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Résumé. — La distribution en taille d’amas de latex en croissance sous I'effet de chocs en diffusion brownienne
est analysée par comptage direct des particules. Aux grands temps, la distribution en taille peut étre exprimée
sous la forme d’une fonction unique de variables réduites. Dans le régime asymptotique, le nombre d’amas
varie comme l'inverse du temps et sur la base des équations cinétiques, on déduit que le coefficient de diffusion
des amas est inversement proportionnel au rayon de giration.

Abstract. — The size distribution of latex aggregates undergoing Brownian motion is measured in situ, using
automatic particle counting. The data are analysed from the point of view of dynamic scaling. At large time, an
asymptotic distribution in terms of reduced variables is well observed. In that regime, the number of clusters is
found to vary as the inverse of the time which on the bases of the theory means that the hydrodynamic radius is

proportional to their radius of gyration.

Introduction.

The Kkinetic aggregation of small particles under
Brownian motion is a widespread phenomenon,
taking place in different areas in physics, chemistry
and biology. The aggregation of colloids is an
important example. On the bases of numerical
simulations, a wealth of informations on the size of
the cluster-cluster aggregates was gained during the
last years and it is now well established that large
colloidal aggregates formed by the association of
many primary particles have a self-similar structure
with a fractal dimension D equal to 1.75-1.80. This
aspect is well summarized in recent reviews or
conference proceedings [1-4]. From the experimental
side, light scattering or small angle neutron scattering
which yields the values of D from the power law
decay of the structure factor was most often
applied [5-8]. The growth of the size of the particles
with time was also investigated by inelastic light
scattering [5]. Only a few informations are however
available on the size distribution of the particles and
its time evolution. Schulthers et al. in using a resistive
pulse analyser have studied the kinetic evolution of
the cluster size distribution of antigen coated latex
crosslinked by complementary antibody [9]. The size
distribution was represented by a theoretical formula
in which the role of the number of active sites was

emphasized in terms of a sticking parameter and the
application of percolation theory was also examined.
More recently, a particle by particle counting
method using laser light scattering was devel-
oped [10-12]. This technique permits accumulation
of results only in a time period were the aggregation
number remains very small.

In the present work, we present data on the
evolution in a large time interval of the size distri-
bution of particles formed by the aggregation of
latex particles flocculating in presence of an electro-
lyte. The data which were obtained from automatic
particle counting are analysed within the theory of
dynamic scaling. In that context, it is worth to
emphasize that many years ago, Friedlander et al.
have investigated the size distribution of similar
hydrosols [13]. They introduced the idea of a self-
preserved distribution, but did not use the concept of
fractal geometry which was not developed at that
time.

Experimental and methods.

1. LATEX PARTICLES. — Latex of spherical shape
and narrow size distribution was obtained by polym-
erization under emulsifier free conditions as reported
previously [14}. They had following characteristics :
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D,=840nm (QELS), D, = 866nm
(Microscope), D, = 860 nm (Microscope), surface
charge o =1.43 p.C/cmz, determined by conduc-

tometric titration using NaOH as titrant. The latex
was in Na* form.

diameter

2. FLOCCULATION. — The Brownian motion floccu-
lation experiments were carried out by adding
aqueous electrolyte solution at pH 3.5 and
T = 18 °C to a stable suspension at the same pH, so
that the final composition was 0.16 g/l latex in
0.15 M NaCl aqueous solution at pH 3.5. In appen-

dix A, it is demonstrated, taking into account the -

dimensions and surface charge of the colloid, that
0.15 M NaCl corresponds to a situation of excess
electrolyte which ensures diffusion limited strong
aggregation. Small samples of the coagulating sus-
pension of approximatively 1 ml were removed at
intervals, diluted 10? times with 0.15M NaCl at
pH 3.5 and analysed by the Coulter technique to
obtain the particle size distribution as described in
the following section. The sampling was made
through a 3 mm bore needle at a slow rate to prevent
shear effects to cause damage to the aggregates. The
latex suspension was prior to use, ultrasonicated.
From the calibration curve of the particle size
analyser, the dimensions of the latex was found to be
900 nm, which compares quite well with the micro-
scopic observations.

3. SIZE DISTRIBUTION DETERMINATION. — The re-
cording of the number of aggregates comprising a
given number of associated colloids was performed
with the Coulter-Counter technique, using a 16
channel T Coulter with variable threshold adapter
and an aperture of 50 pm [15]. When a particle or a
cluster composed of many associated particles is
within the orifice, the electrical resistance of the
orifice (which is recorded as a potential difference),
is assumed proportional to the total volume of
colloidal matter which is gv, if the aggregate is
composed of g primary particles, v, being the
volume of the primary latex particle. A histogram is
given in figure 1a ; the ordinate represents the % of
total colloid volume stored in a channel i with
energy thresholds corresponding to diameter D; and
D; + AD; with AD; = (2'® — 1) D;. The distribution
curve of the volume fraction V (D) was obtained by
interpolation, in spliting each channel i into n; equal
intervals, the width of each representing the addition
of one primary latex particle, i.e.,
™

=___p3
ni—6voD,. @

When flocculation had progressed, so that no prim-
ary particles were left — cf. figure 1a — in which
channels 1 and 2 are empty — V (D) could well be
fitted with the following distribution :
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V(D) = C exp[- h*(D — D)*/D] €))
where h and D are ajustable time depending par-

ameters, C is a constant. From this, the particle size
distribution c(g, ¢t) was computed :

c(g,t)=V(D)/Vp 3
Vp=159. 4
108 T—
8-
38-
2
18- fa]
8 17237456 7'8"9"18'11'12' 13 141516
2 TOTAL L.
. fo
10
3
2
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R R R R R TR TR AT LS VRITAETS
CHANEL NUNBER
Fig. 1. — Example of histogram with the volume % of

colloid in each channel: (a) when no primary (unas-
sociated) particles are left ; (b) with a bimodal distribution
when a fraction of 43 % primary particles are left.

When as illustrated by the bimodal distribution of
figure 1b, non-associated primary particles are left,
the volume distribution for all g = 2, was computed
according to following expression :

V(D) = Ce' exp[-h*(D - D)*/D],
D= (1200)1/3. &)

w

The total latex volume, noted C, includes non-
associated particles of volume C¢ and associated
particles of volume Ce¢’, ¢' was computed via
equations (6), (7) :

p'=1-¢ ©)
Co = (0.7)1V, )

V, being the volume of non-associated particles
stored in channel 2. The factor 0.7 originates from
the fact that the setting of the apparatus was such
that the dispersed latex, which is slightly polydisperse
in size, was stored in channels 2 and 3 in a volume
ratio of 7/3. Furthermore, channel 2 did not contain
any 2 fold particles by virtue of the calibration scale
of the technique. Clusters of g fold particles with
g = 2 were stored in channels 3 to 16. The principles
and practice of the Coulter method have been
described elsewhere [15, 16]. Sources of errors are
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essentially of two kinds : (i) the Coulter treats the
aggregates as if they were solid systems ; this sup-
poses that the electrolyte included into the enveloppe

of the floc, has the same conductivity as in the

absence of the latex. However the electrolyte con-
ductivity is altered in the Debye-Hiickel layer
around the charged surface ; since in the present
case, this layer in presence of 0.15 M NaCl has a
thickness of 10~7 cm, which is indeed very small
compared to the 8.6 x 10~° cm particle diameter,
the effect is less than 1%. (ii) Shear of large
aggregates is likely to occur at the entry of the
orifice, however, if a floc is sheared at the entry, it is
counted as the sum of its broken parts as they would
pass simultaneously through the orifice and shearing
does therefore not matter. The probability of coinci-
dence (simultaneous passage of two or more aggre-
gates) was also negligibly small in account of the
experimental conditions.

4. SEDIMENTATION EFFECTS. — The Coulter tech-
nique is adapted for particles of diameter > 600 nm.
In that range, sedimentation effects might not be
negligible. However, because of the almost equal
densities of latex and solvent, the effect is not
important in the aggregation domain we considered.
More indications on this point are given in appen-
dix B.

Results and discussion.

1. THEORETICAL PART. — Friedlander [13, 17] has
supposed a self-preserved distribution at large time
of the form :

c(g,t) = N*(t) ¥ (gN (1)) ®)

NG) = f:cw, ) dg ©)

N (t) is the total number of aggregates at time
t and the function ¢ does not depend explicitly on
time. The analytical form of N (¢) was determined by
Lushnikov using a scaling argument and
Smoluchowski’s equations as starting point [18] :

@0 ["Kig—nim)ela ~m 1) el 1) n-

_2¢(g, 1) J': c(n, t) K(g,n)dn. (10)

The right hand side term is the increase in g fold
particles caused by collisions between g —n and
n fold particles, while the second represents the
decrease due to collisions between g fold and any
sized particle. The collision frequency K(g,n) is
expressed as :

K(g,n) =a(Ry+ R,)(Dy + Dy) (11)
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Rg, R, and Dy, D, being the radius of gyration and
the diffusion coefficients of g and n clusters respect-
ively. a is a constant depending on the solvent
viscosity. It was shown that equation (10) is invariant
under following scaling transformations :

(12)
13)
If the radius R, and the diffusion coefficient

D, scale with the number g of associated particles
like

c(g/90, 1) = g§c(g, g =M 1)
K[go(g —n),gonl = g5 K[g —n,n].

Rg~g"
Dg~g7

(14)
(15)
then the degree of homogeneity A is related to the
scaling exponents v and y by equations (11) and
(13)-(15) :

(16)

If equation (13) holds, c(g,¢) and N (¢) can be
expressed as following :

A=v+vy.

2 1
c(g,t)~t 12 dl[gt 1"‘]
1
N(@) ~t 1-*.

a7

(18)

In modeling the aggregation of Brownian particles
by computer simulations, Kolb etal. [19] and
Meakin [20] verified simultaneously equation (14)
with » = 0.554 = 0.038 and more recently, Meakin
etal. [21], in calculating the diffusion coefficient
according to the Kirkwood-Risemann theory, have
verified equation (15) with v = — 0.544 = 0.014. In
both cases, the scaling behaviour was found to hold
for cluster sizes as small as 4.

Equation (17) was also verified by Monte Carlo
simulations and for the long time behaviour, the
dynamic scaling function was found to be [22-24] :

c@.0~ g f (L) a9

where 7 and z are scaling exponents. However for
v <0, which corresponds to the realistic physical
situation, 7 was found to be zero and equation (19)
with z= (1 — A)~ ! is then similar to equation (17)
derived from the conventional Smoluchowski
equation (10).

2. EXPERIMENTAL RESULTS. — In figure 2, we have
reported the size distribution c(g,t) at different
times in a time interval of 2 to 367 min. One
observes that the distribution broadens with time
and the apparition of a maxima at large time. After
6 h the largest cluster has a size of about 1.5 x 10°
elementary particles and the average cluster size
(g) is of the order of 28.
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Fig. 2. — Particles size distribution at different times.
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In figure 3 is reported Ln [c(g,t)/N?(t)] as a
function of Ln [gN (¢)] for ¢t = 85 min. All the data
fall well on a single curve as predicted by equa-
tions (17, 18). In figure 4, data are reported for
t <8 min; one notes that the size distribution
departs from the asymptotic behaviour for
t <30 min. Indeed, at small time, the size distri-
bution cannot be represented by a continuous func-
tion, nor can Smoluchowski’s equation be expressed
by the integro-differential form (10) ; therefore the
scaling argument (12) is not valid at small time.

In plotting Ln [N (¢)] as a function of ¢, we obtain
the representation of figure 5. For approximatively
t>30min, N (t) follows well a power law
N (t) ~ t~ ! with the exponent defined to an accuracy
of +5%. The small discrepancy of the points
corresponding to the time period of 30 to 130 min is
also reflected on the master curve in figure 3, where
points (O) and (*) do not exactly follow the represen-
tation at large gN (¢) values. This slight divergence
finds its origin in the fact that the set of points for

. 80 <t <130 min are results of a separate floccu-
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Fig. 3. — Size distribution represented according to equation (17) for ¢ = 85 min.
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Fig. 4. — Size distribution represented according to equation (17) for ¢ < 85 min.
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Fig. 5. — Total number of clusters as a function of time ¢ (min), (cf. Eq. (18)).

lation run, reflecting therefore the more or less According to equations (16) and (18), N(t) ~¢!
reproducibility of separate experiments performed signifies A =0 or » = — y. This observation is in
under identical conditions. good agreement with the recent results of computer
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simulation experiments for aggregation of Meakin
etal. [21]. From Meakin’s values, » = 0.554 and

= —0.544, the value of A is 0.08. Though the
v values in Meakins computations are defined to
+ 0.014, the author suggests that the slight difference
in the exponents for R, and the hydrodynamic radius
Ry, ¢ could as well be attributed to a slow approach of
R, ; to the asymptotic regime g — oo, as for poly-
mers [25].

From figure 2, we note that a non negligible
amount of small aggregates are present in the
suspension even at large time ; in order to find
A =0, we need for the scaling argument to be valid,
that » and vy do not vary with the cluster size over
the whole size spectrum. Though we do not have any
direct evidence, it is not unreasonable to assume this
to be correct in considering the data for » and
vy obtained from the computer simulations as a
function of the size g [1, 21]. The values of » and
vy obtained from simulation reflect typical constant
fractal dimension for aggregation numbers as small
as 3 or 4. For more details, the reader is referred to
figure 2 in reference [21] and figure 14 in refer-
ence [1] which gives the representation of y and
v as a function of the size g.

Cahill etal. in using a particle by particle light
scattering analysis have recently discussed the time
behaviour of 0.1 pm polymer latex undergoing
aggregation in excess electrolyte [26, 27]. They
investigated the time dependence of the concen-
tration of singlets to tetramers. In analysing their
data by Smoluchowski’s equations, the best fit for
the v and vy values was 0.35 and 0.12 respectively.
The low value of y was questioned (the minimum
value of y which corresponds to the situation were
particles do coalesce being 0.33). Agreement with
the variation of the total number of aggregates
N (¢) with time was achieved by allowing 7y to vary
linearly between 0.1 and 0.55 in a range of
g = 1-50.

Clearly we analyse our data in a different way.
The behaviour of the size distribution at large-time is
investigated, and emphasis is lead on the description
of the aggregation process in terms of an asymptotic
distribution function of the reduced variable g/ (g},
{g) being the average cluster size.

It was shown that the function

¢ (x),

(x =g/{g)), represented in figure 3, is the solution -

of an ordinary integro-differential equation
(Eq. (37) in Ref. [18] and Eq. (21) in Ref. [28]).
Approximate solutions were derived in closed
form for the upper and lower end of the distribution
by Friedlander et al. [28]. Unfortunately in the latter
work, the volume was taken as independent variable
which supposes that particles of any sizes coalesce
after collision to form a resulting particle of spherical
shape with no included water (f.i., an oil-water
emulsion). This is not the case here. An analytical
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curve for the reduced cluster size distribution was
also given in reference [29], (cf. Eq. (7)). According
to the authors, the distribution was derived for
A <0, a comparison with our results with A = 0, is
therefore not relevant.

From simulations carried out on a three dimen-
sional square lattice, it was shown that the mean-
field Smoluchowski’s equation (10) is appropriate as
well as the form of K(g, n) given by equation (11),
to describe the aggregation of particles [30]. (In
Smoluchowski’s theory, fluctuation in concentration
are neglected and only binary collisions are taken
into account).

Conclusion.

We have examined the evolution of the particle size
distribution of latex particles flocculating in excess
electrolyte under the effect of Brownian collisions.
At large times, an asymptotic time invariant size
distribution function with a reduced size variable is
well observed. This kind of approach does however
not provide any information ncither on the geometry
of the aggregates nor on their kinetic properties,
only the quantity » + v « \n be extracted from the
results, with R, ~ g” being the radius of gyration and
Ry, ¢ ~ g7 being the hydrod\ namic radius ; we found
v = — v which signifies that the Stokes radius is
inversely proportional to the radius of gyration over
the whole size distribution.
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Appendix.

1) In applying the DLVO theory, we need to
calculate the Van der Waals potential V5 and the
repulsive double layer potentials Vi :

AR
va--4A% W
Ve =2 mey e, ¢2Ln (1 + e~ *H) 2

A is the Hamaker constant for polystyrene
(A~10"27 in Ref.[31]), R is the radius of the
sphere, H the distance of separation, ¢, the electrical
surface potential and « ~! the Debye-Hiickel length :

€)

Py = g ) e(po/kT< 1

EO €. K



K2

2C N,y €’ 3
=— 4
ekt <10 “)
with o =1.43 pc/em?, ¢, =0.15M, ¢, ¢ = 6.37
(c.g.s.), it is easy to show that the electrical potential
never exceeds the absolute value of the V.W.
potential V , :

A _714x10-®cm 5)
24 meg €, @2

HLn 1+e *¥)| =25x10"%cm. (6)

2) For primary particles of diameter 860 nm, the
drift (cms™!) due to gravitation is given by :

- (1-20)meD
4= (1-2) % @

the density p of the particle is 1.045, p, the density
of the solvent is 1.005, g is the gravitational acceler-
ation, m the mass of the particles, D their diffusion
coefficient. Taking

D =6mnR, ®)
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we find for the largest experimental time :
d, (6h)=34x10"%cm.

For a typical experimental geometry (20 cm hight of
suspension), the precipitation time at the beginning
of the flocculation is large compared to the time of
the experiment. As flocculation goes on, we have for
a cluster size g :

4 "Ry, ®

As Ry ; ~ R, R, being the radius of gyration of a g-
cluster. Taking g ~ R;® we obtain :
d
79" (10)
which gives a factor of 4.2 for the average cluster size
(g) =28 for t =6h and a factor of 28 for the
largest cluster size g of the order of 1500. For the
very large clusters, diffusion might therefore not be
the dominant mechanism causing the clusters to
collide.
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