a(‘lo)/ﬂ'}slz {J d’e exp{_% (e2 - §2)}

2
@ (qO) i

[z

where

a (@) =3 a0{1 + (@ > 0)?/36} . (214)

€ is a unit vector and de is an integration over a
sphere with radius 1. The auxillary variables o and
¢ are defined as follows. In the variational calculation
it turns out to be useful to devide the rod in
‘o parts each of length £. If the rod is turned to a
flexible polymer, £ plays the same role as the Kuhn
length and o is then the number of statistical
segments. This enables to define an equivalent
Gaussian limit of flexible networks is given within
this approximation by g, —»0 so that quadratic
orders in « can be neglected, i.e. a = gqy/2. To
make the free energy stationary we have to minimize
it with respect to the parameter q,. For this artificial
Gaussian limit the value g, = 6 M/f? o is recov-
ered [21]. Hence 2 o = £2 (see appendix A). This
corresponds to an equivalent Gaussian network
where all rods of length ¢ have been replaced by a
chain with contour length ol, but note that this is
only possible in the weak crosslinking limit, i.e.
qo small.

In the general case the minimization process
becomes hard to do. It is analytically only possible in
crude approximations.

Let us discuss the deformation dependence of the
free energy qualitatively, without calculating the
integrals over the sphere. The most surprising result
is that for small deformations the elastic behaviour is
just the same as for a network synthesized from
flexible polymers, and the modulus is similar to that
of the James and Guth model. The high deformation
limit is different from that of conventional networks
and we find apart from the usual A2 terms (all
collected in a Fj) an exponential term of the form

F~Fo+Bexp{v(; £)}. (2.15)

sinh2|e| ¢
2|el¢

S AZe? + log {exp(— a (qo) £7/2)) SmhZIEA|¢ ]} (2.13)

2[eX [

Thus we find a severe increase of the free energy at
large extensions. 8 and y are constants.

Consider now the limit of strong localization, i.e.
qo — . Then the result for the localization par-
ameter is given by

qo=12M/€?, (2.16)

which is a value double of that of the Gaussian limit
and fluctuations appear to be more surpressed. The
weak localization limit for flexible polymers is exten-
sively discussed within this framework in Deam and
Edwards [12] or Warner and Edwards [9]. For rods
this is not possible in a simple manner.

This approach is very crude and the main criticism
is that the Gaussian fitting might be not very
convincing. There are clearly two severe drawbacks
in this approach. Firstly it is restricted to four
functional crosslinks, which although correctly mir-
rors the crosslinking process in vulcanization. This
method is inadequate for the more general case of
arbitrary crosslink functionality. Secondly the indi-
vidual segments are of random length in the Gaus-
sian model (see appendix).

One would really like a method which can handle
segments of arbitrary specification and arbitrary
functionality. The preceding paper I offers a field
theory which does both of these things and we apply
it in the next section.

3. A field theory or arbitrary networks (the « second
quantization approach »).

The idea is very simple : a segment of type (a) with
an end to end probability of g°(R —R’') is rep-
resented by

J d&*r J‘ & &°(r)g°(r —r') ®°(r') (3.1)
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where the operator ®“(R) creates an end at R.
Crosslinks are represented by annihilation operator
<I>"*, so that

J Er{@* ()" (3.2)

will join up m of the @ ®s, i.e. the functionality is
m. As explained in the preceeding paper I the
generality is that one can think of all sorts of
combinations, like

J' &Er @4 () ¢ () 2 (r) 4°(r)  (3.3)

where the a, b, etc. denote all different species. The
mechanics of this formalism is already explained in I.

This is, of course, almost conventional field
theory, but in order to take quenched averages into
account it has to be extended to the replica method.
Therefore the field variables @ (r) have to be
extended to @ (r@, r®, r® ... r™) where (a)
are the replicas again, and n the number of replicas.
One of the most remarkable features of I was that
the simplest realization of the field equations permit

THE ENTROPY OF A NETWORK OF ROD MOLECULES
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a return to the replica space back to explicit for-
mulae. Thus, according to the simplified version (see
last paragraph in I), that by disregarding the loops in
the network, the problem is reduced to solving the
non linear integral equation for the mean-field
values of @,

Jd3/g(r—r’)5(f')=
_1
—C(u, EOIT T (3.40)

or the equivalent equation in & *

S*(r)=C(u, v) J Erge-r){d*a)" .
(3.4b)

The constants C(n, v ) and é(p, , v ) depend later on
the steepest decent values of the fugacities, and can
be simply calculated. Since these functions are not
important for our further considerations we do not
write them out.

According to the results derived in paper 1 we
have to evaluate

m Jd3RJd3R’[Jd3rJd3r’ dr-R)ger-r)d(F —-R)x

x log {J d&’r j & & —-AR)g@r-r) P — AR )H (3.5a)

and

v j d3RH d&’r{®*(@ - R)}" log ” Er{d* - )\R)}'"H

where n and v are the appropriate fugacities.

(3.5b)

For 3 fold functionality and in the case of rods we have

S*(r)=C(v, ) j & s(|r—r| — £){F*)}’

where we have been now evaluating @ *(r) instead

of the ®’s (both are allowed of course). Equation
(3.6) can be written as

S*(r)=C'(v, 1) J de {P*(r — 85)}2 3.7

where de is the same unit sphere integration as in the
preceding section. This equation has a ready physical

meaning in that the freedom & associated with two
rods flows into a third.

Concerning the solution of the integral equation
remember that for Gaussian chains the solution has
to be Gaussian and one might guess this form.

(3.6)

Hence for 3 functional crosslinked flexible molecules
we had (see I)

e =C(v, ) J &y e BE-rF-2ar’ (38)

giving the solution a = B /2. There is no such a
simple solution for the case of crosslin'ked rods and
one enters the usual difficulties for non linear
integral equations. We have to rely on approxi-
mations, so let us discuss the properties of the
solution now.

Near r =0 equations (3.6, 3.7) can be forced
crudely to a Gaussian. But if we follow this lines we
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would have the same calculation as in the flexible
case but with B = 1/2 £2 This type of calculation is
very similar to that in section 2. Note that this
replaces the rod by an effective Gaussian of the form
exp{— (r —r')/2 ¢%}, which is usually very bad,
since it is equivalent to the rod length fluctuating.

An improvement is to notice the Fourier transform
of the structure function of the rod, i.e.

1
7r§2

:rc[4 s(jr—r| _g)] . sin (k¢)

3.9
which may be reasonable approximated by
1/{1 + (k¢)*/3} inasmuch as it is correct near
k = 0, and small for large k. One can then transform
the integral equation into a differential equation

¥ (£Y3)V2¥ =C(v,n) ¥? (3.10)
where ¥ = @*, or more generally for arbitrary
functionalities we have

V- (£Y3) VW =C(v,n) ¥, (3.11)

A variational solution can now be tried, and re-
marked above, if a Gaussian is used, the coefficient
will be the same as for flexible polymers (but with a
different meaning). Hence the case m = 2 is a chain
of rigid rods and is trivial, since it gives a Gaussian
chain for a sufficient large number of rods.

The original equation allows to study large defor-
mations, for this we solve the equations for large
arguments. In this case the integral has its value
concentrated at the point € =r/|r|, since the
function & *(r) decreases with r and r — £¢ is the
point in the integration where @* is largest.
Asymptotically this means that log ¢* behaves
exponentially, and we have the following approxi-
mate equations

S*(r|)=C(v,n) **(Ir| - £) (3.12)
and

&*(|r|) = Aexp[— a ef/¢] (3.13)

for the left hand side, and
CE*(|r|) = (AC)Y exp[-2 a e?/¢-F] (3.14)

for the right hand side. Hence B =log2 for a
solution and the remaining integration over the unit
vector € just leaves a logarithmic correction.

Returning to equation (3.7) we see that the
integral has most of its value near the various origin
of integration, but as suggested by equation (3.5) AR
is far from its origin when the elements of the
deformation tensor are large. Consider an uniaxial
deformation R - AR we have

JOURNAL DE PHYSIQUE
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|| 200 -

= ﬂ ¢*2g¢*2ﬁjd3r @*2(r — AR) x

xg(R—R)®*(r—AR) =
= exp[- a eP*R-F)]

(3.15)

to lowest order. @ and B are unidentified but
appropriate constants as before. The free energy
involves now averages as given in (3.5) and we find

for the large deformation part asymptotically
F = const exp {(BA )%} (3.16)

as before in section 2. Crude as this evaluation is, it
shows that for large extensions there is a fast
increase in the free energy, essentially due to the
inextensibility and the stiffness of the elements.

4. Entanglements.

The effect of entanglements in conventional rubbers

"have been studied to some detail by Edwards and

Vilgis [14, 17] on the basis of sliplinks and tubes. It
has been shown in these references that one might
expect severe alterations from the classical phantom
type theories, where the basic assumption was that
the chains can pass through each other. Clearly, the
preceeding sections consider « phantom rods », too,
and we have to argue about entanglement constraints
in the rod network also. Entanglements in isotropic
melts or dense solutions of rods (above nematic
transitions) have been considered by Doi and Ed-
wards and the results are now collected in their book
[18]. In essence it has been shown that these
entanglement constraints are responsible for very
slow dynamics, and are even responsible for a glass
transition [19]. Thus we expect as in the case of
flexible molecules similar additional complications.

The entanglement has to be considered in a more
general way for the rod system, both in principle and
in practise. In principle, because finite rods do not
entangle, except on a temporary basis ; it is essential
that they form part of the network. Thus for the
method described in section 2 we could adopt the
concept of the Gauss integral [20], but this is not
sensible for the more general field theoretical
analysis of section 3. More convincing would be to
say that the rods do not pass through each other
during deformation, i.e. as soon as they touch, the
entanglement constraint begins to work. Let us take

3 £
f dsf ds' 8 {(¢§ —s)R, —sR, —
0 0
—(£-5)R;+5 Ry} . (41)

This function vanishes unless the rod R;, R, meets
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the rod R;, R,. Suppose these rods are in a space
deformed by a strain. Then the rods themselves are
not deformed, but we can move their centres affinely
and rotate them in accord with the strain tensor at
the centre. If then the integral is then evaluated at a
strain A, the condition to be imposed is that the
integral remains zero. In practice this is not an easy
function to handle, but we would like to give some
estimate of when entanglements matter and to this
end give a crude model. The suggestion of Doi and
Edwards [18] in their treatment of rod suspensions,
suggest that the one can visualize each rod sur-
rounded by a tube, formed by all other rods. It has
been shown that, provided these neighbours are
sufficiently numerous, a theory of viscoelasticity can
be developed.

Let us suppose this idea can be adopted here.
Then, in order to draw a diagram, mark the const-
raining rods by dots (i.e. rods perpendicular to the
paper plane) and look at a piece of the network
which is represented in figure 4.

Fig. 4. — A dense network of crosslinked rods. The dots
correspond to rods coming out of the paper plane in this
two dimensional drawing. This is an entangled network,
similar to the case of flexible chains [14].

The dots are symbols for rods coming out of the
paper plane. This picture is a great simplification,
but it enables to derive various sensible results [18,
19]. The dots an now replaced by a tube model as
shown in figure 5.
The radius of the tube a will be (p&) 2, where
p is the number density of rods. Thus the tube radius
scales like the rod concentration ¢~ 2 in appropriate
units.

Take the simplest geometry first (Fig. 6) and
ignore all the « dotted » rods in figure 4.
Under deformation A, the tube axis which starts at
2a + ¢ are moved to A (2a + £). Thus the freedom
of the rod is reduced from

2a=¢— (£-2a) 4.2)

THE ENTROPY OF A NETWORK OF ROD MOLECULES
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Fig. 5. — The same as in figure 4. The effect of
neighbouring rods has been replaced by a tube.

L

Fig. 6. — See text.

to the value

E—A(t—2a)=£(£(1—A)+2ar. (4.3)

We can therefore argue a change in entropy of
kglog (2a) to kglog (£€(1 —A)+2aA). This has
now the familiar crisis of the imperfect gas which
takes the finite extension of the molecules into

account. Thus one finds a maximum extension
A pax at

E1—-A)+2ar =0 4.4
giving

)‘max=§/{§_2a} . (45)

Thus by this crude argument, where all orientational
correlations have been ignored, we argue that at a
value of A of £/ {¢ —2a} will lead to the network
locking due to entanglements. It follows that one can
ignore entanglements provided that ¢ < ¢~ 2, but if
¢ is of order of ¢~ 12, they will play an important role
in the modulus and maximum extensibility of the
network. The freedom given in the previous section
to the crosslinks to be of order &, we reach the non
surprising result that the work of section 2 and 3 fits
in the result obtained here.

5. Conclusion.

We find that it is possible in principle to write out a
theory for the entropy of networks containing arbit-
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rary element, although the form of explicit solutions
seem to be difficult, albeit explicit integral equations
and the evaluation of difficult integrals. Two prob-
lems emerge from the analysis. Firstly that it is
possible to take explicit detailed liquid crystal poly-
mer networks and calculate the elastic properties
and we hope to do this in detail in a later paper.
Secondly that entropy is obviously only one part of a
complete analysis and to this must be added in the
energy arising from the bending energy,
orientational energy, changes of the angles near the
crosslinks which are seldom as simple as the freely
hinged case, etc.

Nevertheless both papers show how one can
extent field theory to networks giving now a unified
picture to all the classical phantom theories, and
how to extend the theory for arbitrary networks in
one of the most general way. But it shows limitations
as well. Dispite the combination of field theory and
the replica approach for quenched variables which
seems to be a very powerful method, limitations are
given by the analysis, for example by the solution of
non-linear integral equations.
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Z=§27”MM+IJ\“dR n5(|R

The replicated form is

@y =4

du M!
2mip

a=0 m

Let us write this more symbolically

Z" = f exp(uX +R) (A.4)
where uX is the crosslink term and R is the
exponentiated form of the term coming from struc-
ture of the rods. As usual we simulate the crosslink
term according to the variational principle by an
harmonic potential, i.e.

Al T 3 (R -ARY)

a=1m

(A.5)

The meaning of ¢ will become clear later. One may
think of dividing the rod in a number of « Kuhn
steps » of length £ to get the equivalent flexible
polymer, i.e. with an mean square end to end
separation of &2
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Appendix A.

OUTLINE OF THE CALCULATION OF THE FIRST QUAN-
TIZATION TYPE METHOD. — We wish to calculate
the partition function of the type

= J [1 ¢ Rn lN—[ 5(|R,,
x [;S(Ri_n,.)]]" (A1)

Rm+1| —f)X

where we have omitted unimportant prefactors and
normalization constants. In the following we go
along the same lines as reported in detail by Deam
and Edwards [12] and we will be brief here. The
power can be exponentiated by employing a fugacity
(or chemical potential) for the crosslinks giving (as
given in detail in Refs [12, 14] and in I) the partition
function for the undeformed state

R, .|~ £)exp[n TR Ry . (A2)
—anuzll —€)x
X exp[,u y Z 8{R,-(°’)—R}")}] . (A3)

For the variational principle let us write the
partition function as

fer+R= J.e—W—-U+W+U+;4X+R . (A6)

As a trial for W we take an discrete « Wiener
measure », i.e. the Gaussian

3 < o «) 12
We st £ T EO-RE)T ()

where of ~ £2 The variational principle says now
that (A.6) may be replaced by

(Z"y = fe#X+R$ JC—W—U+ {(W+U+pX+R)

(A.8)
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where the average has to be taken over J e "-U 1

is the latter averaging which relates the quantities

R+ W =log

E=RH=
s =z s J=zs =

::

I
<)
o

I
—
Q
aQ

—Am— —A— —A—
—=

R
[}
=1

so that they go well together. Next the &-function
should be exponentiated, and again we employ a

>w

crude trick. Symbolically we write 6 ¢ =
1+ ) Q, and we try a cluster expansion

log[[1+0)=Y 0.

Thus we have « sandwiched » the é-function between
two exponentials of the Wiener type, but with
opposite sign.

All averages can now be calculated (for some
advice see [8, 12] if one recognizes the transform-
ation matrix T of the replicated coordinates
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o and g, to that of the initial partition function, to
give the best fit.

One of the most severe problem in the calculation
is how to handle the e® term. Let us therefore write

5(|[R® - RY),| - g>} W
a(|R::>—R,<,:*31|—§>exp<W)}

a(|R,<,;'>—R,‘,;‘21|—§)exp<2—?; Z Z{Rf,;”—R};ll}z)] (A.9)

a=1m

Go({X®), X$) }) = 1

{(R@)} = TP (XB) je. one can define « centre
of mass » coordinate and the rotated coordinates in a
3 n + 3 dimensional space by the relations

Y REL-RYY = F (X, - XY
a=0 B=0

Y {R{—ARDY? = Z X8 (1 +nA?).
B=1

a=1

(A.10)

Note that the unperturbed Green function related to

e % is that of the Brownian chain. In replicated

coordinates this is [8, 12]

V] @+nap)”

3 )" __3 ®)_ xB) Y
+(27Tfa) exp( mg(xm Xn21) (A.11)

Note that V is the volume of the (0) system and V [] (1 +nA 2)2 that of the replicated system.

11

It might be useful to note that J e~ "~V corresponds to the Green function of a harmonic oscillator [16],

written in discrete coordinates. One can simplify the analysis drastically if only the limit of long rods is
considered, and the ground state dominance of the Green function is used, i.e. symbolically written as

q 32 1 1
<1T—02) exp(—zqo{Xf+X%} —Efa-(kl—kz)> .

The k’s describe the arc-distance between the two points X, X,.
The averages can now be calculated, and we give the results. First (Q,,) :

PRTELCy —

V] (L +nad)?

The average for the trial potential is

(A.12)
2 2| sinh2]e| ¢
a(gy Y > 20e[E
x (exp{—Z(n+1)/a(q0)[§2—;)\,-25i2]} %&’%ﬁ ) . (A13)
Uy =1/4 fanqg/(Za(qO)) (A.14)
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and finally for the crosslink term (X) we find
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lo

Xp =1T]

i

< a(zqo) >3n/2

where we have note written the cut off terms
because these are not part of the deformation
dependency of the whole lot. Finally we note that
a(Z™)

the free energy can be calculated by 5
n n=0

b

leading to the result in the main text.

Appendix B.

THE SIMPLEST ALGEBRA OF THE SECOND QUANTI-
ZATION METHOD USES EXPONENTIALS. — The ex-
ponent for three functional crosslinkage is :

s:—f@®*+vj¢*3+ﬁfj dgd —

—Mlogv —Nlogun . (B.1)

Take as trials exponentials, i.e.
&* =Aexp(—ar?), & =Bexp(—Br?) (B.2)

we find form the integrals in €, apart from uninterest-
ing constants like 7, etc. the following functions
a,b,c of the trials « and B. g is taken to be
exponential as well, containing £.

f¢*3=A3a(a)

f(D@D*:ABc(a +B) (B.3)
|| 090 = Bew(-Bez2)=B7(8).
Thus the exponant £ can be written as
e=vA%a(a)+uB?b(B) - ABc —
—Mlogv —Nlogup . (B.4)

To find the minimum of this we differentiate with

+ cut off terms (A.15)

VI (1 +na2e

respect to the parameters «, 8 and find the system
of differential equations

vA3d — ABc =0
wB*b' — ABc' =0
3vA%2a—Bc =0
2uBb—Ac =0

vA’=N, wuB?’b=M.

(B.5)

The dash denotes derivatives with respect to the
appropriate variables. These give the relations

130 2% —1/c %
o oo

(B.6)
ab ac
from which it is easily obtained that
B = 2 o (B 7)
B=1/(2¢?

as quoted in the main text.

The evaluation of the free energy using this
exponential trials is now the same as mentioned in
(3.5), i.e. integrals such as

J d°R J' exp{—% R - eg)}de X
X logU- exp{—% (AR — &¢ )}de} (B.8)

which is again not simple. Alternatively one can
employ the integral equation and try to make
assumptions and simplify the propagator g. All these
feasible approaches give always the classical A2
structure, as in all classical theories. This is clearly
due to the use of the best Gaussian, but in the rod
network this seems to be only marginally adequate.
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