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Résumé. 2014 Le modèle de Widom de microémulsions est défini par un réseau cubique de spins d’Ising avec
interactions ferromagnétiques de proche voisin, antiferromagnétiques de second voisin et antiferromagnétiques
d’amplitude moitié à distance 2. Nous comparons les prédictions pour le diagramme de phase et les interfaces
du groupe de Widom basées sur la théorie du champ moyen avec les résultats de nos simulations numériques.
Nous trouvons qu’une des phases prédites est instable et, dans une autre, la température critique diffère d’un
facteur 3. D’autres prédictions du champ moyen sont en bon accord avec nos simulations. Dans le cas de
l’interface avec molécules amphiphiles entre huile et eau, nous observons de grandes largeurs à des

températures plus élevées; par ailleurs l’énergie d’interface s’annule à la limite de stabilité de la phase
ferromagnétique à basse température, comme l’exige une description appropriée des microémulsions. Nous
trouvons de grands amas dans le cas où le nombre de molécules, plutôt que leur potentiel chimique, est
maintenu constant. Nous vérifions aussi les prédictions de Shnidman pour un modèle différent de solutions
micellaires binaires et trouvons que ce modèle conduit également à des phases complexes.

Abstract. 2014 The Widom model of microemulsions is defined by a spin-1/2 Ising simple cubic lattice with
ferromagnetic nearest neighbor interactions, antiferromagnetic next-nearest neighbor interactions and half as
strong antiferromagnetic interactions at distance = 2. We compare the mean-field predictions of the Widom
group with our Monte Carlo simulations of the phase diagram and interfaces. One of the predicted phases is
shown to be unstable, and in another the transition temperature differs by a factor 3. Other mean field
predictions are in good agreement with our simulations. For the interface with amphiphilic molecules in
between oil and water large widths are observed for higher temperatures, and the interface energy vanishes at
the stability limit of the ferromagnetic phase at low temperatures, as is required for an appropriate description
of microemulsions. Large clusters are found if the numbers of molecules, instead of their chemical potentials,
are kept constant in the simulation. We also check Shnidman’s predictions for a different model of binary
micellar solutions and find that this model also leads to complex phases.
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1. Introduction.

While water and oil are usually immiscible and have
a large interface tension between them, soap (am-
phiphilic molecules) can drastically reduce this inter-
face tension and facilitate the formation of invisibly
small oil droplets immersed in water, or water

droplets immersed in oil [1, 2]. Also more complex
microemulsions can form. For computer simulations
on a lattice, it is obviously possible to construct

models [19, 24] where each lattice site can have

three states, corresponding to water, oil or soap.
Widom [1], on the other hand, used only two states,

(*) James Chair Professor ; Permanently at : Institute

of Theoretical Physics, Cologne University, 5000 Koln 41,
F.R.G.

spin up or spin down in magnetic language. Also
Shnidman [2] suggested a different type of model
based also on spin-1/2 lattice sites. In Widom’s

model, the molecules are identified with the bonds
between two nearest neighbors on the lattice. Thus
two neighboring up spins correspond to a water

molecule in the original interpretation, two

neighboring down spins to an oil molecule, and a
pair of antiparallel neighbors to an amphiphilic
molecule. In the latter case, the hydrophilic part of
the amphiphile points in the direction of the up spin,
and the hydrophobic part to the down spin. By
construction, this model does not allow for oil

molecules dissolved in water without amphiphiles
surrounding them.
To allow for complex phases and low interface

tensions, Widom’s model consists of three types of
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interactions on the square or simple cubic lattice.
Nearest neighbors are coupled ferromagnetically
with an exchange energy J &#x3E; 0, i.e. two neighboring
spins prefer to be parallel. This facilitates the
creation of like neighbors and hence the creation of
water or oil molecules. In addition, the Widom
model has antiferromagnetic interactions 2 M  0 to
next-nearest neighbors, which thus tend to be anti-
parallel. Third, it has half as strong antiferromagne-
tic interactions M  0 to the neighbors which are 2
lattice distances away. On the square lattice these
latter neighbors are the third-nearest sites, whereas
on the simple cubic lattice, the third-nearest

neighbors have a distance /3 and are not coupled
directly. The total interaction energy is therefore

where S = 1 corresponds to up spins, S = - 1 to

down spins. The first sum goes over all pairs
(i  j ) of nearest neighbors, the second over all

pairs (i -- j) of next-nearest neighbors, and the third
over all pairs (i -- j) of neighbors which are two
lattice constants apart. We neglect a magnetic field
term which would correspond to a chemical potential
difference between oil and water ; in our simulations,
up and down spins have equal rights. On the cubic
lattice, each site has 6 nearest neighbors (J), 12 next-
nearest neighbors (2 M), and 6 distance = 2

neighbors (M). We refer the reader to reference [1]
for a description and justification of this model.

If we neglect the antiferromagnetic interactions,
i.e. for M = 0, we get the usual Ising model [3], with
an oil-water miscibility gap vanishing on the simple
cubic lattice at about i = J/kT = 0.22 ( j = 1/6 in

mean field theory). For temperatures below this

critical Curie temperature, water and oil are not

completely miscible and have a large interface

tension. If instead we neglect the ferromagnetic
interaction, J = 0, the lattice splits into decoupled
sublattices with antiferromagnetic coupling between
nearest and next-nearest neighbors on these sublat-
tices. In three dimensions, these sublattices are face-
centered cubic structures, and the fcc antiferromag-
net with nearest and next-nearest neighbors has

been studied extensively [4]. Its phase transition

temperature seems to be near m = M/kT = - 0.6,
whereas mean field theory [5-7] predicts it to be at
m = - 1/6. This discrepancy by a factor 3 indicates,
as was mentioned many years ago [4], that usual

mean field theory does not seem capable of dealing
with the complexity of the frustrated structure of the
phases here.
The present paper thus aims to check by standard

Monte Carlo simulations in three dimensions the

predictions of mean field theory [5-7] for the Widom
model [1]. In a preliminary note we pointed out that
the nontrivial structure suggested in reference [1] for

most of the ordered microemulsion phase space was
unstable on the square lattice [8]. The reply of the
Widom group [9] suggests that the instability is

mainly a two-dimensional problem due to rather

strong fluctuations. Was this instability really a

peculiarity of two dimensions ? Is the phase diagram
adequately described by mean field theory ? How is
the interface between the oil-rich and the water-rich

phase structured ? We first describe our simulation
methods (section 2), then the stability problem (sec-
tion 3), the phase diagram (section 4), the interface
structure (section 5), and micelle formation (sec-
tion 6). Section 7 looks at Shnidman’s model, and
section 8 summarizes our work. Parallel simulations
of the Cornell group (K. A. Dawson, private com-
munication) agree with some of our results.

2. Computational methods.

We used standard Monte Carlo [3] methods (one
computer word per site) for our simulations on a
SUN 3/50 work station, which made about

12 thousand spin flip attempts per second. Lattices
up to 100 * 100 * 100 (and 200 * 200 * 48 for inter-
faces) were employed, with up to 10 000 sweeps

through the lattice. We used helical boundary con-
ditions and avoided any test for neighbors outside
the lattice by storing the two uppermost and the two
lowermost planes of the lattice in extra buffers.

Lower-quality runs were also performed on smaller
systems with periodic boundary conditions to con-
firm that the main results were not due to the spiral
boundary condition. For our studies of the bulk

phases, these buffers were updated after every

sweep ; for our interface studies they were kept in
their original state (all spins up or all spins down) for
the whole simulation, thus ensuring a certain stability
for the interface. Initially, the spins were put into the
suspected ground state configuration. Then we inves-
tigated each spin consecutively, flipping it with

probability 1 / (1 + exp (AEIkT)) where AE is the
energy change connected with that spin flip. The
order parameter 41 (t) is then determined as a

function of time t (in Monte Carlo steps per site)
through the overlap with the initial configuration of
the N = L * L * L spins [10] :

In an investigation of ferromagnetism, where initially
all spins are up, this order parameter is the magneti-
zation. In some runs we also started with randomly
oriented spins ; then we checked visually for ordered
structures or looked for instabilities in the energy

(hysteresis).
We also employed a combination of Monte Carlo

and mean field theory. The modified mean-field
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theory adopted here allows for spatial fluctuations in
the following manner : consider a lattice of sites and
allow each spin to flip by standard Glauber

dynamics. But now the energy change of the central
spin is determined by

where /jL is the average magnetization of the lattice
(or more generally the order parameter 41). The
method is identical to the standard Metropolis
algorithm when the system is completely ordered,
g = 1. This approach allows an efficient check of
the complicated phase diagram and the relative

stability of the ground states of the Widom model.
The Shnidman model was investigated on a VAX

11/780 using periodic boundary conditions.
In total, the present work without the runs used

for reference [8] took about a thousand hours of
CPU time.

3. Stability against interface formation.

In the standard Ising ferromagnet (M = 0 ) the order
parameter relaxes first rapidly and then slowly
towards its equilibrium state. In the Widom model,
on the other hand, we found the order parameter ik
often to be nearly stable and close to unity for a long
time, until it decayed first slowly and then rapidly
towards zero. Inspection of the resulting configur-
ations on the square lattice [8] showed the reason :
Due to zero interface energy, some supposed ground
states can be unstable at any finite temperature.
Specifically, we looked at quite strong antifer-

romagnetic coupling, MIJ = - 2, and with the initial
state on the square lattice consisting of horizontal
parallel lines of up spins alternating with parallel
lines of down spins. Each line with up spins has
upper and lower neighbor lines consisting of down
spins only, and each down line is bordered by up
lines. Thus on any vertical line, the spins alternate
up and down. Widom [1] had originally suggested
this layered structure for strong enough antifer-

romagnetic coupling.
After many Monte Carlo sweeps through the

lattice, we still observed such horizontal layered
domains. But they coexisted with domains layered
vertically. Of course, the thermal energy of such
layered structures is independent ’of their orien-

tation, just as the thermal (free) energy of up and
down domains in a ferromagnet is the same. Such
ferromagnetic domains are stable because a large
interface tension between up and down domains
makes it energetically impossible to create huge
domain walls by thermal fluctuations. In the Widom
model, on the other hand, an elementary through
tedious calculation at zero temperature showed [8]
that the interface energy between vertical and hori-

zontal layers is exactly zero, independent of the
radio M/J. Thus at all finite temperatures, entropy
effects will destroy the original single-domain
ground state and will lead to the coexistence of many
medium-sized domains of different orientations for

the same layered structure : Long range order is

destroyed, and the ground state is unstable at any
finite temperature.

In three dimensions, we also found the structure
of planes of up spins, adjacent to parallel planes of
down spins, to be unstable : the interface energy
between domains of horizontal planes and domains
or vertical planes of parallel spins is exactly zero at
zero temperature, independent of the ratio MIJ.
Thus again this structure is unstable at any finite

temperature. This interface energy is zero not just at
special values for the MIJ, [6, 7, 11] but in the whole
region of the phase diagram where the layers of
horizontal planes of up spins adjacent to horizontal
planes of down spins were thought to be stable. And
this effect applies to both two and three dimensions.
We also looked at the other ground states

suggested in reference [7], e.g. two parallel planes of
up spins neighboring two parallel planes of down
spins. Here we found a nonzero interface energy
when horizontal layers meet vertical layers. This
result does not prove that these configurations are
stable at low temperatures. For there could be other

ways in which different domains meet each other
with zero interface energy. For example, on the
square lattice, in addition to the 90 degree intersec-
tions of horizontal and vertical lines, also 45 degree
intersections of horizontal and diagonal lines were
also observed with zero interface energy, figure 1 of
reference [8]. Similar but more complicated inter-
faces with zero energy might be possible for the
other groundstates in three dimensions. We have not
looked for them, but that does not prove that they
do not exist.

All these stability problems seem to be related to
the special choice of taking the next-nearest-

neighbor antiferromagnetic coupling 2 M ( y = 2 ) to
be exactly twice as strong as the distance = 2

interaction M. With a ratio y = 3 instead of 2, on
the square lattice the formerly unstable lines were
found numerically to be stable, and the exact

evaluation of the zero-temperature interface energy
gives a finite difference when comparing a single-
domain ground state with the interface-states men-
tioned above. This effect was also found in 3 dimen-

sions, for y different from 2. The special property of
the choice y = 2 in the Widom model [1, 5, 7] was
also noted in reference [11] ; the special case

J = 0, y = 2, was pointed out many years ago [4].
Thus we will study below also the formerly unstable
layers for y = 2.1, when the accidental degeneracy
at y = 2 is removed and the layers have become
stable.
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Fig. 1. - Phase diagram. The solid curve near the J axis
gives the apparent stability limit for ferromagnetism, the
dashed line that for the structure (2) , the dashed-dotted
line for  1 &#x3E; , and the solid line in the lower part that for
the structure (2 :1 ) . These structures are also symbolized
by the unit cells of arrows ; perpendicular to the paper
plane, all spin orientations are the same. The dotted line
shows how the dashed-dotted line is shifted if the par-
ameter y increases from 2 to 2.1. We also mark the lines of

constant ratio c = MIJ = m/ j.

4. Phase diagram.

From now on we use the notation of reference 7 :

j = J/kT &#x3E; 0, m=M/kTO, c = m/j. A ground
state denoted by  i : m : n ) means periodicities
2 i, 2 m and 2 n in the three lattice directions. Thus
in the first direction we have i up spins followed by i
down spins, followed again by i up and i down spins,
etc. If all spins in one direction are parallel, the
corresponding infinite period is omitted in the

( i mn ) symbol ; thus ( 1 ) describes the unstable

layered phase discussed in the previous section : in
one direction we have up-down-up-down-up-
down... ordering, in the other direction(s) all spins
are parallel, for both the square and the simple cubic
lattice.

Reference [7] gives for very low temperatures the
following ground states :
all spins parallel c &#x3E; -1/10 (3a)

In these four cases, all planes before and behind
the plane of our schematic representation are ident-

ical to the plane shown. In addition, reference [7]
has the structure (2:2) coexisting with 1&#x3E; ,
equation (3c), and the nonplanar structure (2:2:2)
coexisting with (2:1), equation (3d). For the border
cases like c = - 1/10, one has additional possibili-
ties : then ferromagnetism can coexist not only with
(2) but also with (3), (4), ..., (but not ( 1 ) ), all
having exactly the same ground state energy. Refer-
ence [7] predicts some of these phases like (3) to

dominate at intermediate temperatures.
We started from one of the configurations shown

in equation (3) in the appropriate parameter range
for c = ml j and then diminished m or j (i.e. heated
up the lattice) until within the observation time the
order parameter, equation (2), decayed towards

zero. Infinite temperature corresponds to

m = j = 0, and zero temperature to infinite m and j
in this notation. Thus if hysteresis exists, our method
finds the stability limit for superheating, not the one
for undercooling. Our phase transition temperatures
determined in this way mean that for higher tempera-
tures the configurations are very different from the
initial ground state ; they do not exclude that a

different type of long-range ordering occurs for

temperatures higher than this transition tempera-
ture, as predicted in reference [7] for some cases.

Figure 1 shows our effective transition tempera-
tures, mostly based on 200 time steps in 20 * 20 * 20
or 18 * 18 * 18 systems, with an accuracy of about
0.02 for the transition value of m or j. 35 sequences
of runs with increasing temperature were used for
this diagram. In a few selected cases, we confirmed
for 50 * 50 * 50 or 48 * 48 * 48 lattices and up to

1 000 time units the position of the phase transition.
The border of the ferromagnetic region was already
determined in reference [8] using 30 * 30 * 30 sys-
tems and 10 000 time steps.
Near the lines c = ml j = - 1/2 and

c = ml j = -1l6 our results are qualitatively compat-
ible with the mean field prediction [5] : the transition
lines seem to go to infinity (zero temperature) there
since other, more complicated, structures occur. No
such effect, however, was observed near the crucial
line c = ml j = - 1/10, where ferromagnetism (oil-
water) coexists with other ground states. The two
transition lines for ferromagnetism and for the

structure (2) cross each other near j = 0.9,
m = 0.087, that is at temperatures about three times
lower than mean field theory predicts. Actually, at
j = 1, m = - 1/10, we found within our numerical
accuracy both the ferromagnetic state and the

(2) configuration to be equally stable (see Fig. 4).
The structure (2:2:2) seems to be as stable as

(2 :1), whereas the stability region for (2:2)
(tubes [25]) was smaller than for 1&#x3E;, and (3)
seemed less stable than (2). We also looked at a
modified Widom model where the ratio y of next-

nearest-neighbor interaction to distance = 2 interac-
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tion was not 2 but 2.1. The resulting stability line for
structure 1&#x3E; is also shown in our figure 1. In this
modified model the surface energy of horizontal

planes meeting vertical planes no longer vanishes.
Finally, the (2:2) structure with two parallel
diagonals [8 J of up spins neighboring two parallel
down diagonals has at y = 2, stability limits between
that for 1&#x3E; at y = 2 and that for (1) at y = 2.1.
We also looked for interesting structures at tem-

peratures above our phase transitions, by starting
with a random orientation of spins. For j = 0.01 and
m = - 0.4 as well as j=l, m=-0.55, a

36 * 36 * 36 lattice showed no indication of any long-
range order by inspection ; however, parallel spins
showed a certain tendency to align along straight
lines. Figure 2 gives an impression of the sharpness
of the transition involved : at j = 0 and m ? - 0.51
the order parameter decays first slowly, then rapidly
towards zero whereas for j = 0, m = - 0.52 it fluc-
tuated about 0.977 for all 5 000 time steps. This
transition thus seems to be first order, within the
accuracy of this simulation (50 * 50 * 50 lattice). (Of
course, nucleation thresholds at first order phase
transitions always do slightly depend on the obser-
vation time). The resulting stability limit of about
m = - 0.515 for j = 0 agrees excellently with the
simulations of figure 10 in reference [4] but disagrees
by a factor 3 from the prediction m = - 1/6 in the
mean field theory of reference [7]. These results
were also confirmed by the mean field Monte Carlo
method described above.

Fig. 2. - Decay of order parameter with time at j = 0, m
near - 1/2 as indicated by the numbers on the curves. The
deviation from the pseudo-equilibrium value observed for
short times seems to increase exponentially with time until
the order parameter is appreciably reduced. We start with
configuration (2 :1 ) as marked in figure 1 for this region
of the phase diagram.

Figure 3 shows hysteresis loops, or their absence,
for selected values of the ratio c = ml j. The energy
- E per site, in units of J, is shown as a function of j
for heating as well as for cooling curves (i.e. we

Fig. 3. - Hysteresis loops for various ratios c = m/j, as
shown. We started either from a random configuration
(dots) or from the ordered groundstate ( x ), correspond-
ing to that ratio c, as indicated by f m = ferromagnetism,
(2),  1), and (2 : 1 ) . E is the negative energy per site
and is 2.1, 1.375, 1.333, and 3, respectively, at zero

temperature. Note that the temperature increases from
the right to the left and that we use the same scaling of E
and j for all four cases. The number in the upper left
corners of the loops indicate the smallest observed nonzero
order parameter.

started from either a completely ordered or a

completely random configuration). At c = -1l3 and
c = - 1 we see strong hysteresis, for c = - 0.06 we
do not see it, and c = - 1/8 shows weak hysteresis.
Thus the transition from ferromagnetism to para-
magnetism is second order, as expected, whereas the
complex phases are bounded by first order tran-

sitions. (While the decay of the ordered phase was
easy to observe, a complete built-up of order from a
random initial state was observed only for simple
ferromagnetism. The stability limit for the dis-

ordered phase was found by checking whether the
negative energy E was stable or increased slowly
with time). Typically we looked at 500 time steps for
lattice sizes from 18 * 18 * 18 to 100 * 100 * 100. As

a test, for m = 0 we got the usual second-order

phase transition of the Ising model.
To find the equilibrium phase transition, where
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the two states become stable, we created an interface
in our system (Ref. [3], page 39) : half of the lattice
started with the ordered phase, and in the other half
the spins were initially random. Usually either the
ordered or the disordered phase grew at the expense
of the other in the later time development, as

monitored by changes in the average order par-
ameter 1/1’. The equilibrium transition is defined as
that point where both phases remained about equally
strong in the subsequent time development. In the
three first-order phase transition of figure 3, we
found these transitions near j = 1.04, 1.59 and 0.69
for c = - 1/8, - 1/3, and -1, respectively ; for

j = 0 it was near m = - 0.59. For low temperatures
near the line c = 1/10, the two ferromagnetic
phases and the eight phases (2) seem to coexist in
equilibrium. Phase 2&#x3E; , on the other hand, seems to
win there over phase (3), which thus is missing in
our phase diagram of figure 4. For example, along
the line c = - 1/10, we started with three phases
(two interfaces) : ferromagnetism, (2) and (3), in
a 96 * 96 * 96 lattice : we found phase 3 &#x3E; always to
shrink, for 1. 1 :!-5 j ---5 1.6 (see also Fig. 1).

Fig. 4. - Equilibrium phase transitions (two-phase coexi-
stence) between paramagnetic phase and the complex
phases (2:1),  1 &#x3E; and  2 &#x3E; . For the ferromagnetic
( f m ) phase, this transition line agrees with that of figure 3
(second-order transition). The star indicates the limit of
phase 1 &#x3E; within the mean field approximation [7].

For applications to microemulsions, the crucial

behavior seems to be ferromagnetism near

c = ml j = - 1/10 at low temperatures, where the
domain wall energy between up and down ferromag-

netic domains vanishes [5, 6] at zero temperature
proportional to j + 10 m. For microemulsions, the
ferromagnetic regime near that particular ratio of
ml j corresponds to oil separated from water at zero
temperature by a single layer of amphiphiles, with
these soap molecules strongly diminishing the inter-
face tension. At somewhat higher temperatures,
there are a few amphiphiles and even fewer water
molecules in the oil phase, and a few amphiphiles
and fewer oil molecules ’in the water ; the interface

separating them now becomes thicker (see next

section). The ferromagnetic phases then correspond
to water-in-oil or oil-in-water, whereas the « para-
magnetic » or the 2&#x3E; phase might be identified with
the microemulsion phase.

5. Interfaces.

We have used lattices of size L * L * H to study
interfaces perpendicular to the z axis, where z varies
from 1 to H. (Actually our z varies from - 1 to
H + 2 because of the four buffer planes). This work
concentrated on the ferromagnetic phase but could
be extended to the more complicated structures of
equation (3) and the previous section. We deter-

mined the density profile where the density (z ) is the
fraction of up spins in a particular lattice plane.
Initially all spins in the lower half were up and all
spins in the upper half (z &#x3E; H/2) were down :

Buffer spins with z  1 always remain up, and buffer
spins with z &#x3E; H always point down. The width W of
the interface was determined through [12]

with the statistical weight given by the density
gradient :

Here p 1 and p 2 are the densities in the up and the
down phase far away from the interface and the
buffer planes at the ends of the sample. An alterna-
tive definition of the width W uses the maximum

gradient :

In addition, we calculated the interface energy
(not the interface tension which is a free energy) by
comparing the system containing an interface with
an otherwise identical system (even using the same
random numbers) without an interface. For the

latter system we took initially all spins up. The

difference in the total average energies is then the

interface energy.
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Fig. 5. - Interface profile p = qi near the ferromagnetic
stability limit j = 0.3 m = 0.01. The computer needed two
days to make 500 steps on the 200 * 200 * 48 system. We
show the probability of a spin to be oriented up, as a
function of the position perpendicular to the interface.

The interface width W from equation (4) is also shown.

For each unit area of the lattice, the interface carries in the

average 1.6 excess amphiphiles. The bulk phases consist of
67 % water (or oil), 24 % amphiphile, and 9 % oil (or
water) ; for low temperatures at j = 0.1, m = - 0.01,
these percentages are 95, 3 and 2.

Figure 5 shows the density profile for high tem-
peratures near the stability limit of ferromagnetism.
At low temperatures (j = 1, m = - 0.1 ) the profile
is nearly sharp, with the density jumping from nearly
p = 1 to nearly p = - 1 if we go from one plane to
the next. For microemulsions this situation corres-

ponds to one monolayer of amphiphiles separating
nearly pure water and oil. If we put in three

amphiphiles between water and oil, that means a
spin profile + + + + - + - - - - , at the beginning
of the simulation, this configuration quickly reverts
to the sharp interface mentioned before. More

complicated initial configurations, like

remain for a long time. (Note that

actually corresponds to bulk water in the bottom
part, covered by a layer of amphiphiles, a layer of
oil, an amphiphile layer, a water layer, another soap
layer and then only oil on top ; the distance between
these layers is half a lattice constant. These

molecules sit on the bonds of the lattice, not on the
sites).
At higher temperatures, the density profile is

more smooth and extends over several lattice con-

stants. Additional interface planes inserted at the
beginning, as described for lower temperatures, are
quickly destroyed by the thermal fluctuations.

This difference between high and low tempera-
tures is easily understood if we simply set m = 0.
Then we have the usual three-dimensional Ising
model, which has a finite small interface width for

temperatures below the roughening temperature
[12, 13] at about j = 0.4. For higher temperatures,
the interface width increases logarithmically with the
linear dimension L of the system. In addition, and
presumably more important even at fixed lattice size
the interface width increases with increasing tem-
peratures because of the divergence of the intrinsic
thickness (the correlation length) at the critical

temperature of demixing. Apparently this behavior
of the interface width is not restricted to m = 0 but
also found in the microemulsion model with

negative m : higher temperatures lead to a thicker
interface. Also, if at j = 0.3, m decreases from zero
to the phase transition at m = - 0.01, the width

Fig. 6. - Order parameter T (Fig. 6a) and surface energy
E, (Fig. 6b) (per unit area) for j = 0.3 (+ ), 0.4 (o ),
0.6 ( x ), 0.8 (triangles), and 1.0 (dots), as a function of
c = m/ j in the ferromagnetic region of the phase diagram
between the J axis and the stability limit. The solid line for
the surface energy is the exact ground-state result.
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increases drastically. However, we found no clear
evidence of an increase of the width with increasing
lattice size for j = 0.3, 0 ::-, m 0.01 near the

stability limit.
The surface energy goes to zero, if at constant j,

the parameter m approaches the stability limit for
ferromagnetism at very low temperatures, as shown
in figure 6. However, at higher temperatures it

seems to increase near the stability limit since there
the surface thickness is larger (second order tran-
sition to paramagnetism ?). At low temperatures the
variation of the interface energy with m is much
smoother than that of the order parameter (density
difference). By choosing parameters at low tempera-
tures close to the stability limit one thus has a

microemulsion model with an interface tension be-

tween oil and water which can be taken as low as one

wishes, and still mostly pure water and pure oil in
the adjacent phases as predicted by Widom [1] and
Dawson [6]. Nevertheless we could not see drastic
shape differences between the usual Ising clusters of
overturned spins and the corresponding clusters in
the present model ; the latter ones might be some-
what more rectangular.

6. Micelle formation.

Real microemulsions may exhibit a phase of isolated
micelles. These micelles may be oil droplets in

water, coated by amphiphiles, or water droplets in
oil, also coated by amphiphilic molecules. 50 to

100 Angstrom [23] is a typical size for these micelles.
In the original formation of the Widom model, the
bonds between sites represent single molecules and
thus may be identified with a molecular diameter.

Thus a micelle should be a geometrical structure of
more than several lattice constants in diameter. In
the simulations described above we rarely saw large
droplets. However, this lack of large micelles may be
just an artifact of the simulation method employed,
not of the Widom model itself. For we worked in a

grand canonical ensemble of constant chemical po-
tentials, whereas real soap solutions have a fixed
number of oil, water and surfactant molecules.

Similarly, in the usual Ising model, simple computer
simulations work with a fixed magnetic field

(Glauber kinetics ; fixed chemical potential in a

lattice gas), whereas in a real fluid the number of
molecules is fixed (Kawasaki kinetics). Starting with
all spins up in a large Glauber model, we will not see
any phase separation of liquid and gas. If we start

with a random distribution of spins, we see such
phase separation at low enough temperatures, but
the size of the droplets grows in time until the whole
system is one domain. With Kawasaki dynamics,
where we shift a molecule (up spins) from one site to
an empty neighbor site (down spin), we may end up
with two large domains (of up and down magneti-

zations) which no longer grow in time. None of these
methods gives numerous droplets with size indepen-
dent of time.

For microemulsions the situation is different. If
most of the material is water, but we have oil and
more surfactant in the system than can be dissolved
in the water, then oil and surfactant molecules must
somehow cluster together. If the water-oil interface
tension is very low due to surfactant molecules at the

interface, then it is energetically more favorable to
have many large oil droplets (coated with a mono-
layer of surfactant) than one huge oil phase. The
number of droplets and their size must be such that
all soap molecules which cannot be dissolved in the
water are used up in coating the oil droplets. In this
way, the micellar phase should be seen if we work
with fixed numbers of soap, oil and water molecules
and select the concentrations suitably.

This type of canonical ensemble is not easily
realized in the Widom model, since there the

molecules are represented by bonds between the
spins, not by the spins themselves. Keeping the
number of up spins fixed, as in a Kawasaki, model,
would not keep any of the number of molecules
fixed. We thus try a simpler version where only the
amphiphile concentration is fixed, whereas oil and
water molecules can be created or annihilated as

before. (One could imagine a microemulsion in

contact with is water vapor.) Since each soap mol-
ecule corresponds to a pair of up-down neighbor
spins, a simulation with constant numbers of am-

phiphiles is thus a simulation at constant nearest-

neighbor interaction energy. We thus consider a spin
for flipping if and only if it has as many up as down
spins as nearest neighbors. Only if up and down

neighbors cancel each other, do we calculate the
interaction energy with the next-nearest and dis-
tance = 2 neighbors and flip the spin according to
the appropriate Boltzmann probabilities, as before.
Because of these interactions with more distant

neighbors and because of sequential instead of
simultaneous updating, our simulation differs from
the Q 2 R cellular automat [18].
To get a clear picture of possible micelles, we

simulated this Widom model with constant am-

phiphile concentration on the square instead of the
simple cubic lattice. Since most spins cannot be
flipped, the simulation of each spin flip attempt is

about ten times faster now than the above simulation
on the cubic lattice. To combine a low amphiphile
concentration with a high initial oil concentration,
we started with double rows of up spins (oil)
separated by ten rows of down spins (water), and
then flipped 3 percent of all spins randomly. Figure 7
shows our results, corresponding to an amphiphile
concentration of about 13 %. We see that the initial

linear structure is quickly dissolved into a few large
and quite random looking domains, which do not
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Fig. 7. - Formation of micelles in a simulation at fixed
number of amphiphiles. Starting from an artificial initial
configuration (Fig. 7a), rather large domains of up spins
(stars) have developed after 1 000 time steps (Fig. 7b)
which no longer increase even after 1 000 000 time steps
(Fig. 7c). This simulation was made for a 36 * 36 square
lattice.

grow with time even when one million Monte Carlo

steps per spin are made. This model thus displays at
least some aspects of micelle formation : large
domains are formed, the size of which does not grow
in time.

In this sense we may identify the ferromagnetic
phase with solutions of separated micelles, and the
various layered or more complicated phases with
bicontinuous microemulsions.
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7. Shnidman model.

Shnidman [2] suggested a Hamiltonian also of the
spin 1/2 Ising form, with a local field Hio = Ho at
spin i depending on the neighbours. This two-dimen-
sional model was built for binary micellar solutions
(water and amphiphiles without oil), and a lattice
site may now represent a whole micelle, but com-
putationally these differences in the interpretation
are less relevant. Originally we took the model [2] as
follows : Hio = Ho if spin i is up and exactly two of its
neighbours are up, the focal field Hio is Ho/2 if spin i
is up and exactly one of its neighbours is up. Finally,
Hio = 0 for an up spin i surrounded by down spins
only. This model was introduced to explain the

possible [14] anomalous variation of the critical
indices observed in a homogeneous series of micellar
binary solutions. A Migdal-Kadanoff renormali-
zation group transformation in which Ho played the
role of a marginal operator was utilized by Shnidman
to determine the varying critical exponents as a

function of Ho.
This result was questioned by Caflisch et al. [15]

who concluded that the only critical fixed point in
this model is the Ising critical point, without genuine
non-universality. Reatto [16] pointed out that in the
renormalization analysis the field Ho should also be
renormalized, and then the only-nontrivial fixed

point obtained within the Migdal-Kadanoff RG is

the Ising critical point. He also suggested a trans-
formation (slightly different from Shnidman’s) such
that Hio becomes a multispin interaction. The corres-
ponding RG analysis was not actually performed in
reference [16], and since these arguments are not
rigorous, the question remained unresolved. Simi-
larly, also Crisanti and Peliti [17] questioned the

41
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reliability of Shnidman’s renormalization transfor-
mations. Our Monte Carlo simulation intends to

clarify these controversies.
In this model we found on the square lattice for

Ho = 0.01 (in units of k7J a behavior similar to the
Ising model without a field, and for larger Ho = 0.1
and 0.2 a non-zero magnetization, as for Ising
ferromagnets in a field. We visually examined the
configurations, starting from random spin orien-

tations, for the presence of other ground states and
found no features distinguishable from that of a
normal Ising model in a weak magnetic field ; no
onset of periodicity was found. Thus we confirm the
conclusions of references [15-17] : the only critical

point in this model seems to be Ho = 0, the normal
Ising transition. This result did not change if we

require for Hi0 = Ho the two up neighbors to be on
opposite sides of the central up spin and Hio = 0 if
they formed a corner [16].
Shnidman and Zia [21] have suggested further

refinements to the Hamiltonian decriptions of the
micellar binary systems. They suggest now a ferro-
magnetic interaction between distance = 2 pairs.
Then e.g. the square lattice may be considered as
four interpenetrating sublattices. For zero coupling

Fig. 8. - Non-trivial phase observed in the refined Shnid-
man model, where we started from a random configuration
(top) and end up with an ordering structure after 100 times
steps.

between these sublattices there are 16 possible
groundstates. In some sense this model is reminiscent
of the 8-vertex model, where there are two inter-
penetrating sublattices with only ferromagnetic inter-
action and a 4-spin interaction coupling the two
sublattices [22]. The strength of the 4-spin interac-
tion determines the continuously varying critical

exponents, and in the language of renormalization
group we have a line of fixed points. It remains

open, however, whether this refined Hamiltonian
shares this property with the 8-vertex model. Our
Monte Carlo simulations now show phases clearly
distinct from the ferromagnetic ones. For example,
figure 8 shows the state observed for Ko = Kl = 1.15
and J = 0.47 in units of kT, using the notation of
reference [21] without the factor t in equation (4)
there. Similar pictures were obtained, at different

parameters, with 7 included. This full model [21]
orders chess board like for Ko = K, = 0 and

J &#x3E; 1.05; for Ko = 0 and 0  KllkT  1, the tran-
sition point for J shifts only slightly to higher values.
The full phase diagram and the critical properties of
this model requires further study.

8. Summary.

The Widom model has a lot of complicated proper-
ties, which presumably are not all related to micro-
emulsions. Crucial is the fact, that near c = m/ j =
- 1/10 at low temperature, and for larger m/ j ratios
at higher temperatures, the stability of the ferromag-
netic phase (separation of oil and water) ends. For
more negative c, the preferred phase is the structure
(2), which corresponds to consecutive planes of
three monolayers of oil, one of amphiphiles, three
monolayers of water bonds, one of amphiphiles,
again oil, amphiphile, ... When heated, the ferro-
magnetic phase ends in a second-order phase tran-
sition, whereas the various microemulsion phases
(complex structures) end with first order transitions
including hysteresis and a jump in the energy. The
oil-water interface energy goes to (nearly) zero if c
decreases towards that stability limit, at low tempera-
tures.

We have also shown that at least one of the phases
predicted by mean field theory is unstable and that
the position of the transition sometimes differs quite
strongly from the result of our computer experiment.
Many qualitative aspects of mean field theory, and
in particular the importance of the value c = m / j =
- 0.1, have been confirmed. The ferromagnetic
transition line was quite accurately predicted by
mean field theory [1, 5, 7] whereas for the complex
phases the errors are larger.
Of course, the Widom and Shnidman models are

not the only theories for microemulsions. There are
spin-1 decriptions, where each site can be in one of
three states [19, 24] and also more phenomenological
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models, as reviewed in reference [20]. Actually, the whereas more complicated models might be more
model of reference [19] reduces to the Widom model realistic. It remains to be seen which model is best
with general y and nonzero magnetic field, if one for membranes and soap bubbles [26].
assumes the parameters H and L1 of reference [19] to We thank K. A. Dawson, B. Widom and
be positive, equal and very large. The Widom model Y. Shnidman for helpful discussions and correspon-
thus seems to us the most simple description, dence.
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