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Résumé. 2014 On étend au régime semidilué un modèle théorique introduit récemment pour décrire la

dynamique de rupture et de recombinaison de chaînes polymériques. On sait que, dans ce régime, la statistique
de volume exclu du système peut différer considérablement de celles de polymères indissociables, à cause de la
formation d’anneaux fermés. Ces changements affectent aussi les exposants des lois d’échelles qui décrivent la
dépendance en concentration de la viscosité et de la diffusion des monomères. En général, la gamme de
concentrations où on attend un comportement d’échelle plutôt que de champ moyen est assez étroite.

Abstract. 2014 A theoretical model, recently introduced to describe the dynamics of reversibly breakable
polymer chains at high density, is extended to the semidilute regime. It is known that, in this regime, the
excluded volume statistics of the system can differ significantly from those of unbreakable polymers of
comparable molecular weight (because of the presence of closed rings). These changes also affect the scaling
exponents for the concentration dependence of the viscosity and monomer diffusion constant. In general, the
range of concentrations over which scaling (as opposed to mean-field) behaviour can be expected is probably
rather small.
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1. Introduction.

In a recent article [1] the author proposed a simple
model to describe the dynamical properties (stress-
relaxation, monomer diffusion, etc.) in entangled
systems of living polymers. These are long linear-
chain polymers that can break and recombine revers-
ibly, and so are in equilibrium with respect to their
molecular weight distribution. (This contrasts with
ordinary polymers, for which the molecular weight
distribution is fixed by the conditions prevailing at
the time of synthesis.)
The model makes three basic assumptions :
(i) that chain breakage occurs with a fixed uniform

probability per unit length anywhere along the
chemical sequence ;

(ii) that successive breakage and recombination
events are uncorrelated, in the sense that a newly-
created chain end is not much more likely to

recombine with its « partner » from the preceding
dissociation than with the end of another chain ;

(iii) that the dynamics of a chain end, on the time
scale of its recombination, is predominantly that of
reptation [2-4].

A detailed discussion of each assumption, and of
the conditions under which it is valid, is given in
reference [1]. That paper also describes how assump-
tion (iii) may be relaxed to allow for fluctuation
modes and/or Rouse motion that control the

dynamics of a chain end at short times. This modifi-
cation is expected to be important in some systems
(notably in the case of polymeric liquid sulfur [5],
whose behaviour seems to be very well described by
the resulting, modified, theory) but will be left out of
the present investigation in the interests of simplicity.
Under melt conditions, the equilibrium molecular

weight distribution c(L) is exponential with some
mean L. (We choose units so that L is a large integer
equal to the number of monomers on a chain). Then
it is helpful to introduce two characteristic times to
describe the dynamics : (a) Trep, the reptation time
of a (hypothetical) unbreakable chain of length
L ; and (b) 7-b,,,ak, the average time before such a
chain breaks into two pieces as a result of the
reversible scission process. By detailed balance, this
is comparable to the life-time of a free chain end
before recombination [1, 5].
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There follows a brief summary of the results of
reference [1] :

(i) when Tbreak is long compared to Trep, the

dynamics of stress relaxation or monomer diffusion
approaches that of a « quenched » system, in which
there is a fixed (exponential) distribution of chain
lengths, but no scission processes. The terminal

time, viscosity, and monomeric diffusion constant
are all within factors of order unity of their values for
a monodisperse, unbreakable, system of comparable
mean molecular weight. However, the stress relax-
ation function, /-t (t) (which denotes the fraction of
shear stress remaining at time t after a small step
strain is applied at time zero) is very different from
that a monodisperse polymers ; roughly speaking,
one finds

as opposed to an almost pure exponential decay [3]
in the monodisperse case ;

(ii) more interesting is the behaviour when

Tbreak « rrep* In this regime, the terminal time for
stress relaxation is neither ’T rep nor ’Tbreak, but instead

This result is found as follows. In the reptation
picture, each chain is confined by a « tube » of

topologically constraining strands. The fraction of
stress /-t (t ) remaining at time t after a step strain is
applied at time zero, is simply the fraction of the
original (t = 0) tube which has not been relaxed by
the passage of a chain end through it, during that
interval. Focussing on a randomly chosen segment of
tube, the characteristic time T for passage of a chain
end turns out to be the waiting time for a break in
the chain to occur within a distance A of that

segment along the chemical sequence, where A is the
typical curvilinear displacement of a reptating chain
end in the time available (- Tbreak) before it recom-
bines with the end of another chain. A simple
calculation, supported by a numerical study of the
coupled reaction/diffusion process, shows that this
T obeys equation (2), and that the stress relaxation
function in this regime reverts to an almost pure
exponential form. Correspondingly the viscosity
,q obeys

whereas the monomer diffusion constant is predicted
to obey

In these expressions we have defined

the subscript rep in equations (3), (4) denotes the

equivalent quantity calculated in the reptation model
without explicitly allowing for breakage reactions.

Subject to the original assumptions of the model,
the results 3 and 4 should be applicable under semi-
dilute conditions as well as in melts and concentrated
solutions (described by mean field theory). This is
fortunate as there are several experimental surfac-
tant systems in which living polymers appear to give
highly entangled behaviour even at very low concen-
trations [6-11]. The observation of a pure exponen-
tial decay in the stress relaxation function [8, 9] is

very strongly suggestive that  1 ; this is also

supported by measurements of D [10]. It is therefore
desirable to translate the results embodied in equa-
tions (3), (4) into a concrete prediction for, say, the
concentration dependence of the viscosity (which is
observed to be very strong).

This is nontrivial for two main reasons. Firstly,
there can be a strong dependence of the average
chain length on concentration which is inadequately
described by mean field theory. Even the scaling
theory as applied to ordinary (monodisperse) poly-
mers is inapplicable due to the effects of ring
formation. These effects have been studied exten-

sively by Petschek, Pfeuty and Wheeler (PPW) [12],
and their implications for dynamics are considered in
this paper.
The second complication is that in many of the

experimental systems studied so far (polymer-like
surfactant micelles in water) there is a strong salt
effect [6-10] which may mean that parameters such as
the energy for creating a chain end are also concen-
tration dependent. These additional complications
are beyond the scope of the present work. It would
be most interesting to study polymer-like reverse

micelles in oil, for which they would, presumably, be
absent.

2. Static equilibrium considerations.

2.1 MEAN-FIELD THEORY. - We start at the level

of a Flory-Huggins or mean field theory. We choose
units so that kB T = 1, and assume that no closed
rings are present [11-13]. (This assumption is valid at
high enough density [12].) For a system of linear
chains, inscribed for convenience on a unit lattice,
the free energy may then be written as

where the number density of chains of length
L is denoted by c (L ) ; E is the scission energy of the
chain (as required to create two new chain ends) and
we have defined the total volume fraction



1595

In the first term of equation (6) we have, without
loss of generality, set equal to zero the part of the
free energy per chain that is extensive in chain

length ; since the term in .0 also is extensive (it
depends only on the total concentration) we may
absorb this term, too, leaving finally

Minimizing with respect to c(L) (paying attention to
the constraint of equation (7)) yields immediately

2.2 SCALING THEORY : NO RINGS PRESENT. - It is

simple to extend this analysis to the case of a

semidilute solution of chains again assuming that no
rings are present [11]. This assumption turns out to
be incorrect [12], but the analysis is nonetheless
instructive. In semidilute solution we know that a
mean-field approach remains valid [13] so long as
the basic « monomer » entering the analysis is re-

placed by a « blob » of size

Here d is the dimension of space, and vo is the
correlation length exponent of the n-vector model in
the limit n - 0.
Thus we may write (again omitting an osmotic

term that depends only on the overall concentration,
41)

In this expression,

denotes the number density of L-chains measured in
coarse-grained « blob » units, and

where 0 = (Yo-1)/vo. In equation (13) the first

term is, as before, the scission energy of a bond. The
second is more subtle : it is the free energy change
resulting from the gain in entropy when a chain
breaks so that the two new ends can explore a

volume g. (The entropy associated with separation
beyond this distance is already included in the

coarse-grained Flory-Huggins expression.) This en-
tropy gain is enhanced by the fact that the excluded
volume repulsion on scales less than § is also

reduced by breaking the chain ; this effect is ac-

counted for by the term 0 in the prefactor of

log § [14].

Now minimizing equation (11) at fixed 0 gives

Thus the concentration dependence of the mean
molecular weight L is described by an exponent
yo that differs from the one predicted by simple
mean-field theory (y = 1/2, Eq. (9b)). Note that

equation (14a) is clearly invalid for those chains

which are short enough to be smaller than the blob
size ; however, in the semidilute regime these chains
are in a minority. Their statistics are those of dilute
equilibrium chains without rings [14, 15]

and indeed by demanding a crossover from this
behaviour to an exponential distribution at

L = Lblob, one can easily recover the prediction of
equation (14c) for the exponent yo.

2.3 SCALING THEORY WITH RINGS. - The scaling
theory when rings are present is far more compli-
cated. The details have been worked out by PPW
[12] ; here we select only a minority of their results,
which are directly relevant to the discussion of

dynamics in the next section. The presentation is

somewhat less technical than that of the original
papers.

It is essential to recognise that, in equilibrium,
there is no independent control of whether rings
occur : the system makes this choice for itself. Under
these conditions, it is found theoretically [12] that
rings are invariably present, and that they qualitat-
ively change the scaling behaviour from that de-
scribed in the previous subsection.

Perhaps the biggest change is as follows. In the
absence of rings, there is a broad semidilute regime
spanning the range 0 *  0 « 1. Here 0 * is the
volume fraction at which chains first start to overlap.
Since, by equation (14), the chains at any given
0 can be made longer by increasing E, 0 * becomes
extremely small when the scission energy E is large.
This gives a very wide range of semidilute scaling
behaviour. When rings are allowed, this ceases to be
true. At low concentrations, the very long chains
that would exist (for large E) can gain entropy by
fragmenting into numerous smaller rings. Such rings
pay an entropy penalty for closure but they gain
entropy of mixing, without having to pay the high
price in scission energy (E ) that would be needed to
make linear chains of the same length.
As a result, the effective « overlap threshold »

cP * is pushed to a much higher value, in principle of
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order unity. This value may be substantially reduced
if rings smaller than a certain size are unfavorable ;
for example if the chains are relatively stiff so that
ring closure is difficult for short chains. But in that
case, there is every reason to expect excluded
volume interactions to be relatively weak (the virial
coefficient between sections of relatively stiff chain
is much reduced from its value in the fully flexible
case [16]). Hence it is probably valid to use the
simple mean-field results (Eqs. (8, 9)) for all

cp &#x3E; cp *. Correspondingly, the qualitative agree-
ment between experimental measurements of the
collective diffusion constant and osmotic pressure
for entangled worm-like micelles at low volume
fractions [6, 7, 9], and the semidilute scaling predic-
tions for the same quantities calculated in the
absence of rings [11], is actually rather hard to

understand.

In the presence of rings, the « overlap threshold »
cp* can be better described as a polymerization
transition ; for cp  cp * there are mainly rings pre-
sent, whereas for .0 &#x3E;- cp * there is also a condensate
of very long chains. (The length of these diverges as
E --+ oo ; in that limit, only, is there a true phase
transition at 0 *). Exactly at the transition point,
there is a power law distribution of ring sizes

where t/1 is a certain exponent (discussed below).
Note that t/1:&#x3E; 2 so that the total volume fraction,

E LCring (L ) is finite (and equal to q# *). As indicated
L

above, q# * can be made small by excluding rings
smaller than a certain size ; but this has no effects on
the universal critical behaviour near the transition.

The presence of rings of all sizes leads to consider-
able subtlety in regard to the screening of excluded
volume effects. As explained in quite general terms
in reference [17], a power law distribution of molecu-
lar weights can lead to a new value of the size

exponent, as a result of « self-similar screening » of
excluded volume. The work of reference [12] shows
that this indeed occurs in the present system, and
that the chain obey a mass/radius relation

where D is not equal to the value l/vo that applies
for linear chain polymers in the absence of rings.

Instead, PPW find [12] that

(see also Ref. [17]), where cp and vl are respectively
the quadratic anisotropy crossover exponent and the
correlation length exponent for the n-vector model,
in the limit n - 1 (rather than n - 0 as for ordinary

polymers). The numerical values of t/1 and D are
about 2.72 and 1.75 respectively, in three dimensions
(when 1. 08 and v 1 =z 0.63).
At 0 :&#x3E; cp * there is a range of concentration over

which, scaling behaviour is expected. There is, as

usual, a certain correlation length ç which can be
thought of as defining a « blob » for one of the long
linear chains that are present in this regime. But the
structure within the blob is quite different than for
polymers without rings ; the piece of linear chain is
« decorated » by a power law cascade of smaller
rings, which partially screen its excluded volume
interactions. Thus the correlation length 6 obeys

where 0 c =A 0 is the volume fraction of material in
the form of long linear chains. The remainder of
material, 0, = cf&#x3E; - cf&#x3E; c’ is in the form of rings ;
(p, decreases rapidly for .0 &#x3E;. (p * [12]. Indeed, the
transition proceeds largely by the amalgamation of
rings into long chains. As .0 is raised beyond
0 *, the range of concentrations over which this

process can continue is limited : clearly (pc cannot
exceed about 0 * before all the rings are used up.
This fixes the semidilute scaling regime to lie be-

tween .0 * and roughly 2 cf&#x3E; *. If, as found experimen-
tally in surfactant living polymer systems, 0 * is very
small [6-10], then so is the range of validity of the
n = 1 scaling behaviour.
At higher concentrations than this, one might

hope to revert to the n = 0 scaling regime for which
rings can be ignored but excluded volume is strong.
This would explain the sucess of the n = 0 theory in
matching the collective diffusion and osmotic pres-
sure data seen in experiments on CTAB (cetyl-
trimethyl ammonium bromide) [6, 7, 9, 10]. How-
ever, as mentioned above, it is probably more
realistic to expect only simple mean-field exponents
in this regime. There is pehaps some evidence of
mean-field exponents (e.g., in the plateau modulus)
for the CPySal (cetyl pyridinium salicylate) systems
studied in reference [8].

Finally, there is the question of how oc varies with

0, and how the average chain length L depends on
. (Note that the chain length distribution is

exponential, as before [12].) For the latter, one

expects a further (small) shift in the exponent
y from that calculated in the absence of rings
(Eq. (14c)) to reflect the power-law screening of
excluded volume. PPW find

where a 1 = 2 - dv 1. From the work of PPW we also
find after a little algebra (and correcting a misprint
in Eq. (5.20) of Ref. [12])
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Here y 1=1.3 has its usual meaning in terms of the
n = 1 (Ising) model. Note that these results reduce
to those in the absence of rings (Eqs. (14b, c)) if one
sets 0 * -+ 0 and replaces the exponents v, a,

y, 0 of the n = 1 vector model with those for the
n = 0 case [12].

3. Dynamics.

Given the results of the previous section, some

progress can be made in calculating the reptation
time Trep in a hypothetical system of unbreakable
chains having mean molecular weight L. The calcu-
lated result can then be inserted into equations (2)-
(4) to give a prediction of how the terminal time
T varies with concentration.

3.1 MEAN-FIELD REGIME. - For monodisperse
chains at moderately high concentrations, there is an
empirical relation [3] between the plateau modulus
G, and the volume fraction 0,

This relation remains largely unexplained [3, 18]. It
implies a dependence of the entanglement length on
0 as

The reptation time ?rep may be estimated as

where T (Le ) is the relaxation time of a section of

chain of length Le, and the factor (L/Le)3 comes
from the usual reptation argument. That is, the
chain is constructed as a string of units, each of
length Le ; the curvilinear friction on the whole

chain is increased by a factor of order L/Le from
that of a single unit, and the curvilinear distance that
the chain must diffuse to escape from its tube is also
increased by this factor. Since the mean-square
curvilinear displacement increases linearly with

time, this gives three powers of L/Le in total.
Unfortunately it is not completely clear how to

estimate the concentration dependence of -r (Le)
itself in this mean-field regime. We assume of the
empirical law, equation (24), insofar as it can be

applied at fairly low 0 (as might be the case for
rather inflexible chains [18]) that the entanglement
length Le is much larger than the length Lh of chain
whose radius corresponds to the hydrodB namic
screening length [3],

Thus the motion of a chain on the scale of

L, is Rouse-like, with a relaxation time

The latter expression is the Zimm-time of an un-
screened sub-segment of chain of length Lh ;
’TJ 0 is the solvent viscosity.
This manipulation yields the estimate (in d = 3)

Using also equation (25) one has

(where Eq. (9b) was used to give the last form.) A
different approach, possibly more appropriate at

high concentrations 0, is to argue that Lh is of order
one (complete hydrodynamic screening) from which
one finds T ,ep - - 11 0 L3 cp. This approach was taken in
reference [5] when calculating the viscosity of

polymeric liquid sulfur. However for the case of

polymeric surfactant micelles the volume fractions of
interest seem to be quite small [6-10], and hence we
adopt equation (29).

Finally to estimate the terminal time T in the

presence of breakage, we make the further assump-
tion that the chain breaking reaction is unimolecular
(so that the breaking rate per unit length is indepen-
dent of concentration). This gives

and inserting this and equation (29) into equation (2)
we find

Recalling at last that L - p 1/2 (Eq. (9b)) we obtain

and, using equation (23),

This contrasts with the dependence TJ -- p 11/2 , that
would be predicted by exactly parallel arguments, in
the case when breakage was negligibly slow on the
time scale of reptation (£ - T break/ T rep &#x3E; 1 ).
A similar analysis for the real-space monomeric

diffusion constant, D, yields
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3.2 SCALING ANALYSIS IN THE ABSENCE OF RINGS.
In this case, there is only one length scale, the

semidilute correlation length § which obeys equation
(10). The entanglement length Le is just 611"; the
relaxation time T (Le ) of an entanglement unit is the
Zimm time of a blob [4, 13]

For the reptation time we have, as before [4]

since from equation (14) L - 0 Y, we find

Finally, if we again assume that chain breaking is

unimolecular (there is no 0 dependence of the rate
constant per monomer), and use the relation

Tbreak oc 1/L, we find for the terminal time (using
Eq. (2))

Using the fact that the plateau modulus is pro-

portional to the density of blobs (G -6 - d[13, 14]),
we find for the viscosity

as opposed to ’1 fep ’" 4&#x3E; 3 Yo - 3 / (1 - Vo d) ’" 4&#x3E; 5.8 as would
occur in the limit where the breaking/recombination
dynamics were negligibly slow on the time scale of
reptation (§ &#x3E; 1). In a similar way, the monomeric
diffusion constant D may be found to obey

It should be noted that in all cases (Eqs. (35-39)) the
exponents characterizing the 0-dependence are

close to those given in equations (29)-(34) for the
simple mean-field calculation (that is, to within 10-
15 %). Experimentally it would be quite difficult to
distinguish the two sets of predictions.

3.3 SCALING THEORY IN THE PRESENCE OF RINGS.
As mentioned in section 2.3, the semidilute regime
is, with rings present, probably rather narrow,

especially in systems where the volume fraction

cp * at which polymerization occurs is itself small.

Moreover, the general scaling expectation is for

power law dependences on (cp - cp *), rather than
powers of 0 itself.

The entanglement length Le of the long linear
chains (whose volume fraction is oc) should now
obey

where 6 is the correlation length (obeying Eq. (20))
and D is the mass/radius dimension (Eq. (18)). Since
the variation of L with 0 is given by equation (22),
the only further ingredient required to calculate

7- (Le) is the relaxation time r (Le) of a single
« blob ». Here we run into a difficulty, since the
presence of a cascade of rings within the blob can
cause partial screening of hydrodynamics, as it did
for excluded volume. This problem is intractable,
but discussed in detail in reference [19], where it is
found that

These bounds on z correspond to unscreened

(Zimm-like) and fully screened (Rouse-like) motion,
respectively. A more accurate estimate of z would
require a dynamical renormalization group calcu-
lation which is beyond our scope.
The reptation time Trep of a long linear chain

should still obey equation (25), so long as the new
dependence on ç of the friction within a blob is
taken into account (Eqs. (41)). Using also equations
(18, 21, 25, 40), we find after some simple algebra

Using also equation (22) (assuming as before that
the breaking of a chain is unimolecular so that

Tbreak oc 1/ L) we obtain finally

To calculate the corresponding viscosity, we assume
that the plateau modulus G is dominated by the
contribution of the long linear chains. [Above the
transition there are relatively few large rings [12] ;
the small rings would contribute to the effective
elastic modulus at very short times, but we expect
these to be predominantly unentangled [19] so that
their relaxation time is very short and they do not
contribute significantly to the viscosity.] In this case,
the relevant plateau modulus is G ’" ç - d (kB T per
blob, as in ordinary semi-dilute polymer solutions)
and the corresponding viscosity obeys
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as opposed to v = 5.0-5.5 which would be predicted
from a pure reptation theory. All of these numerical
values for the exponents must be treated with

caution since .0 1 is not known to great accuracy in
three dimensions [12]. It should again be emphasized
that the predictions are anyway only valid for

0 in a narrow range near .0 * ; at higher 0 one
expects equations (29)-(34) from the mean-field

treatment to be more appropriate. Note also that in
the scaling regime, it is likely that the monomeric
diffusion constant D is dominated by the contri-

bution from (unentangled) small rings, which is not
readily calculable within the present framework.

4. Discussion.

The above analyses extend the model of reference [1]
for the dynamics of concentrated living polymer
systems to cover the semidilute regime. This was a
lengthy procedure because the equilibrium chain
statistics are themselves rather complicated.

In predicting the concentration dependences of
viscosities, etc., it was assumed that chain scission

proceeds by a unimolecular reaction whose rate (per
unit length of chain) remains independent of the
polymer volume fraction 0. This is a natural assump-
tion, but it may be argued that in some systems the
breakage of one chain is mediated by, e.g. the free
end of another (a « chain-end interchange » reaction)
[20]. This would alter the various *-dependences
calculated above.
Another competing reaction involves the preferen-

tial « shedding » from a chain end, of a certain fixed
number of monomers. [For example, in polymeric
sulfur a chain end will preferentially shed exactly
eight atoms, which can form an S8 ring.] This

corresponds to a breaking probability that, in con-
trast to the assumptions of the model, is not uniform
along the chemical sequence. However, unless such
a reaction is extremely rapid, it has little effect on

stress relaxation [1, 5, 20]. Were such a reaction to
dominate, the relaxation of a tube segment would

require the « diffusion » of a chain end (by shedding
of material) along the chemical sequence until the
given tube segment was reached. The typical time
for this process is strongly dependent on chain

length ; this would lead to pronounced departures
from exponential behaviour in the stress relaxation
function JL (t) (one would have roughly u (t) =
exp [- t 113 ].) Thus the experimental observations of
pure exponential decay [8, 9] in surfactant-based

living polymer systems strongly support the uniform
breaking mechanism originally proposed.

Unfortunately these surfactant systems offer much
weaker experimental support for any of the predic-
tions given above concerning the concentration

dependence of the terminal time T, viscosity q, [9]
or monomer diffusion constant D [10]. As mentioned
in the introduction, the experimentally observed
behavior seems strongly dependent on salt concen-
tration ; in some systems, the viscosity at fixed salt
level is even non-monotonic as a function of

0 [8]. These complications make quantitative com-
parison with experimental data difficult at present ;
even if their effects on equilibrium statistics were
fully understood (which they are not) they could also
lead to concentration dependences in the activation
energy for breaking (for example) which would
enter the model in a nontrivial way.

It should nevertheless be mentioned that in the
CTAB system of Candau et al. , for which the
terminal time, viscosity, etc. show evidence of power
law scaling with concentration 0, the observed

exponents are closer to those predicted in sec-

tions 3.1, 3.2 for pure reptation (without breaking)
than those predicted by taking the reversible scission
process into account. This would of course be quite
consistent, were the breaking to be slow on the time-
scale of reptation (§ &#x3E; 1) - but this possibility is
effectively ruled out by the observation of near pure-
exponential stress decay in these systems. Similarly
the monomer diffusion measurements of Chatenay
et al. [10] appear to give a stronger dependence on
0 than predicted by the present model (although the
measured slope approaches that predicted in

Eq. (34b) at high salt levels). It remains to be seen
whether these discrepancies are mainly associated
with the complications of salt dependence, men-
tioned above, or whether there is something more
fundamentally wrong with the model. One possibility
is that the model is basically correct, but that the
treatment of the frictional forces on a chain (which is
an ingredient in calculating Trep) is inadequate - the
true friction might increase faster with .0 than

envisaged, as a result of increasing inter-chain con-
tacts, etc., which are not fully reflected in the

equations (27)-(29) that describe T (Le ) in the mean-
field regime. Another possibility, already raised

above, is that for one reason or another the pre-

exponential factor (attempt frequency) for the scis-
sion reaction is itself a decreasing function of

0. To help answer these questions, it would be very
useful to perform experiments on oil-based surfac-
tant solutions (or indeed non-surfactant living poly-
mers) for which the complexities of the salt-depen-
dence would, presumably, disappear.
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