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Résumé. 2014 Nous considérons des écoulements stationnaires rectilignes de ferrofluides micropolaires. Nous
étudions plus particulièrement les discontinuités tangentielles qui y apparaissent dans une limite partiellement
dissipative. Nous montrons l’importance des tensions de moment angulaire (contraintes en couple) dans
l’analyse de ces discontinuités et dans la construction de solutions dans les régions présentant un fort gradient
des paramètres de base. Nous obtenons et analysons la solution du problème de Poiseuille dans le cas de la
ferrohydrodynamique micropolaire.

Abstract. 2014 The steady flows with straight stream lines of micropolar ferrofluid are considered. The tangential
discontinuities appearing in such flows of partially dissipative ferrofluid are studied. It is illustrated that

momentum tensions (couple stress) are of primary importance in the investigation of those discontinuities and
in constructing solutions in the regions of large gradients of constitutive parameters. The solution of

Poiseuille’s problem in micropolar ferrohydrodynamics is obtained and analysed.
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1. Introduction.

The simplest mathematical models of ferrohyd-
rodynamics are based on different assumptions about
the binding energy of a single ferroparticle’s mag-
netic moment with its body [1]. The binding energy
can be characterized by a nondimensional parameter

KA V
01 = k B T (KA stands for the constant of magnetic
anisotropy of ferroparticle material, V for the fer-
roparticle volume, kB for the Boltzmann constant,
and T for the temperature). a .r, 1 corresponds to an
approximation of « quasistationary ferrohyd-
rodynamics » [2, 3]. In this case the orientation of
magnetic moments of ferroparticles does not cause
ferroparticle’s rotation, and establishment of equilib-
rium magnetization occurs during a characteristic
time of the order of the time of Larmor’s precession
of a single ferroparticle’s magnetic moment. In such
an approximation the density U for the internal

energy of the closed thermodynamic system
« medium + electromagnetic field » depends only on
three constitutive parameters : the ferrofluid density
p, the mass density s of entropy and the magnetic
field strength H.
The finite values of energy of the magnetic

anisotropy (a -- 1) correspond to an approximation

of « micropolar ferrohydrodynamics » [1, 4]. In this
case the ordering of the ferroparticles’ magnetic
moments is accompanied by the own rotation of the
ferroparticles and, consequently, by the origin of the
internal moment of momentum k in the medium.
The description of ferrofluid motion then needs the
introduction of two more constitutive parameters :
the mass density k of internal moment of momentum
and a magnetic moment M/p of unity of mass (M is
the ferrofluid magnetization) [4, 5]. The change of
magnetization and internal moment of momentum
with time is accompanied simultaneously by their
diffusion in the ferrofluid. The corresponding trans-
port mechanisms on the phenomenological level can
be described by introducing momentum and mag-
netic momentum tensions (couple stress) [5]. (About
other possible approaches to ferrofluid description
see, for example [6, 7].)
To this point the role of momentum tensions in

ferrohydrodynamics have been insufficiently investi-
gated. In the present paper such an investigation is
carried out with an interesting example (from the
point of view of physics) of micropolar ferrofluid
flow with straight streamlines. It is shown that taking
into account the momentum tensions in the equa-
tions of ferrohydrodynamics appears to be necessary
in the regions of large gradients of constitutive
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parameters. In this case diffusional mechanisms are
of primary importance for constructing the unique
solution and for the calculation of the physical
characteristics of ferrofluid flows.

2. The general system of equations and jump con-
ditions.

In quasistationary magnetic fields the following
equations, describing the flows of a nonconductive
micropolar magnetic fluid in the regions of continuity
of constitutive parameters with their derivatives up
to the second order included, hold [5] :

Conservation of mass

Conservation of momentum

Conservation of moment of momentum

Balance of magnetization

Conservation of energy

Equations of quasistationary electrodynamics

In this system of equations the comma before the
subscripts denotes the covariant derivative, eijk is
the antisymmetric unit tensor, E, the electric field
strength, B = H + 4 7rM, the magnetic induction,
and v the velocity ; the summation rule over repeated
indices is meant. The conditions on discontinuity
surfaces are the following :

where n and T are unit vectors along the normal and
tangent of the discontinuity surface, and vn is the

normal component of vector v relative discontinuity
surface. The sign (...) denotes the jump of the
quantity through the discontinuity surface.

The systems of equations (2.1) and jump con-
ditions (2.2) are closed by the following expressions
for the components of stress tensor {Pik}, couple
stress tensor {Qik}’ magnetic momentum stress

tensor {mik}’ vector of flux energy density {Gk}
and relaxation term r for magnetization :

In these expressions {v ik} stands for the rate defor-
mation tensor, and q for the vector of heat flux

density.
We have introduced phenomenological par-

ameters [1] which have the following meaning : I,
the average inertial momentum of ferroparticles in
unit mass, X, the equilibrium magnetic susceptibility,
and °e, the average angular velocity of ferroparti-
cles. Only direct effects are taken into account and
gyromagnetic phenomena in ferrofluid are neglected.

Further more I and x are considered as constants.
Then the pressure p is expressed as follows :

where po is the pressure in the absence of magnetic
field. The dissipative coefficients T and TS s are the
characteristic relaxation times of magnetization and
internal moments of momentum respectively, q and
ç are shear and volume viscosities, 5i and mi

(i = 1, 2, 3), the momentum viscosities, and A is the
thermoconductivity.

According to the second law of thermodynamics,
dissipative coefficients satisfy the following inequali-
ties :

Assuming in equations
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equations quoted in paper [4] are obtained. With the
additional assumption 6 = 0, the equations of refer-
ence [1] are obtained. (It should be noted that the
pressure p in Ref. [1] differs from that in Eq. (2.4).
But such a distinction can be only relevant in the
case of flows of compressible fluid.)
The role of momentum tensions in ferrohyd-

rodynamics will be studied as an example of the
simplest flows of incompressible ferrofluid with

strong discontinuities in an external homogeneous
magnetic field.

3. Appearance of tangential discontinuities in par-
tially dissipative ferrofluid flows.

The characteristic time of the processes described by
equations (2.1) with closing relations (2.3) does not
exceed Tj = X 7 in order of magnitude. Otherwise
the magnetisation in the fluid flow can be considered
at equilibrium and the angular velocity ae of fer-
romagnetic particles equals the angular velocity a of
flow (because of Tg  T1 [1]). In this case equa-
tions (2.1) are reduced to the form of equations with
an equilibrium magnetization [2, 3]. Let us consider
the case of constant phenomenological and dissipat-
ive coefficients which allows the consideration of the

energy equation independently of other equations.
Taking T as the characteristic time and introduc-

ing characteristic scales of length L, velocity vo =

LIT1, magnetic field strength - the value of the
external homogeneous field Ho, magnetization -
the value Mo of ferrofluid saturation magnetization,
pressure po, internal moment of momentum k =

IlTl, we can write the basic system of equations in
the following dimensionless form :

Here : Re = p vo Lq - 1 (Reynold’s number), Eu =
po ( p uo )-1 (Euler’s number), Al = HO(4 -ITPV 2)-1/2
(Alven’s number), Fm = Mo Ho T2 I-I 1 (Frude’s
momentum number), À = pI (4 11 T s)- 1 (ratio of

angular rotational viscosity to shear viscosity),
A = 5 i (171 )- 1 (i = 1, 2 ) (ratio of momentum vis-
cosities to shear viscosity) ; À i + 2 = Di -q-1
(i =1, 2 ) (ratio of coefficients of magnetization
diffusion to shear viscosity) ; and K = 4 7rMo Ho 1.

The coefficients of magnetization diffusion are as
follows :

As it follows from equations (3.1), the magnetic
body couple and the couple of viscous friction of
rotating ferroparticles in the liquid carrier introduce
the main contribution to the variation of internal

angular momentum when  Vk are small. But, in the
case of gradient catastrophe ( Vk I - oo ) the gradi-
ents of couple stress (momentum tensions) are of the
same order as the indicated couples. Analogically, it
is necessary to take into account the magnetic
momentum tensions in the equation for the magneti-
zation when I VM I -+ oo. The latter describes, in

particular, the contribution of the magnetodipole
interaction between the ferroparticles to the corre-
lations of directions of ferroparticles’ magnetic mo-
ments in ferrofluid [5].

Let us consider steady flows with straight stream-
lines of partially dissipative ferrofluid neglecting the
momentum and magnetic momentum tensions in

equations (3.1) (A = 0, i = 1, 2, 3, 4). Assuming
that in the Cartesian frame of reference (x, y, z) the
stream velocity is directed along the x-axis, the
external homogeneous magnetic field lies in the

(x, y ) plane and all variables except pressure depend
on the coordinate (y) alone, we derive from

equation (3.1) the formulae :

Here k is solution of an algebraic equation of degree
five and v of a differential equation of the first
order :

The prime denotes a derivative with respect to

(y). The pressure gradient is constant along the x-
axis and is equal to Ap (Ax)- 1. In equation (3.2),
(3.3) Hxü, Hyo, lùO are the constants which are found
from the boundary conditions.

Let us consider the situation of strong external
fields (4 7ry - K, K  1). Then Hy = Hyo, and
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H2 = 1, so that the magnetic field in the flow equals
the external one. For k we get the cubic equation :

Note that k (- w) = - k (w ), hence it is sufficient to
consider values w &#x3E; 0. We have the following
asymptotic behaviour of solution k (w) of

equation (3.4) :

At a  8 B equation (3.4) has only one real root for
any real w, the dependence k(w ) being monotoni-
cally increasing. At a &#x3E; 8 B in region of values
k &#x3E; 0 equation (3.4) has two specific points

which are the branch points of the solutions of this
equation. For 0  k  k., and k*2  k  oo, k (w) is
monotonically increasing, for k.,  k  k*2 it is

monotonically decreasing. The plot k(w) for a =
10 and B = 0.5 is given in figure 1. In the interval of
values w E [w *2’ úJ *1]’ where

equation (3.4) has three real roots for any w. As seen
from figure 1, when w changes from 0 to oo,

k ( w ) in this interval should change discontinuously
from values k = k1 (w ) on the lower branch OA to
the values k = k2 (w) on the upper branch BC. The
appearing discontinuity is weak for the velocity of
the fluid and strong for the internal moment of

Fig. 1. - The dependence k = k (w ) in ferrofluid flow

with direct streamlines. The discontinuity position is

determined by the condition of equality of dashed figures
areas (a &#x3E; 8 Q ).

momentum and angular velocity of the ferroparti-
cles.

Conditions (2.2) in the approximation under con-
sideration are reduced to the form

and make it possible to calculate such a discontinuity,
provided its position in the stream is known.

4. Determination of the discontinuity position.

For this purpose it is necessary to take into account
diffusional addenda in equation (3.1). A similar
method connected with the study of jump structure,
has been applied in magnetohydrodynamics, particu-
larly in the study of ionization shocks [8].

In the present paper we only consider the diffusion
of internal moment of momentum neglecting mag-
netic momentum tensions (A3 = Å4 = 0) in equa-
tions (3.1). Then equations (3.3) for the velocity is

unchanged, and the equation for the internal mo-
ment of momentum has the following form

In the limiting case E = 0, the differential

equation (4.1) coincides with the algebraic
equation (3.4). But, in contrast to equation (3.4),
equation (4.1) describes the change of k directly in a
thin layer [co. - 5, co. + 5] of large gradients of k ;
this layer in the limiting case e = 0 degenerates into
the discontinuity surface w = w., which is sought.
We set the following boundary conditions for

equation (4.1) :

Such conditions follow from the demand that, in the
limiting case E = 0, the solution k = k ( w , e ) of

equation (4.1) must coincide with the following
discontinuous solution of equation (3.4) :

Let us take f &#x3E; w *1. Then in the interval [f, oo ], the
solution of equation (4.1) can be obtained by direct
asymptotic expansion in powers of e in the form

It follows from equation (4.1) that cpl =
1 d ( dk/dw) 

2 

and ’Pi (i &#x3E; 1 ) are functions of cpl,2 dw dw
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..., , C{)i -1’ such that C{)i -+ 0 when cp i _ 1- 0. Since
lim (p, = 0, then lim C{)i = O. Thus, the sol-
w - X w-+oo

ution (4.4) satisfies the boundary condition (4.2) at
infinity due to (3.5). In the interval [0,l]
equation (4.1) should be integrated with the follow-
ing boundary conditions

The problem of integration of equation (4.1) in a
limited interval with the values of k known on the
bounds of the interval (in particular, in the
form (4.5)) is widely studied [9]. Using the results of
[9] we conclude that the problem of (4.1) and (4.2)
has a solution k = k(co, E), satisfying conditions

(4.3) in the limiting case E = 0.
Integrating equation (4.1) in the discontinuity

layer interval [úJ * - S, ú) * + S], we get

Equation (4.1) allows us to obtain the expression of
the derivative in the discontinuity structure in the
following form :

Hence, it follows that k (w) is a monotonically
increasing function. Using (4.7), we can integrate
over k instead of integrating over w in equation (4.6).
As a result, equation (4.6) is written in the form

Setting here E --+ 0 and taking into account the

restriction of dk (Co. ± S) (in accordance with
dw 

(4.3)), we obtain the integral condition which is

satisfied by the solution of problem (4.1) and (4.2) in
the limiting case of momentum viscosities equal to
zero :

The resulting obtained condition (4.9) on the dis-
continuity has a simple geometrical interpretation :

the discontinuity line w = w * cuts off curvilinear

figures of equal area on the plot f (k, w ) = 0 in the
plane (w, k ). In our case of partial form of function
f (k, w ), the discontinuity position is uniquely de-
fined (Fig. 1).

For o _ w = w * it is necessary to choose the root
k = kl (w ) of equation (3.4), corresponding to the
branch OA in figure 1, and for w &#x3E; co ., the root
k = k2 (w ) corresponding to the branch BC.

5. Poiseuille flow of micro polar ferrofluid.

Let us consider a ferrofluid flow between two

parallel infinite plates under a constant pressure
gradient along the x-axis (Fig. 2). The plates are

Fig. 2. - The geometry of Poiseuille flow of micropolar
ferrofluid in external homogeneous magnetic field H.

made of nonmagnetic material, the distance between
them equals 2 a. The external homogeneous mag-
netic field lies in the (x, y) plane. Let us take
L = a, so the flow region corresponds to - 1 --
y 1 - Then the problem is described by
equation (3.3) for the velocity, equation (3.4) for

the internal moment of momentum and the following
boundary conditions for the velocity

For the Poiseuille flow w = yy. When a  8 B,
then the discontinuities in the flow region are

absent. When a &#x3E; 8 0, then we can find w * =

co.(a, 0 ) from the condition (4.9). The following
two cases are possible :

1) y  W *, so that in the flow region the inequali-
ties are satisfied :  w  y, I co -- co .. Then for the
internal moment of momentum we get k = k1 (w ).
The equation for the velocity under the con-

dition (5.1) has been integrated numerically. The
solution is continuous, as in the case of a-

8 B . The dependence k = k (y ) is close to a linear

one, the dependence v = v (y ) is close to a parabolic
one (Fig. 3).

2) y &#x3E; cv *. In this case the discontinuity surfaces
are planes y I = y * I = w */ y, which are located in
the flow region. Note that the higher the pressure
gradient, the nearer the discontinuity surfaces to the
central region y = 0 of flow. For y I  w */ y the
internal moment of momentum is equal to k I =
k1 (w), for w*/I’- lyl.l it is equal to Ikl =
k2(w ).
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Fig. 3. - The profiles of velocity v and internal moment
of momentum k in Poiseuille flow when a &#x3E; 8 f3 ,
Y - co . (a = 6, i3 = 0. 5, y = 0. 5).

The integration of equation (3.3) for the velocity
in this case is carried out in the following way. In the
interval y* =-$ y -- 1, equation (3.3) is integrated with
boundary conditions (5.1). As a result, v (y *) =
v * and v’(y * + 0 ) are determined. Using con-

ditions (3.5) it can be determined then

which allows one to continue the numerical inte-

gration in the interval 0  y -- y*. The plots of

velocity and internal moment of momentum are

represented in figures 4, 5. As it follows from

figure 5, the dependences k = k (y ) in the continuity
regions are close to linear dependences.

Fig. 4. - The continuous profiles of velocity v when
a &#x3E; 8 B, y &#x3E; w *. The numbers on the curves denote the

corresponding values of parameter a ; B = 0.2, y = 4.

Fig. 5. - The discontinuous profiles of internal moment
of momentum k when « &#x3E; 8,6, y &#x3E; w *. The numbers on
the curves denote the corresponding values of parameter
a; /3 = 0.2, y = 4.

We get from equations (3.2) in the approximation
under consideration

so that on the discontinuity surface the value and
direction of vector of magnetization change :

The pressure on the discontinuity surface does not
change. The volume rate of flow Q

is a one-to-one function of y. From (3.3)-(3.5) it
follows :

So, the dependence Q on y is different for y 
cv * and y &#x3E; w *. This allows one to verify the
obtained results experimentally.

Concluding remarks.

In the present paper the momentum tensions in

ferrohydrodynamic equations are taken into account
only for obtaining condition (4.9) on the disconti-
nuity surface. The boundary conditions for the

internal moment of momentum and magnetization
are not formulated, the corresponding values of M
and k on the streamlined surfaces are determined by
the process of the solution under the known bound-

ary conditions for the velocity. When the couple
stress is not taken into account in equations (3.1),
then, starting from the equation (3.4) obtained for
k, it is possible to reach false conclusions about :
1) the hysteresis character of the solutions under
consideration (transition of k from the lower branch
OA to the upper branch BC in points (ù *1,2 (see
Fig. 1)) or 2) the stochastic character of the ferrof-
luid flow (transition of k on any point within the
interval [w *2, Co *1]).

In this paper the case y = (ù * in Poiseuille flow is

not considered. In this case the discontinuity surfaces
coincide with streamlined plates. So, the solution to
Poiseuille’s problem can only be obtained through
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the concretisation of boundary conditions for k (or
for the angular velocity fie of ferroparticles on

streamlined surface) and through the investigation
of the structure of discontinuity surfaces.
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