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Résumé.2014 Nous étudions le temps moyen nécessaire à la propagation d’un choc mécanique à travers
un treillis réticulé aléatoirement dégradé dans un milieu visqueux, au seuil de percolation de forces
centrales. Ce problème est l’analogue mécanique du phénomène de diffusion anormale. Nous mon-
trons, par une simulation numérique de matrice de transfert, que le temps moyen  t &#x3E; de propagation
d’une impulsion sur un réseau de taille L varie selon t&#x3E; ~ L2+03B8’.

Abstract.2014 We study the mean transit time needed for a mechanical shock to propagate through
a random depleted lattice of freely-rotating elastic springs in a viscous medium at the central-force
percolation threshold. This problem is the exact mechanical counterpart of anomalous diffusion.
We show that the mean transit time t&#x3E; for a pulse to cross a lattice of size L, scales as t&#x3E; ~

L2+03B8’ through a transfer-matrix analysis.
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Introduction.

Two different models have been considered in

the framework of mechanical systems at the per-
colation threshold. The first one introduced by
Kantor and Webman [1] which includes angular
elasticity, is now well understood as far as static
properties are concerned (i.e. either rigidity van-
ishing at percolation threshold [2] or rigidity di-
vergence for the super-elastic problem [3] ). The
second one, the central-force model, introduced
by Feng and Sen [4] , does not include any an-
gular elasticity term. The latter is by far more
controversial in the litterature [4 - 9] .

Formally, vector-transport properties (e.g.
elasticity) are very close to scalar transport
properties (e.g. conductivity) and most fea-
tures of the scalar transport have their natu-
ral counterpart in a mechanical problem. Thus,
it is not surprising to find a mechanical analog
of anomalous diffusion. [10] . The latter phe-
nomenon arises from the study of the diffusion of
random walkers on a self-similar geometry such
as a randomly depleted lattice right at the per-
colation threshold. It leads to a hypodiffusive
behaviour : the mean time  t&#x3E; needed for a
random walker to cross a distance R scales as
 t&#x3E; « R 2+0 where 0 is related to other dy-
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namic and static critical exponents. In the fol-

lowing, we will be concerned with an analogous
property that will be studied in the framework
of central-force percolation. However, a similar
phenomenon should also occur for systems with
angular elasticity near the percolation thresh-
old.

Model.

Let us consider an elastic spring in a vis-
cous medium such that the displacement U (x, t)
along the spring at a time t and at a distance x
from one end varies according to

K is a visco-elastic constant set to the value 1 in

the following. (This equation is to be compared
with one dimensional diffusion equation where
the quantity U would then be a concentration).
We consider now a triangular lattice made out of
such springs, and remove at random a fraction
(1- p) of these bonds.

We know that for p below the central-force

percolation threshold, (here for a triangular lat-
tice pc m 0.642 [8, ] ) the system is no longer
rigid and, therefore, if we push on one side of
the lattice, the impulse will not propagate fur-
ther than the correlation length £. On the other
hand when p is larger than p,, the system is

rigid and the signal will propagate. However this
propagation will take some time. It is this time

delay whose critical behaviour we study here.

Method.

The method we utilized to study this prob-
lem is very similar in spirit to the one used to
analyse anomalous diffusion [11,12] . The first
step is to Laplace transform in time equation (1)

(where we made the choice H =1). This equa-
tion can be solved directly, and we can write the
forces F = 9UIax at each end (say 1 and 2) of
one bond as a linear function of the displace-
ments at the same points.

where a Vs- cot (I q7) and (3 =

- q7/ sin (1 q7) and I is the length of one bond.
For now on, we will set I = 1. Now, a, Q and F
are complicated functions of s. We develop ev-
ery quantity introduced so far in series of s up to
the first order (and label with superscripts the
different orders in s).

We can then express

and

In order to describe the behaviour of the
whole lattice, we have to specify an additional
rule ; namely, the balance of forces at each node,
to all orders in s. All the computation is now
performed by treating each order in s indepen-
dently.

Algorithm.

We will study the critical behaviour by a
transfer matrix algorithm. We build a long strip
(length N 105) of small width (from 2 to 20) of a
triangular lattice right at the percolation thresh-
old, Pc = 0.642, as determined in previous works
[8,9] . The spirit of the method consists in com-
puting the matrix that relates the forces at each
site of the end of the strip to the displacement at
the same set of sites. This matrix is updated ev-
ery time we add a single bond to the strip. As we
have noted previously, we treat separately the
first two orders in the s expansion of all quan-
tities. In fact we are dealing with two matrices,
as can be seen from equation (5) : the first one
relates the zeroth order of forces to the zeroth
order of displacements. The same matrix gives
the dependence of the first order of forces to the
first order of displacements. The second matrix
provides the additional dependence of the first
order of forces on the zeroth order of displace-
ments. Both of these matrices are symmetric.

The boundary conditions are the following:
along the axis of the strip, both edges are
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connected to two rigid bars. One of these bars
is fixed whereas the other one is free. On the

latter, we impose a unit pulse F (t) = 8 (t) (a
Dirac distribution) either along the strip -shear-
or transverse to it -compression- at time t = 0.
If one would record the force exerted by the lat-
tice onto the fixed bar as a function of time, then
the result would be a signal 0(t) such that :

This equation expresses the fact that the whole
impulse reaches the fixed bar (in the same way
as in the electrical analog where it expresses the
charge conservation). We will concentrate here-
after on the mean time  t &#x3E; needed by the
pulse to cross the strip :

In practice, we compute the Laplace trans-
form in time 0(s) of the signal 4&#x3E;( t). If we ex-

pand in powers of s, we obtain using equations
(6) and (7) :

Since in our computation we treat each order
in s independently, we obtain directly the result
 t &#x3E;. Obviously this kind of treatment can
be done up to any order n. It would just re-
quire some additionnal matrices (n matrices are
needed to study up to the (n - 1)th order. If

one would have been interested in real-time re-

sponse, then dealing with only one matrix but
for different values of the parameter s, would
have been enough for an inverse Laplace trans-
form to be performed on the result so as to get
the real time response.

Fig. 1.- In this work, we consider visco-elastic
elements schematically represented on this fig-
ure. Each sites of the lattice (A, B, C...) is

connected to some of its neighbours (with prob-
ability p) by springs, and to the ground (always)
by a viscous damper. We study the diffusive
propagation of a shock through this system.

Results.

Our algorithm provides the value of the
mean transit time for a pulse to propagate
throughout the strip of width w . . In an ho-

mogeneous lattice, we have the following depen-
dence 

-

which reflect the diffusive nature of the propa-
gation.

At percolation threshold, in analogy with
the scalar case, we expect an anomalous power-
law regime : 

Figure 2 displays the results obtained : for
small width, the slope of the curve shown (which
should be 2+0’ if the scaling Eq. (9) were valid)
is smaller than for larger width : this indicates
that corrections to scaling are important in our
case, as it has already been shown to be of the
uttermost relevance in other studies of static me-
chanical properties [2, ] . For the largest width,
we can extract from the data shown an estimate
of the apparent slope : 2+0’=5.0±0.5. This re-
sult is to be compared with the scalar case where
the difference between the percolation regime
and the well-connected one is much less impor-
tant :  t &#x3E;oc w 2+0 where 0=0.87 in the two
dimensional case.

Fig. 2.- Log-log plot of the mean transit time
needed for the impulse to cross a strip of width
L, versus the width L. The upper curve refers to
shear, and the lower to compression. The slope
of these curves should tend to the value 2 + 0’
introduced in the text. (A slope of 5 is shown
for comparison).

In the latter case, we know that 0 = (t -
,8)lv where t is the critical exponent of the con-
ductivity, Q is the one of the probability for a
site to belong to the infinite cluster, and v is
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the correlation length exponent. If we trans-

pose this formula to the case of central-force

elasticity then, using the estimate t/v = 3.1 :f:
0.1 [5,7] and assuming that !3/v (here the frac-
tal codimension of the in finite cluster of rigid
sites) is close to its value in usual percolation
problem (i.e. 81v=0.1), we obtain the estimate
2+0’=5.0+0.I in agreement with our result.

These properties can also be related to

the vibrational spectrum of elastic lattices with
masses at each node. The density of states
n(w) should scale as wds-1 where d. = 2caff/(2+
9’) [10] . Assuming once again that the frac-
tal dimension of the infinite rigid cluster df for
the central-force percolation case is identical to
that of usual percolation yields ds = 0.625 [13]
obtained by small scale simulations.

Conclusion.

We introduced a novel physical phe-
nomenon, related to a dynamical mechanical
property which gives ind:"ectly some informa-
tion on a purely geometric property (namely the
fractal dimension of the incipient infinite rigid
cluster) at the central-force percolation thresh-
old.

This property should be possible to observe
experimentally, for instance at the sol-gel tran-
sition, and associated with static measurements
it could give some indication about the geomet-
rical nature of the rigid infinite cluster through
dependence of 0’ on (3/ v.

Finally, let us stress the point that, al-

though the present study has been devoted to
central-force percolation, it should also apply to
the mechanical behaviour of systems having an-
gular elasticity at the percolation threshold. It
is worth noting that in the latter case, one ex-
pects a value of 2+0’=4.87, indicating a drastic
slowing down as one approaches the percolation
threshold.
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