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Résumé. 2014 Nous avons calculé les potentiels interioniques pour l’aluminium et le lithium d’après les

pseudopotentiels. Nous avons construit ces pseudopotentiels A partir des densités électroniques induites autour
des noyaux d’aluminium et de lithium. Ensuite, nous avons calculé les courbes de dispersion de phonons et les
constantes élastiques. Nous avons répété ce calcul pour plusieurs valeurs de la pression en changeant a chaque
fois la valeur rs du paramètre de la densité du gaz d’électrons. Les densités électroniques induites ont été
calculées en utilisant la théorie de la fonction densité.

Abstract. 2014 We calculated the interionic potentials for aluminium and lithium from first principle
pseudopotentials. We constructed these pseudopotentials from the induced electron densities around an
aluminium nucleus and around a lithium nucleus respectively. Then we calculated the phonon dispersion
curves and the elastic constants. We repeated the whole calculation for several values of pressure by changing,
each time, the value of the electron gas density parameter rs. The induced electron densities were calculated
using Density Functional Theory.
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1. Introduction.

A good starting point to make predictions of the
behaviour of materials under pressure is to have a

reliable, pressure dependent interionic potential or a
reliable, pressure dependent pseudopotential.

In previous work [1, 2], we had performed a first-
principle calculation of the interionic potentials of
lithium and aluminium without using pseudopoten-
tials, following a method based on density functional
formalism [3, 4], with no adjustable parameters.
This method had been applied with success to

metallic hydrogen [5, 6]. The phonons generated
from those interionic potentials were not satisfactory
and were not used to calculate any property of
aluminium or lithium under pressure.

In this work we calculated the interionic potential
using local, pressure dependent, first-principle
pseudopotentials for lithium and aluminium follow-
ing the method of Manninen et al. [7], who followed
the work of Rasolt et al. [8], with some differences.
With their method Manninen et al. [7] could

calculate the total energy of the metal, the equilib-
rium lattice constant, bulk modulus, vacancy for-
mation energy and the electrical resistivity of the

liquid phase. They considered aluminium. More

recently, Jena et al. [9] calculated the phonon disper-
sion curve of aluminium using the interionic potential
reported by Manninen et al. [7], obtaining a good
agreement with experimental results. In this

method, a Fourier transform of the displaced elec-
tron density, around an impurity in an electron gas,
is taken. A local pseudopotential is then defined in
order to reproduce exactly, in linear response
theory, the displaced electronic density around the
impurity in the electron gas. In this way, some of the
non linear screening effects are included into the
pair potential calculated from this pseudopotential
[7, 8]. They considered two models [7] to calculate
this displaced electronic density. In the first model
they calculated the screening of the ion in a homo-
geneous electron gas. In the second model they
considered the ion embedded in a jellium vacancy
[7, 10, 11]. It turned out that the second model is
much better to describe the cohesion in the metal
than the first model. In this work we used the second
model to construct the pseudopotential. I

We started our present work calculating the

screening electron densities for lithium and alumi-
nium by the density functional formalism using the
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model of the ion embedded in a jellium vacancy. By
smoothing these densities near the ion we obtained
the pseudodensities and the pseudopotential. From
this pseudopotential we calculated the interionic

potential, the phonons and elastic constants as

functions of pressure.
From pseudopotential theory and linear response

theory [7, 12], the interionic potential is given by :

where z is the charge of the metal ion, E (q ) is the
dielectric function of the electron gas and dn (q ) is
the induced charge pseudodensity. The relationship
between the charge pseudodensity and the un-

screened pseudopotential form factor, V (q ) (which
is assumed to be weak) is

In section 2 we present the equations of the

density functional formalism we have solved for the
model of the nucleus embedded into a jellium
vacancy [7, 10, 11].

Section 3 is used to describe briefly the method of
Manninen et al. [7] to construct the pseudopotentials
from the electron densities and to show the dielectric
function we used.

In section 4 we show how we calculated the

phonons and the elastic constants.
Section 5 is for results and discussion.

2. Electronic densities.

To calculate the displaced electron densities we use
the formalism of Hohenberg-Kohn and Sham [3, 4].
The central result of this formalism states that there
exists a one-body local potential, Veff(r), which
through the one-body Schrodinger equation given by

generates the set of wave functions qii(r) and the
exact ground state density of the system through the
independent particle density expression :

where the sum extends up to the Fermi energy.
The effective potential is

where 0 ( r ) is the total electrostatic potential of the

system, and Ex, [n ( r ) ] is the exchange-correlation
energy of the system.
When we omit gradient corrections it is possible to

write

where êxc(n(r» is the exchange correlation energy
per particle in a homogeneous electron gas of

density n ( r ).
For the exchange-correlation contribution to the

effective potential, equation (6), we use the express-
ion given by Gunnarson and Lundquist [13] in
atomic units (double Rydbergs) :

where

In order to have V eff (r) vanishing at large r, the
exchange-correlation part is rescaled to :

The electrostatic potential obeys Poisson’s

equation

where D (1:) is the total charge density.
If we consider the nucleus as located at the centre

of a vacancy in jellium

where 6 (x ) is the step function, Rw, is the Wigner-
Seitz radius, z is the ion charge and 5 (r) is the Dirac
Delta function.

3. The pseudopotential.

Once we know the Fourier transform of the induced

charge pseudodensity, d n (q ), we can find the un-
screened pseudopotential form factor using equation
(2). It should be remarked that, in the pseudopoten-
tial formulation, the pseudodensity must not have
core orbitals. In this way the pseudodensity must not
contain wiggles near the ion. The wiggles near the
ion would appear because of the orthogonalization
of conduction states to core orbitals.
For the case of the nucleus embedded in a jellium

vacancy, the induced density is calculated by taking
the difference [7]

where n ( r ) is calculated with the total charge
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density given by equation (10) and nv(r) is the
electron density around a jellium vacancy and corres-
ponds to an external positive background charge
density

Charge neutrality requires that :

where z is the valence of the ion in the metal.
The induced density, calculated from the density

functional formalism, contains wiggles at small
r due to the orthogonalization of conduction states
to core orbitals. We have smoothed our calculated
induced density, following the method of Manninen
et al. [7]. This is achieved by using a second-order
polynomial given by

for small values of r. The constants A, B and
Ro are calculated by the conditions that 8 n ( r ) and
(8/ 8r) [8n (r)] are continuous at r = Ro and that
the electronic charge is conserved. The smoothed

density is the one we used as pseudodensity,
8n (q ), in equation (1) to calculate the interionic
potential.
The dielectric function we used satisfies, by con-

struction, the compressibility theorem which is

important in connection of the interionic potential
[7, 14], and it is given by

with

where Go (q ) is the usual Lindhard polarizability,
kTF is the Fermi-Thomas screening constant and

In equation (15) is the chemical potential, EF is the
Fermi energy and

where J.L xc (rs) is the exchange-correlation contri-
bution to the chemical potential.
Using the expression of Gunnarson and Lundquist

[13] for exchange-correlation (which we used in the
calculation of the induced density), the correspond-
ing value of L is :

4. Phonons and elastic constants.

Having the induced charge pseudodensity and the
dielectric function, we used equation (1) to calculate
the interionic potential.

For the interionic potential we calculated the

phonon dispersion curves using the harmonic ap-
proximation [15, 16] and the self-consistent harmonic
approximation [17-19]. In the latter approximation,
in contrast with that of Born and Von Karman [15,
16], there is no initial hypothesis of smallness for the
amplitude of atomic vibrations and hence no trun-
cated Taylor series expansion of the interatomic

potential energy.
The resulting set of self-consistent equations to

solve in order to obtain the phonon dispersion curve
in the self-consistent harmonic approximation is the
following

where s? (k) is the component of the polarization
vector £ À (k) and the dynamical matrix is

with

where M is the ion mass, &#x3E;t is the vector describing
the displacement of atom f from its equilibrium
position, Rt, and 0,,,o (L?t + FLe) is the tensor deriva-
tive of the interatomic potential evaluated at

Be + 4f.
Finally :

where N is the number of ions. The sum is over the
first Brillouin zone, Q is 1/ (kB T), kB being the
Boltzmann constant.
To solve the set of self-consistent equations (17),

(18), (19) and (20) we start with the frequencies
generated by the Harmonic Approximation as the
first trial. Then the convergence procedure is fol-
lowed.
For lithium (and in general for the alkali metals)

the harmonic approximation gives a better descrip-
tion of the phonons than the self-consistent harmonic
approximation [20]. This is because the self-consis-
tent harmonic approximation generates frequency
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shifts, relative to the harmonic approximation, of
the wrong sign [20]. These shifts are practically
cancelled when cubic terms are included in the self-
consistent harmonic approximation. For aluminium
the self-consistent harmonic approximation gives a
better description of the phonons than the harmonic
approximation.

Following the tensor force model and notation of
reference [21], the force matrix, tPij(S), is defined to
be the force on the origin atom in the i direction
when the atom S moves one unit distance in the j
direction. This force matrix is symmetric and its
elements are denoted by

The point S is one of a set of points according to
the symmetry of the lattice. This set of points is
denoted by S = 1, 2, 3, etc., corresponding to the
first shell of neighbours (nearest neighbours), second
shell of neighbours, third shell of neighbours, etc.
The force matrices of the other members of the set
consist of rearrangements of the same set of force
constants.

The elastic constants, C 11, C44, C 12 are given by
[21]

where a is the lattice constant, n s is the number of
lattice points for neighbour shell S ; h j corresponds
to three non-negative integers such that h, :&#x3E; h2 :&#x3E;
h3 and that the coordinates of a point in shell S are
h, a/2, h2 a/2, h3 a/2. For FCC (aluminium),
T = 1 and for BCC (lithium), T = 1/2.
The relations between the force constants of the

tensor force model and the axially symmetric model
are [22] :

where h2 = hi + h22) + h32, and k1 (S) and CB(S) are
the two force constants of the axially symmetric
model for the S-th shell of neighbours [22].

We could relate easily the force constants k1 (s)
and C B (s) to the derivatives of the interionic

potential and we got :

and

In this way, once we knew the interionic potential
V(r), we could find k1 (S ) and C B (S ) and using
equations (22) and (23) we calculated the elastic

constants.

For every value of the pressure, i.e., for every
value of the electron gas density parameter rs we
have calculated the pseudopotential, the interionic
potential, the phonon dispersion curves, the force
constants and the elastic constants for lithium and

aluminium.

5. Results and discussion.

In figures 1 and 2 we show some of the displaced
electron densities and pseudodensities resulting
from our calculation.
We calculated the displaced electron densities

fully self-consistently. The Schrodinger equation was
solved in steps of 0.01 ao, where ao is the Bohr radius

(ao = 0.529 Å), up to Rmax = 15.04 ao, where the
phase shifts were evaluated for both cases, lithium
and aluminium.
The following step was to calculate the Fourier

transform of the smoothed densities. Since this

implies knowing d n (r ) up to infinity, we used the

Fig. 1. - Smoothed displaced electron densities for a

lithium ion embedded into a jellium vacancy. At atmos-
pheric presure : ; for a value of rs which is 4 %

smaller than the corresponding value at atmospheric
pressure : ...
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Fig. 2. - Displaced electron densities for an aluminium
ion embedded into a jellium vancancy. Smoothed density
at atmospheric pressure : ; non-smoothed density for
a value of rs which is 4 % smaller than the corresponding
value at atmospheric pressure : ...

asymptotic form for n (r) for distances larger than
Rmax, given by

where the constants A and 0 were obtained using the
last points in our calculation of n (r). The accuracy of
our Fourier transform was tested by taking the
inverse Fourier transform of d n (q ) and the resulting
difference with respect to the original values of
6n (r) was less than 0.1 % in all the cases.
Using dn(q) and the dielectric function given by

equations (13), (14), (15) and (16), we obtained the
interionic potentials by equation (1). Figures 3 and 4
show the resulting interionic potentials for lithium
and aluminium respectively for two different values

Fig. 3. - Calculated interionic potential for lithium. For a
value of rs corresponding to atmospheric pressure : ;
for a value of rs which is 4 % smaller than the correspond-
ing value at atmospheric pressure : ...

Fig. 4. - Calculated interionic potential for aluminium.
For a value of rs corresponding to atmospheric pressure :
; ; for a value of rs which is 4 % smaller than the

corresponding value at atmospheric pressure : ...

of rs. We can see that the effect of pressure is to
make the shape of the potentials at the position of
the first minimum sharper. The frequency of the
oscillations of the potentials also increases.
From the interionic potentials we calculated the

phonon dispersion curves using the harmonic ap-
proximation for lithium and the self-consistent har-
monic approximation for aluminium for every value
of pressure. In figures 5 and 6 we show a comparison,
for lithium and aluminium respectively, between
experimental and calculated phonons at atmospheric
pressure, and also the phonon dispersion curves for
a value of rs which is 4 % smaller than the corre-
sponding value at atmospheric pressure. There is a
good agreement between experimental and calcu-
lated phonons at atmospheric pressure. We could
not find any phonon dispersion curves measurements
for more values of pressure. We can see from

figures 5 and 6 that the effect of pressure is to shift
upwards the dispersion curves.
For lithium (for which the harmonic approxi-

mation is used) from the interionic potential,
V (r), we found k1 and CB by using equations (24)
and (25). The elastic constants were found using
equations (22) and (23). This was done for every
value of pressure we considered, i.e. for every value
of rs we have considered.
For aluminium (for which the self-consistent har-

monic approximation is used) we found the first

guess of the set of force constants of the tensor force
model using equations (23), (24) and (25). Then the
convergence procedure was followed to obtain the
force constants of the tensor force model self-consis-

tently. This final set is used in equation (22) to

calculate the elastic constants as functions of press-
ure.

Tables I and II show, for lithium and aluminium
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Fig. 5. - Phonon dispersion curves for lithium. Exper-
imental results at atmospheric pressure [23] : x, 0, A ;
calculated phonons at atmospheric pressure : ; calcu-
lated phonons for a value of rs which is 4 % smaller than
the corresponding value at atmospheric pressure : ...

respectively, a comparison between experimental
and calculated elastic constants at atmospheric press-
ure. There is a good agreement with experimental
results. Notice that C’ - (C 11- C 12 )/2 and B =
(C11 + 2 C12)/3.

Fig. 6. - Phonon dispersion curves for aluminium.

Experimental results at atmospheric pressure [24] : x, 0,
A ; calculated phonons at atmospheric pressure : - - - ; :
calculated phonons for a value of rs which is 4 % smaller
than the corresponding value at atmospheric pressure :

There is another model which can be used with the

method presented in this work and it is the spherical
solid model, but in this model, the actual pseudopo-
tential around the ion is mimicked by taking the
spherical average of the host ion pseudopotential [9,
29]. This brings on additional complication to the
problem, because if we want to know the spherical
average of the host ion pseudopotential in our case,

Table I. - Elastic constants for lithium at atmospheric pressure. We show the results o f our calculation and the
corresponding experimental values in 1012 dynes/cm2 ; a) from reference [25] ; b) from reference [26].

Table II. - Elastic constants for aluminium at atmospheric pressure. We show the results of our calculation
and the corresponding experimental values [27], in 1012 dynes/cm2.
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we must know the solution to the problem, i.e. we
must know the pseudopotential we are trying to find.
In reference [9] the spherical average of the

pseudopotential is calculated using an Ashcroft

pseudopotential which is a phenomenological
pseudopotential. This brings up another problem.
With the inclusion of the phenomenological
pseudopotential we cannot say that the pseudopoten-
tial found in reference [9] using the spherical solid
model is from first principles. Additionally, the

phonons generated from the model used in this

work, at atmospheric pressure, are in much better
agreement with experimental results than the pho-
nons generated using the spherical solid model.

In tables III and IV we show the variation of the
elastic constants with changes in volume. These
volume changes are related to different values of
applied pressure by interpolating the experimental
results of reference [28]. We can see from these
tables that the elastic constants, in general, increase
when the pressure increases for both lithium and
aluminium and, for the case of lithium, C’ is not

monotonically increasing with pressure. It seems to
have a local maximum and a local minimum when
the pressure is between 7.857 k atm and

12.73 k atm. This indicates that the difference be-
tween the shapes of C 11 and C 12 is not a simple
function of pressure.
As a final comment, we have found that at

atmospheric pressure, the elastic constants for alumi-
nium and lithium, calculated from the first-principle,
pressure-dependent, local pseudopotentials we are
using in this work, are in good agreement with
experimental results. This fact encouraged us to

make a prediction of the pressure dependence of the
elastic constants of these materials using the same
pseudopotentials. The result of this prediction has

Table III. - Pressure variation of the elastic constants
of lithium. The correspondence between the volume
variation and pressure was obtained by interpolating
experimental results of reference [28]. The units of
elastic constants are 1012 dynes/cm2.

Table IV. - Pressure variation of the elastic constants
of aluminium. The correspondence between the vol-
ume variation and pressure was obtained by inter-
polating experimental results of reference [28]. The
units of elastic constants are 1012 dynes/cm2.

the adequate physical behaviour. Unfortunately, we
could not find experimental results for the range of
values of pressure we have considered, so that this
part of our calculation has still to be compared with
experiment.
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