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Résumé. 2014 Nous présentons une théorie sur le vieillissement dans les verres de spin soumis à une température
et un champ magnétique extérieur dépendant du temps. On suppose qu’un état de verre de spin arbitraire hors
équilibre peut être décomposé en une collection de « domaines (T1, H1) » (pour tout couple (T1, H1)) par
comparaison de cet état avec un état d’équilibre à une température T1 et dans un champ H1. On se donne des
équations d’évolution dans le temps décrivant à la fois la croissance et la fracturation de domaines, ainsi qu’une
équation pour la relaxation magnétique à l’intérieur d’un domaine. L’interaction entre les deux longueurs
caractéristiques suivantes est d’une importance cruciale : i) la dimension linéaire d’un domaine (qui dépend du
temps), et ii) une longueur de recouvrement I (0394T, 0394H) ; celle-ci indique jusqu’à quelle échelle de longueur on
ne peut différencier deux états d’équilibre thermodynamiques qui diffèrent par 0394T et 0394H. Nous montrons que
la théorie explique une variété d’effets de vieillissement expérimentaux comme en ont observés en particulier
Refregier et al. et Lundgren et al.

Abstract. 2014 We present a theory of aging in spin glasses subjected to a time-dependent temperature and
external magnetic field. An arbitrary nonequilibrium spin glass state is imagined to be decomposable into a
collection of « (T1, H1)-domains » (for any pair (T1, H1)) through a comparison of this state to an equilibrium
state at a temperature T1 and in a field H1. The theory postulates a time evolution for the domains (comprising
both growth and breakup), as well as an equation for the magnetic relaxation within a domain. Of crucial
importance is the interplay between two characteristic lengths : i) the time-dependent linear size of a domain,
and ii) an overlap length l (0394T, 0394H) ; the latter indicates up until which length scale two thermodynamic
equilibrium states differing by 0394T and 0394H are indistinguishable. We show that the theory explains a variety of
experimental aging effects as have been observed in particular by Refregier et al. and by Lundgren et al.
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1. Introduction.

The phenomenon of aging in spin glasses was

discovered in 1983 by Lundgren et al. [1]. It has since
then been confirmed and investigated by many
workers on a variety of spin glasses. Here we present
a theory of aging in spin glasses. In subsection 1.1 we
briefly discuss the context within which aging is
observed and in subsection 1.2 we give a summary of
the paper.

1.1 AGING IN SPIN GLASSES. - In a typical spin
glass relaxation experiment (« field jump » exper-
iment) one rapidly cools a sample in a magnetic field
H to a temperature T below the freezing temperature
Tg. One then cuts the field and observes the relax-
ation of the magnetization M (t ), which in that case
is called the thermoremanent magnetization :
M (t ) = MTRM (t). Alternatively one may cool the
sample in zero field to the temperature T, then

switch a field on and watch the increase of M (t ),
then called the zero field cooled magnetization :
M(t) = MzFc(t). Obviously

where Meq (H) denotes the equilibrium magneti-
zation in a field H. Experimentally one finds that
MTRM (t ) and MZFC (t) relax extremely slowly (the
relaxation is spread over a microscopic, a macro-
scopic and an astronomical time scale !) and nonex-
ponentially. Except for temperatures very close to
Tg, the system is still far from equilibrium even after
the longest possible observation time, which is of the
order of days.

Several theories have attempted to find the func-
tional dependence of M(t) on time (see e.g. the
review article [2]). In particular, logarithmic, power
law and stretched exponential (or Kohlrausch) relax-
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ation have been proposed and used to fit exper-
imental data. It gradually appeared, however, and
was first pointed out by Lundgren et al. [1], that in
very small magnetic fields these relaxation curves
are not uniquely determined : they turn out to

depend on the waiting time tw that has elapsed
between the moment t = 0 at which the temperature
T9 was reached, and the moment t = tW at which the
field was cut (in a TRM experiment) or switched on
(in a ZFC experiment).
During the waiting time one has not detected

experimentally any changes in the system ; in par-
ticular its magnetization remains constant (except
for a slight (~ 1 %) decrease after field cooling).
Nevertheless, the response of the system to a jump in
the magnetic field at t = tw becomes slower as

tw gets lager [1]. This indicates that during the
waiting time the system is not in equilibrium but only
slowly evolves towards it : it ages. Aging effects also
occur when not the field but the temperature is
varied (see Nordblad et al. [3] and Refregier et al.
[4]), and can be detected by measurements not only
of the magnetization but also of the ac susceptibility
(see Lundgren et al. [5, 6], Svedlindh et al. [7], and
Refregier et al. [4]) and of magnetic noise (see Ocio
et al. [8]).

1.2 SUMMARY. - In section 2 we succinctly review
the phenomenological linear response description of
aging and some of its implications. We argue that
there are experimentally observed aging phenomena
for which this description fails. In the remainder of
this work we then develop a theory which is also

capable of describing a variety of experiments in
which nonlinearities dominate.

The theory describes the magnetic response of the
system in the presence of an arbitrary (but small)
time-dependent magnetic field H(t ) and temperature
T(t). Its general framework is given in section 3.
The theory postulates a mesoscopic picture of time-
dependent domains of correlated spins and assumes
that the magnetic response behaviour of a spin
depends on the size of the domain in which it is
located. A fundamental feature of the theory is the
interplay between two lengths. The first one is the
time-dependent linear dimension of a domain. The
second one is an overlap length l (AT, AH) which
indicates up until which length scale we cannot

distinguish two thermodynamic equilibrium states

whose temperature and magnetic field differ by
amounts AT and AH, respectively ; this length
generalizes a length scale loT introduced by Bray and
Moore [9] to nonzero field.

In section 4 we present the simplest application of
the theory, viz. to the field jump experiment at a
constant temperature. In the limit of small magnetic
field jumps one recovers the linear response
phenomenology. We then turn towards nonlinear

phenomena. These are due to restrictions on the

domain growth imposed by the overlap length. Our
results for both the linear and the nonlinear effects

are found to agree qualitatively with the exper-
imental data [10]. In section 5 we apply the theory to
more complicated recent relaxation experiments [3,
4] in which one carries out both magnetic field and
temperature jumps. We review the experimental
data and show how the theory accounts for the
observed phenomena. In section 6 we consider ex-
periments [4, 6] in which one observes the time

dependence of the ac magnetic susceptibility follow-
ing temperature jumps. We obtain again theoretical
curves in good agreement with the experiments.
To our knowledge, the only earlier theoretical

work which specifically focusses on aging in spin
glasses is a mean field approach by Ginzburg [11]. In
section 7 we comment on the relation of our work to

Ginzburg’s as well as to some more general work on
spin glass dynamics, and we make a few concluding
remarks.

2. Linear and nonlinear response.

In subsection 2.1 we briefly expose the

phenomenological linear response description of a
spin glass. We emphasize that all relevant quantities
can be expressed in terms of a single response
function R (t, t’ ). This is done in particular for the
time-dependent ac magnetic susceptibility in subsec-
tion 2.2. Although most of the ideas of these two
subsections occur and have been used in the litera-

ture, a coherent presentation has, to our knowledge,
not been given. In subsection 2.3 we indicate how
experimentally the limits to the validity of the linear
response description manifest themselves.

2.1 LINEAR RESPONSE. - The waiting time effect
mentioned in section 1.1 has been the subject of
detailed studies. In field jump experiments one has
varied the waiting time tw from a few seconds to a
day and over. One has also studied the response
M(t) to time-dependent fields H(t ) more general
[12, 13] than the step functions of the TRM and ZFC
experiments.

It has been firmly established by several groups
and in a variety of experiments that for reasonably
small field values (say  10 G) the response M(t),
t &#x3E; 0, is linear in the applied field H(t’ ), t’ &#x3E; 0. (We
recall that t = 0 is the instant of time at which the

sample was cooled to the temperature T below

Tg. ) The most general relationship which expresses
this fact is



431

Here X eq is the equilibrium dc susceptibility in
zero field and N the number of spins in the sample.
The response function G (t, t’) measures the re-

sponse at time t to a unit increase in magnetic field at
time t’. The two expressions (2.1a) and (2.1b) are
equivalent, the relaxation function R (t, t’) being
defined as

We have the properties

Furthermore, when the time following the quench
tends to infinity, R tends to the equilibrium relax-
ation function :

The relations (2.1a) and (2.1b) essentially already
occur in reference [12], but their significance has
been insufficiently stressed : in the linear regime the
function G (t, t’ ) gives a complete description of the
spin glass response to small magnetic field changes,
including the aging behaviour.

In what follows we shall frequently consider the
field jump experiment described by

According to the linear response relationship (2.1b)
the excess magnetization

decays as

The thermoremanent magnetization MTRM (t) and
the zero field cooled magnetization M ZFC (t) discus-
sed in section 1.1 are special cases of equations (2.5)
and (2.7) obtained by setting Hl = 0, Ho = H and
Hl = H, Ho = 0, respectively. As a consequence

a relation satisfied to a high degree of accuracy in
experimental results [13, 14].

2.2 TIME-DEPENDENT AC SUSCEPTIBILITY. - With-
in the above formalism one can discuss the time-

dependent ac susceptibility. We suppose that a

sample is cooled in zero field at time t = 0 and that
after a waiting time tW an ac field with frequency w is
applied :

Upon applying a partial integration to (2.1b) and
using (2.9) we find

If the coefficient of H(t ) in (2.10) varies only little
over a period 2 7T / w , then it can be identified with
the time-dependent ac susceptibility, 

Lundgren et al. [6] were the first to report on such
time-dependence of the ac-susceptibility. They found
power law decay towards the equilibrium value with
an exponent = 0.5 in their experiments on Cu
(4 at % Mn). (This power is identical to the one

occurring in R if R is assumed to decay as a stretched
exponential ; see Ocio et al. [8].)

In the limit t -&#x3E; oo the expression (2.11) reduces to
the ac susceptibility of the system in equilibrium,

where (2.4) has been used ; with the aid of (2.3) one
sees that X (0) = X eq.

In order to proceed we now exploit the fact that
the experimental data (e.g. [10, 15]) are well de-
scribed by a relaxation function R (t, t’ ) of the form

in which a is a temperature dependent exponent in
the range from 0.05 to 0.2 and F is a function for
which F (t, t ) = 1 and

The nontrivial implication is that from (2.4), (2.13)
and (2.14) one has

Such power law relaxation in a system in equilibrium
has also been found, e.g., in Monte Carlo simu-
lations [16]. The expression (2.15) satisfies

Req (o ) = 1 ; however, the time constant to is so small
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that for all times T for which data are available (i.e.
T &#x3E; 10- 6 s [12]) one has Tlto &#x3E; 1, and hence

Re, (T (TIto)- , -
In the remainder of this work the form (2.15) of

the equilibrium relaxation function will be taken for
granted, and we shall be concerned with the mechan-
isms by which deviations from it are generated when
the system is out of equilibrium. These deviations
are represented by the function F ; in the following
sections explicit expressions for F will be derived on
the basis of an underlying physical picture.
Upon using that I w to  1 for all frequencies of

interest we find from equation (2.12) and equation
(2.15)

It was first noticed by Lundgren et al. [5] that the
real part X’ and the imaginary part X " of the ac

susceptibility approximately satisfy a « 2013 law » :
2

In reference [5] the relation (2.17) was proved to
hold approximately for a spin system having a broad
spectrum of relaxation times. It was subsequently
derived and discussed by Pytte and Imry [17] in the
wider context of scaling in random systems governed
by thermally activated processes. In the present case
we may verify explicitly that (2.17) is also valid for
the equilibrium susceptibility (2.16), provided a is
not too large with respect to unity.

2.3 NONLINEAR RESPONSE. - We shall especially
be interested in explaining what happens beyond the
limits of the linear response regime. Experimentally
these limits appear, for example, in the field jump
experiment described by equation (2.5) as we shall
briefly discuss now. Equation (2.7) shows that in the
linear response regime AM (t ) OH is independent of
both Ho and AH. When AH grows one expects, of
course, nonlinearities associated with those of the

static susceptibility, i.e. with the higher-order terms
in the expansion

These nonlinear terms can no longer be neglected
when AH becomes comparable to -.,/ I Xeq/X3, eq I -
Recent experimental evidence [12, 13, 14] indicates,
however, that when AH increases a different and
more important nonlinearity manifests itself in the
dynamics well before AH becomes comparable to

J I X eq/ X 3, eq I. Its effect is to accelerate the relax-

ation in a way which does depend on AH.

In the following sections we shall construct a

theory capable of explaining both the linear and the
nonlinear observed behaviour. We shall do so on the
basis of a few physical hypotheses, in particular the
one of time-dependent domains. Our hypotheses
will lead us to a theory for the spin glass response
which is in form identical to the linear response
relation (2.1b). There is again a « relaxation func-
tion » R (t, t’ ) which contains all basic information.
The theory is, however, linear only in appearance,
since R (t, t’ ) will in general depend on the size of
the magnetic field jumps.

In section 3 we present our general formalism. In
section 4 we apply it to experiments with field jumps

. at a constant temperature, and in section 5 to

experiments with both field and temperature jumps.
In each case we describe the relevant experiments
and show how these can be explained by the present
theory.

3. A mesoscopic theory of spin glass response.

In this section we present the theoretical framework

capable of explaining, at least qualitatively, all the
observed phenomena. As we shall see when discus-
sing the experimental results (in particular in Sect. 5
and 6), past values of temperature and magnetic
field leave traces in the structure of the spin glass
which at a later time may manifest themselves in the
measurements. The main difficulty to be resolved is
how to characterize this structure at the mesoscopic
level. Our theory will be constructed in agreement
with a few postulated principles that we shall list

first, in section 3.1. In sections 3.2 to 3.4 these

principles will then be converted into an operational
tool.

3.1 PRINCIPLES. - i) A thermodynamic state of a
spin glass at a temperature T, and in a magnetic field
Hl is characterized by a specific set of spin corre-
lations. We shall, for short, refer to these as the
(Tl, Hl )-correlations. In a system in equilibrium at
(Tl, Hl ) the range of the (Tl, H1)-correlations is

infinite.

ii) The correlations of two different ther-

modynamic equilibrium states, one at (Tl, Hl ) and
one at (T2, H2), are nearly identical up to their
« overlap » length l (Ti - T2, 77i - H2). This length
scale diverges as (T2, H2) --&#x3E; (Tl, Hl). In this sense,
in a system (whether or not in equilibrium) which
possesses (Tl, H1 )-correlations there also exist

(Ti, H2 )-correlations, and vice versa.

iii) At any time, a nonequilibrium spin glass may
be analysed with respect to its (Tl, Hl )-correlations
for an arbitrary choice of (Tl, H1 ). One then finds,
in general, that the system is composed of domains
within which there exist (Tl, Hi)-correlations, but
beyond which the (Tl, H1 )-correlations are des-
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troyed. We shall, for short, refer to these as

(T1, H1)-domains. For a system in equilibrium at
(T, H1) one finds a single infinite (T, H)-domain.
However in the same system one finds a distribution
of (Ti,Hi)-domains centred around l (T1 - T,
Hl - H). In a general nonequilibrium system there
will be, at a time t, a distribution p (s, t ; Tl, H1 ) of
the sizes s of the (Tl, Hl )-domains. (This distribution
does not itself play a predominant role in what

follows, but we will comment on it in the appendix.)
iv) At the time t = 0, i.e. just after the quench to a

temperature T  Ti, the system is totally disordered
and all domain sizes are zero.

v) In a nonequilibrium system placed at a certain
time t in a heat bath of constant temperature T and
in a constant magnetic field H, the (T, H)-domains
will start growing without limit. Furthermore, for
any (Tl, H, ) :0 (T, H), the (T1, H1)-domains will
grow until they reach the overlap length l(TI - T,
Hl - H). If at time t any (Tl, Hl )-domains larger
than this size are present, these will subsequently be
broken up into domains of this maximum size. The
laws governing the growth and breaking-up have to
be specified.

vi) We assume that magnetic relaxation within a
domain is described by a linear response relation.
Small (large) domains will be associated with short
(long) relaxation times of the magnetization. The
response function of a spin in a domain with a time-
varying size s (t ) is a complicated functional of

s (t ), to be specified below.

The necessity to consider, simultaneously and
within one and the same system, (T, H)-domains for
more than one value of (T, H) (or even for a
continuum of such values) appears when there are
time-dependent fields or temperatures. Such a de-
scription is essential for a correct qualitative under-
standing of e.g. the modified field jump experiment
of section 5 and the susceptibility experiments of
section 6. But it is also logically unavoidable : if e.g.
the field H(t ) keeps alternating between two values
Hl and H2, then neither the (T, Hl )-domain struc-
ture nor the (T, HZ )-domain structure should be
priviliged.
We have tacitly assumed, for simplicity, that only

a single equilibrium state exists for each pair
(T, H). If more states exist, labeled by an index a,
then we have to denote the equilibrium by a triplet
of parameters (T, H, a ), and the present theory has
to be generalized accordingly. It would remain true,
however, that for t - oo at constant T and H the

system will tend to form a single infinite domain with
correlations which are characteristic of a triplet
(T, H, a ) for some a.

3.2 THE OVERLAP LENGTH 1 (4T, 4H). - We first
discuss a length which was introduced by Bray and

Moore [9, 18] (but see also Ref. [19]) within the
context of the Fisher and Huse [19] droplet model
for the spin glass phase. In this droplet model one
supposes that spin glass behaviour can be understood
in terms of reversals (« excitations ») of spin clusters
(« droplets »). For large 1, the free energy F, as-

sociated with a typical low-lying excitation of a

droplet of linear size I is assumed to scale as

Fi - J(l / a)Y, where J is the typical coupling strength
between neighbouring spins and a the typical spin
spacing.
Bray and Moore, on the basis of this droplet

model, associate with any temperature change
AT" of the system in the spin glass phase a character-
istic « overlap » length l oT. For small AT this length
behaves as

where

with y a constant and d, the fractal dimension of the
droplets. The meaning of laT is that two identical
systems, one in equilibrium at a temperature T and
one at a temperature T + AT, have nearly identical
spin-spin correlations over distances less than laT,
but completely different correlations beyond l oT.
Next we consider the more general case where

there is both a change of temperature A T and a
change of magnetic field AH. Our argument
generalizes the one given by Bray and Moore [9].
We focus on a particular low-lying droplet excitation
of excitation energy Fl. Due to the change AT the
free energy of this same excitation will change by an
amount åFlT) which is proportional to AT(lla )d,/2’
being the sum of - (I/a)ds contributions with uncor-
related signs. Similarly, the change OH in the

magnetic field will bring about a change AF l(H) which
is proportional to g AH(lla )d/2 , being the sum of
the Zeeman energies of - (l /a )d randomly oriented
spins. The droplet excitation in question loses its

property of being a low-lying excitation if AT or
OH becomes so large that

that is, if

where cl and C2 are numerical constants. Our length
1 (AT, AH) is defined as the solution of equation
(3.4). For AH = 0 it reduces to the Bray and Moore
length (3.1).
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3.3 MAGNETIC RELAXATION IN TIME-DEPENDENT
DOMAINS. - We start from the idea that a spin in a
hypothetical finite domain in equilibrium responds
linearly to magnetic field variations, the response
being described by a relaxation function R (t, t’)
which depends on the domain size s and can be
expressed as

Here R,,q is the relaxation function for an infinite
domain in equilibrium, and F (t, t’ ) is a cutoff

reflecting the system size. For an equilibrium domain
of size s a plausible choice is

where T max (S ) is the maximum relaxation time in the
relaxation spectrum of a size s domain. The equa-
tions (3.5) and (3.6) are of the same form as (2.13)
and (2.15), except that now the function F has been
given a physical interpretation. Due to the spin
coherence within a domain, T max (s) will increase
with s. In this work we shall use the form

where t 1 is a microscopic time and z a constant. A
dependence of this kind is used in various other

discussions of spin glass dynamics (see e.g. [20, 21,
22]).
We postulate now that when the domain size

varies with time, the magnetic response of a spin is
still determined by a relation which has the form of
the linear response relationship (2.1b), but with a
relaxation function R (t, t’ ; [s (t")]) which is a func-
tional of the time-dependent size s (t") (with
t’ === t", t) of the (T(t), H(t ))-domain of which that
spin was part. We shall call s(t") the (T(t),
H(t »-history of that spin.
The total magnetization M (t ) is then related to

the field H(t’ ) by a relationship which is formally
equal to (2.1b), but with a relaxation function which
is now a weighted sum on all possible (T(t),
H(t »-histories of the spins in the system :

Equation (2.1b) together with equation (3.8) yields a
relation between magnetization and magnetic field
which is linear only in appearance. Nonlinearities
come in implicitly via the mechanism which governs
the evolution of the domain sizes and hence the
distribution of the s (t"), and which we shall, in turn,
make dependent upon T (t") and H(t").

It is natural to put, in analogy to (3.5),

while a plausible generalization of (3.6) is

Here the relaxation time T max (s ; T", T ) is a generali-
zation of (3.7) in which the first temperature argu-
ment, T", is the actual temperature of the sample
and the second one, T, indicates that we are

considering (T, H )-type domains. We shall write

and specify only later the precise way in which

t1 depends on T" and T. It is assumed throughout
that magnetic field variations, which are associated
with very small energy differences, do not affect the
relaxation times.

3.4 DOMAIN DYNAMICS. - The weight function

f (T, H ; [s(t")]) introduced in (3.8) follows from
the domain dynamics. We shall discuss this dynamics
while trying to avoid any too detailed assumptions.
Nevertheless, two dynamical processes have to be
distinguished : the growing and the breaking-up of
domains. We shall assume that the characteristic size

s (t) of a growing domain increases as a power of
time,

where t2 is a microscopic time and p a constant.
(Growth laws of domains in spatially uniform as well
as disordered systems have been reviewed by Binder
et al. [23]). For the purpose of dealing with situations
in which the temperature varies with time it is useful
to observe that (3.12) is the solution of the autonom-
ous differential equation

We now postulate that in the general case of an
arbitrary time-dependent temperature T(t) and field
H(t ) the (Tl, H, )-history s (t") is a stochastic process
governed by the following rules (which implement
(v ) of Sect. 3.1) :

i) Whenever s(t)  I (T(t) - Tl, H(t) - Hl), the
domain size s (t ) increases deterministically accord-
ing to

This is just the differential equation (3.13), but with
t2 temperature dependent in order to take account of
the temperature variations. The solution, with initial
condition s (ti ) = si, is given by
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ii) When s(t) &#x3E;- I (T(t) - Tl, H(t) - Hl), the do-
main size s (t ) no longer increases but, in each time
interval At, sticks to its value with probability
1 - T b 1 Ot, and jumps to the lower value I (T(t) -
Ti, H(t) - Hl) with probability Tb 1 At. For Tb we
take the maximum relaxation time of a domain of

size I ( T(t ) - Ti , H(t) - Hl),

The two rules above fully determine the prob-
ability distribution f(Tl’ HI ; [s(t")]) of the

(Tl, Hl )-histories. One can, in principle, convert

without difficulty the path integral in equation (3.8)
into a sum on the number n of jumps with in the
summand a multiple integral on the jump times

t1, t2, ..., tn. However, we shall not present any
further formalism here but rather consider a variety
of experimental situations.

4. Field jump experiments at constant temperature.

We shall apply the theory of section 3 to field jump
experiments performed at a constant temperature
T  Tg. We consider the experiment described by
equation (2.5), where after a waiting time t, the
magnetic field is changed from Ho to Hl - Ho - AH.
Of interest is the decay of the excess magnetization
AM(t) (see Eq. (2.6)). In a constant temperature
experiment the general theory simplifies consider-
ably. In particular, the time constants tl (T", T) and
t2(T", T), defined by equations (3.11) and (3.14)
respectively, remain unaltered during the experiment
and hence can simply be denoted by tl 1 and

t2. The overlap length discussed in section 3.2 will be
denoted by I AH as it only depends on AH :

The calculation of the response M (t ) after the field
jump requires the knowledge of the relaxation
function R (t, tw ) for t &#x3E; tW (Eq. (3.8)) which, in

turn, only requires the knowledge of the (T, H1)-
histories for times after the field jump. Hence a
single weight function, f (T, H1 ; [s (t") ] ), is involv-
ed. In order to proceed we shall assume that this
weight function is centred around an average domain
size s (t ), and that therefore the functional integral
in equation (3.8) is well approximated by the integ-
rand evaluated in s (t ). Together with equation (3.9)
this leads to

According to the domain dynamics postulated in
section 3.4, in the time interval (0, tw) the domain
size s (t ) cannot grow larger than the overlap length
laH. The interplay between these two lengths leads
to the distinction of two cases that will turn out to

correspond to linear and nonlinear behaviour, re-

spectively : small field jumps (i.e. AH small enough
so that s (tW )  1 AH), discussed in subsection 4.1, and
larger field jumps, discussed in subsection 4.2.

4.1 SMALL FIELD JUMPS, s (tW )  1,IH- - After the
quench to T  Tg in a field Ho the characteristic
dimension s (t ) of the (T, Hl )-domains will begin to
increase according to equation (3.12). We consider
here field jumps which by hypothesis are small

enough so that at t = tw the characteristic dimension
s (tW ) is still less than I AH. For t &#x3E; t, the growth law
(3.12) will continue to hold, and from equations
(2.7), (4.2) and (3.10) we have that the excess

magnetization AM(t) will decay as

Using the experimentally obtained equilibrium relax-
ation function (2.15) and the power law dependen-
cies (3.7) and (3.12) we find from (4.3) that

Equation (4.4) is the result of our theory. It predicts
a definite waiting time effect on the magnetic
relaxation. The corresponding relaxation curves

have been plotted in figure la for a number of values
of the waiting time tW. (From Alba et al. [10] we
estimate a = 0.05, to = 1.5 x 10-17 min, pz = 0.9
and tl t2 pZ = 1 min 1 - PZ).

In the analysis of experimental data on single
jump experiments it has become customary to plot
not only M (t ), but also the « logarithmic » decay
rate S(T ) here defined by

In figure Ib we show the decay rates corresponding
to the curves of figure la. It appears that the
function S(T ) exhibits a clear maximum for a value
of T to be denoted as Tm. Hence Tm can be
considered as the crossover point for åM (tw + r)
between the slow power law decay (« equilibrium
relaxation ») due to the function Req, and the more
rapid decay imposed by F (see Eq. (4.2)). The
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Fig. 1. - Theoretical curves for (a) the relaxation of the
excess magnetization AM(t, + T)/AH, equation (4.4),
and (b) the logarithmic relaxation rate S ( T ), equation
(4.5), for small magnetic field jumps OH and waiting times
tW = 10, 100, 1 000, and 10 000 min (from left to right).
See the text for the parameter values.

experimental S(T) curves indeed exhibit a similar
maximum [1, 15, 24]. Moreover, for several different
types of spin glasses, such as Cu (5 at % Mn) [14,
15], Ag (2.6at%Mn) [25], and CdCr1.7InO.3S4 [4],
experiments with waiting times tw ranging up to
104 s show that this crossover takes place when the
time T m is roughly equal to the waiting time

tw, l.e.,

with C a constant of order unity or at most a weakly
varying function of t,,.
From equation (4.4) it follows that for the theoreti-

cal curves of figure Ib the proportionality (4.6) holds
with C given by

for small a, pz - 1 and not too small tw (tW ? 1 ). For
the parameter values given above and tW in the

experimental range we have that C (tw) is of order
unity and weakly varying with tw. Hence we conclude
that this kind of field jump experiments are well
described by our theory.

4.2 LARGER FIELD JUMPS. - The second case to be
considered is when the linear size of the (T, H1)-
domains reaches its upper limit 1,&#x26;H in the time
interval (0, tW ), so that s (tw) = I ÂH. After the field
jump this limit is removed and the domain growth
will proceed. With initial condition s (tw.) = 1AH the
solution of equation (3.13) reads

The theoretical decay of the excess magnetization is

again given by equation (4.3), but now with the
expression (4.8) for s (t ). Hence the effect of the
larger field jumps is reflected in the dependence of
the characteristic domain size on AH and this is the

way in which the relaxation is nonlinear in the field

jump AH.
For this case one can also calculate the maximum

in the logarithmic decay rate S(T) (Eq. (4.5)) and
finds that now it is dependent on the size of the field
jump AH through 

where the function C is as in equation (4.7) and

The equations (4.6), (4.9) and (4.10) can be

merged into a single expression for the time

T m at which the logarithmic decay rate reaches its

maximum, viz.

where

Hence, this picture of growing domains together
with a domain size dependent relaxation process
leads to

i) a small AH regime, in which the relaxation is
linear: curves for AM(t)/AH obtained at a fixed
tW, but at different values of OH superimpose. In this
regime the relaxation rate maximum occurs at a time
T m = C (tw ) tw independent of AH.

ii) a regime of larger AH, in which the relaxation is
nonlinear : curves obtained at different OH no

longer superimpose. In particular, when AH be-
comes larger the location T m of the relaxation rate
maximum begins to depend on OH and shifts to
smaller values according to

The crossover between the two regimes occurs at a
value of AH which satisfies s (tw) = 1AH. This

equation therefore divides the tW - AH plane into a
region of linear and a region of nonlinear relaxation.
In particular it predicts that the longer is the waiting
time, the smaller is the field jump needed to provoke
nonlinear relaxation [10, 13, 26, 27]. It is further-

more apparent from the above discussion that, if one
accepts the power law dependencies (3.7) and (3.12)
with exponents z and p, respectively, the linear
relaxation depends only on the product pz, which
should take a value close to unity. The nonlinear
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relaxation, however, allows for a determination of p
and z individually via equation (4.13). We have
attempted an estimate based on the work of Alba
et al. [10] on the insulating spin glass compound
CdCrl.71no.3S4. Alba et al. report on field jump
(TRM) experiments performed at a fixed tempera-
ture of 0.72 Tg (12 K) where the field jump AH is
varied from effectively zero to 50 G for a range of
waiting times tW between 600 and 54,000 s and where
the relaxation curves of the magnetization for times
t :&#x3E; tw are recorded. Subsequently their results are
fitted to a master curve of which the parameter
values for several tW and AH are given [10]. We have
pursued this analysis in the following way. From the
expression for the master curve we went back and
calculated 5(r). We plotted S ( T) and located the
maximum T m for the values of AH and tw using the
parameters from [10]. Figure 2 shows a log-log plot
of the Tm versus AH for the given set of waiting
times. We do not show Tm for AH = 0 and 10 G ; in

Fig. 2. - Location of the maxima Tm in the relaxation rate
versus field jump size J1H for data taken from Alba et al.
[10].

this field regime Tm levels off to a value independent
of AH. For each waiting time, the four values of
T m belonging to 20, 30, 40, and 50 G lie on a straight
line whose slope is approximately - 1.55. With this
information we find the approximate value p ==: 0.5 if
we take y = 0.2 for d = 3 from reference [9]. This
value of p for a real spin glass is, somewhat

surprisingly, closer to the value 1 applicable to
2

domain growth in spatially uniform Ising ferromag-
nets (see Blinder et al. [23]) than to the slow

logarithmic growth law often found for random

systems by theory [28] and by Monte Carlo simu-
lation [29]. A possible explanation is hindered by the
fact that, whereas ferromagnetic domains are easily
observed experimentally, there is no direct way to

see spin glass domains in the laboratory.

5. Relaxation experiments with field and temperature
jumps.

In this section we shall consider a modification of the
field jump experiment. The time dependence of the
magnetic field is still given by equation (2.5), but in a
time interval (ii, t2 ) during the waiting time period
the temperature is kept at T + AT instead of T :

Both positive and negative AT will be of interest. In
section 5.1 we shall first discuss the experimental
data. Then we shall show, in section 5.2, how the
theory developed above can account qualitatively
for the observed phenomena. The formalism is

exactly the same as was applied to the constant

temperature experiments, except that we now have
to allow for a temperature dependence of the times
t1 and t2. In section 5.3 we shall show how the extra
parameters in the case of nonconstant temperature
can be set to fit the experimental curves.

5.1 EXPERIMENTAL RESULTS. - The experiment
described above has been performed by Nordblad
et al. [3] and by Refregier et al. [4]. In the limit of
sufficiently small AT (for the examples of

CdCrl.7’nO.3S4 [4] and Cu (10 at % Mn) [3] this

means I AT 1 :5 0.1 K) the magnetic relaxation curves
coincide with the ones obtained at constant tempera-
ture T for a waiting time tW. For sufficiently large
positive AT (which means in practice AT S 2 K for
CdCri yino 384 when t2 - il = 300 s [4]) the relaxation
curve appears to coincide with the one at constant

temperature T for a waiting time tw - i2 : at the time
t2 the system is « reborn » in the terminology of
reference [3]. However, for intermediate values of
AT the situation is less simple : the relaxation curves
obtained there do not coincide with the curves at
constant T for any tW, as demonstrated both by
Nordblad et al. [3] and, in particularly clear way, by
Refregier et al. [4]. The former authors speak of an
« incompletely reborn system » and of the « coexist-
ence of two separate and distinct aging states » in the
same system. Our conclusion is that in this inter-
mediate regime the system cannot be described by a
single characteristic domain size, but that the distri-
bution of domain sizes has more structure. This is
what motivated the development of the full theory of
section 3.
The modified field jump experiment with negative

values of AT [3, 4] shows a different picture. The
situation is not symmetric with respect to AT = 0.
When AT is sufficiently large negative, the relaxation
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curves for t &#x3E; tW coincide with those obtained at

constant temperature T for a waiting time

t,, - (t2 - tl ), i.e. relaxation takes place as though
the interval (tl, t2 ) of a decreased temperature had
been completely nonexistent [4]. The correlations
characteristic of the temperature T that were built

up during the interval (0, tl ) are not lost during the
interval (tl, t2 ) but seem to remain frozen ; then,
once the temperature T is reestablished, their build-
up continues. This shows that although a tempera-
ture jump AT (or, by the same token, a field jump
AH [27]) may be large enough to require the

breakup of existing correlations, this breakup is not
instantaneous but should be described by a relaxation
time.

5.2 APPLICATION OF THE THEORY. - We shall

analyse the modified field jump experiments for
values of AH so small with respect to AT that for all
practical purposes we have

We are again interested in the decay of the excess
magnetization AM (t) for t &#x3E; tw. Since we only need
the relaxation function R (t, tw)’ equation (3.8), for
t &#x3E; tw, a single weight function f (T, Hl ; [s(t")]) for
the (T, H1)-histories is sufficient. We shall now
derive an expression for this function.
We shall again assume that in the first time

interval, 0  t  ii, the distribution of the sizes of
the (T, Hi )-domains is well represented by a single
characteristic length 0161 (t). This length then grows
according to the solution (3.15) of equation (3.14)
and is given by

In the second time interval i,  t  t2, there are
two possibilities. The first one is that I AT I is not too

large so that 9 (il ), as given by equation (5.3), is less
than l oT. In that case, 3’(t) will continue to grow
according to equation (5.3), albeit at a different rate
due to the temperature dependence of t2. Moreover,
if Y (t) reaches the upper limit 1,&#x26;T before the time
i2, then it will stick to that value. From t2 on the
domain size evolves again without limit, and hence
we have for t &#x3E; î2

The second possibility is that I AT I is so large that

s (i1) 1,IT- In that case, according to the theory of
section 3, during each time interval At the character-
istic domain size 9 (t ) will stick to its value s (tl ) with
probability 1- Tb 1 At, and jump to the lower value
14T with probability 7-b ’At. Here Tb is given by
equation (3.16) as the maximum relaxation time of a
domain of size loT

Consequently, if s (i1) &#x3E; 1,&#x26;T, then for i1 .:c t 
i2 there appear two different domain sizes : the

«old» one sold (t’) = S (i1) and a «young» one

Yyoung (t’) = laT. The fraction fyoung (t’ ; i 1) of spins in
domains of size 1l1T increases with time whereas the
fraction fold (t’ ; (1) of spins in domains of size

s(i1) decreases. At time t = i2 we have

and

From t2 on both characteristic domain sizes evolve
again without upper limit according to the rate

equation (3.14). This yields

and

Since the breaking-up process stops at t = t2, the
fractions fyoung and fold remain constant for t &#x3E; i2.

In the present case with two characteristic domain
sizes the basic equations (3.8) and (3.9) for the
relaxation function R reduce to

This expression also holds for the case s (tl ) 
l aT provided that one take for s ota (t ) the expression
(5.3), and put fold == 1 and fyoung == 0.
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The decay of the excess magnetization can be
obtained by substituting equation (5.8) in equation
(2.7) and using equation (3.10). In the next subsec-
tion we shall show how this leads to the theoretical
curves for AM(t) corresponding to the modified
field jump experiment, equation (5.1).

5.3 FIT TO EXPERIMENT. - In order to obtain

explicit theoretical curves it is necessary to specify
the temperature dependence of t1 and t2 (Eqs. (3.11)
and (3.14)), and of the constants in equation (3.4).
We shall use the data from experiments carried out
by Refregier et al. [4] on the insulating spin glass
compound CdCrl.71no.3S4 to obtain values for the
parameters that govern these temperature dependen-
cies.
As discussed in section 3 the time constants

ti(T; T1), i =1, 2, refer to the dynamics of

(Tl, Hl )-domains in a system at temperature T. For
T = T 1 we shall use the abbreviation tio(Tl)--_
tj (Tl ; Tl ), i = 1, 2. If domain growth is a therlnally
activated process, one would expect the T-depen-
dence of the dynamics to manifest itself as an

Arrhenius factor in the ti. The experiments [4] show,
however, a rather stronger asymmetry between

positive and negative AT. We therefore put, for
general T and T1

in which A (0) = 1 and A increases steeply when
T - T l becomes negative. All strongly varying func-
tions A (AT) give qualitatively similar results, and
we have obtained a good fit with the three parameter
function

where y_ = 18 K-1 is large compared to y + =
2.4 K-1 and where x = 0.1. We set tjo (T) tZOpz (T ) _
1 min’ -P’, a = 0.05 and to = 1.5 x10-17 min as in
section 4.

Only two combinations of parameters from

equation (3.4) play a role, viz.

and

A fit to an analysis of the experiment by Refregier
et al. [4] yields the values q = 1.66 and

k = 4.77 Kq min. -

With the parameters listed above and the choice
for A (AT) given by equation (5.10) the theoretical
curves of figure 3 are obtained. Figure 3a shows the
curves for positive AT. For sufficiently large AT the
fraction of spins with the « young » characteristic

Fig. 3. - Theoretical curves for the relaxation of the

excess magnetization where in a time interval (tl, t2)
during the waiting time period (0, tw) the temperature is
kept at T + AT. (a) shows the curves for positive AT
where i1 = 895 min, t2 = 900 min and tW = 930 min. The
solid lines correspond to TRM curves obtained for waiting
times of 30 min and 930 min without temperature jumps.
The squares (0) refer to the curve for AT = 2 K and the
circles (0) to the curve for AT = 1 K. (b) shows the curves
for negative AT where i1 = 15 min, t2 = 915 min and
tw = 930 min. Here the circles (0) refer to AT = - 1 K
and the squares (0) to AT = - 0.3 K. See the text for the
parameter values.

domain size is dominant whereas for not too large
positive AT domains of the « young » and the « old »
size coexist. This explains why the theoretical curve
for AT = 1 K does not look like a « normal » TRM
curve. A decomposition into two « distinct aging
states » as performed by Nordblad et al. [3] clearly is
possible here. Figure 3b shows the curves for nega-
tive AT, where there is no breaking-up but where the
domain growth simply freezes for sufficiently large
A T. For not too large negative AT there is no

freezing but domain growth at a lower rate. Hence
the resulting decay curve is still similar to the
« normal » TRM curves. All theoretical curves of

figure 3 are qualitatively the same as the exper-
imental curves obtained by Refregier et al. [4] as

well as those of Nordblad et al. [3]. We conclude that
the theory correctly accounts for this class of exper-
imental data.

6. The ac susceptibility after temperature jumps.

A third type of experiment that has been performed
by Lundgren et al. [6] and in greater detail by
Refregier et al. [4] consists of observing the be-
haviour of the zero field ac susceptibility X (w ; t )
after temperature jumps. As discussed in section 2.2,
this quantity relaxes towards an equilibrium value.
In this section we shall consider the behaviour of the

time-dependent ac susceptibility for three cases :

i) immediately after the quench to a temperature
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T  Tg at t = 0, ii) after a second temperature
quench to T - AT (AT positive) at some later time
ii, , and iii) after reheating the system to T at

t2 &#x3E; ii. This sequence of temperature jumps corres-
ponds to an experiment performed by Refregier
et al. on CdCrl.71no.3S4 [4]. Experimentally one ob-
serves a relaxation of the susceptibility after the first
two temperature changes, but not after the third
one. We shall show how our theory predicts a similar
time dependence of y (w ; t ). The amplitude of the
ac magnetic field will be taken infinitesimally small.
The analysis of case i), the behaviour of the ac

susceptibility immediately after the quench to the
temperature T, makes use of results from subsection
4.1. Only the weight function f (T, 0 ; [s (t ") ]) is

required (see Eq. (3.8)) and we describe the system
again by a single characteristic domain size s (t ).
There is no upper limit on the domain growth so
from equation (4.4) we have the response function

Substitution of (b.1) into (2.11) and evaluation of
the integral for t &#x3E; 0 results in the first curve shown
in figure 4. The values for a, to, pz and t1 t2 P’ are the
same as in the sections 4 and 5.

Just like in section 2.2 we can calculate the

asymptotic behaviour of this curve for long times. To
this purpose we compute the derivative of

Fig. 4. - Theoretical curve for the imaginary part of the
time-dependent ac susceptibility X"(w ; t ). Shown is the
relaxation to equilibrium immediately after the quench to
TTg at t = 0, after a second quench to T - AT at
t = 1 000 min and after reheating to T at t = 2 000 min.
The equilibrium values of X " at T and T - AT have been
assumed equal. See the text for the parameter values.

equation (b.1 ) and expand for large t and T fixed and
find

where c = t t2 P’. When (6.2) is substituted in (2.11)
the first term gives rise to the equilibrium suscepti-
bility y (w ) that we calculated in equation (2.16) but
due to the finite upper limit in the integral there will
be an additional, rapidly decaying, oscillating part.
The second term gives rise to a similar integral, so

In practice the oscillating part is suppressed by
averaging over one or more periods 2 irlw and
subsequent low-pass filtering. (For the theoretical
curves of Fig. 4 this suppression has been achieved
by sampling X" (CI), t ) at times 2 7T / w apart). Hence
we find power law decay towards equilibrium with a
power pz.

In case (ii), after the second temperature quench
at time i1 to a temperature T-AT (AT positive), the
weight function to be considered is

f (T - AT, 0 ; [s(t")]). We can describe the system
by means of a characteristic domain size 3r(t).
During the interval (0, il) the growth of f(t) is

restricted to the overlap length. We will assume that
we deal with the case, where the domain growth is
actually limited by the overlap length 3-(’l) = 111T,

where we used again the abbreviation loT =
I(AT, 0). This is the case for sufficiently large
AT. For times t &#x3E;- î1 the domain growth is unre-

stricted and we read from equation (3.15) :

The response function R (t, t’ ) can be calculated by
substituting equation (6.4) into equation (4.2). For
sufficiently large AT the overlap length loT is so

small that s (t ) is only influenced at very short times
t - i1 : the domain growth for the (T - AT, 0 )-do-
mains will effectively set in at t = ii. Therefore the
second theoretical curve in figure 4 is very similar to
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the first curve for the quench at t = 0. (The par-
ameters used are the same in Sect. 5.) For simplicity
we have assumed Xeq not to depend on temperature.

Finally we will discuss the case iii) where the
system is reheated to T at time t2. As was the case in
section 5, breaking-up of the domains will occur in
the interval (tl, i2) for sufficiently large AT, and two
fractions of spins will emerge after t2 : a « young »
fraction and an « old » fraction. As in section 5, the
« young » fraction will be very small for AT large
enough and hence we can very well describe the
system for t &#x3E; i2 with one characteristic domain size,
which equals s(iI) at t = t2. From equation (3.15)
we then have

The third theoretical curve in figure 4 clearly shows
the absence of the relaxation behaviour of the

previous curves. Similar curves have been obtained
by Refregier et al. [4] for their experiments on
CdCr 1.71no.3S4 - Our results for X " (w ; t ) are further-
more fully consistent with the experimental results
of Lundgren et al. [6] on Cu (4 at % Mn) obtained
during a sequence of temperature increases. A small
discrepancy remains, nevertheless, when the relax-
ation behaviours of X " and X’ are compared :
Lundgren et al. [6] observe that in the nonstationary
regime the § law (2.17) remains valid, whereas our2

asymptotic behaviour (6.3) does not satisfy this law.
We conclude this section by pointing out an

interesting although only partial analogy. In an Ising
ferromagnet in zero field, after a quench to the low-
temperature phase, ferromagnetic domains appear
whose average size increases with time [23]. Under
these circumstances one would expect to find for the

frequency dependent staggered susceptibility a relax-
ation behaviour analogous to the first curve in

figure 4 for X" «(ù ; t ).

7. Final remarks.

We wish to discuss the relation of the present study
to existing work on spin glass dynamics. Virtually no
theoretical work focusses specifically on the aging
phenomena in spin glasses. An exception is the

paper by Ginzburg [11], who, within a mean field
approach, does address aging, starting from the
dynamical theory of the spin glass by Sompolinsky
and Zippelius [30]. Our work differs from

Ginzburg’s in that it does not start from a micro-

scopic spin model, but rests on a set of assumptions
at the mesoscopic level ; it attempts to describe
finite-dimensional systems possessing one or more
characteristic lengths ; it presents a quantitative

comparison with recent experimental findings, in

particular by Refregier et al. [4] and by Nordblad
et al. [3] ; and it goes beyond the linear response
regime.
A great deal of attention has been given to aging

in polymers (see, in particular Ref. [31]). Alba et al.
[25] and Ocio et al. [32], in order to fit their magnetic
relaxation data in spin glasses, successfully use the
same parametrization as employed for polymers. A
physical picture underlying this procedure is, how-
ever, still lacking.
A theory which, like ours, addresses the spin glass

dynamics at the mesoscopic level, is the « fractal
cluster model ». This model was introduced and
studied recently by Malozemoff and coworkers [20,
33] as well as by Lundgren et al. [21]. The fractal
cluster model has been used to derive static and

dynamic scaling laws in the vicinity of Tg, but has not
been applied to aging. It postulates the existence of
« clusters » inside of which the spins are randomly
oriented but rigidly coupled together. In response to
magnetic field changes such a cluster may be visu-
alized as rotating in a frozen matrix [34]. With each
cluster a relaxation time is associated via an equation
identical to our equation (3.7). In this model the
distribution law for the cluster sizes is assumed to be
the equilibrium distribution, characterized by a

temperature-dependent length. For T Tg there is
also an infinite cluster [20].

In this work we speak of domains of correlated
spins rather than of « clusters ». The two concepts
cannot be identified. Firstly, each pair (T, H) has a
different domain structure associated with it. Sec-

ondly, a domain represents a less rigid and perma-
nent aspect of the spin glass structure than does a
cluster : it responds to a change of magnetic field or
temperature by starting to grow or to break up.
Hence the distribution of the domain sizes is not in

equilibrium but evolves with time (it can tend
towards an equilibrium distribution only when
t -&#x3E; oo at fixed T and H). It is precisely this feature
which enabled us to explain the great variety of
experimental aging effects.
A description of the nonequilibrium spin glass

state as consisting of equilibrium domains separated
by domain walls was given also by Kinzel [35]. In this
work the domain size increases with time and Kinzel

argues that there is a power law relation between the
excess energy and magnetization during the equili-
bration process.
A cluster of spins that can flip between only two

configurations is a two-level system. Models of spin
glass dynamics involving a distribution of two-level
systems and an associated distribution of relaxation
times were considered by many authors, e.g. McMil-
lan [22], Prdjean and Souletie [36] and Hfser et al.
[37]. In all these cases the distribution of relaxation
times is fixed once for all. In contrast, the present
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theory associates with each of the time-dependent
distributions p (s, t ; Tl, H, ) (see Sect. 3 and the

appendix) a time-dependent distribution of relaxation
times via the relation (3.7) between s and ’Tmax(s).
The notion of a time-dependent spectrum to

describe spin glass relaxation was used earlier by
Lundgren et al. [1, 21, 24]. Our work bases this

notion on a picture of domains that grow and break
up, and makes the evolution equation for the

spectrum explicit. Along the way we have needed
several assumptions, which however we feel are all
secondary. The agreement found with experiment
does not prove that all these hypotheses are right ;
however it means that a simple picture like the one
proposed here is capable of explaining the large
collection of experimental data.
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Appendix.

In section 3.1 we have introduced the distribution

p (s, t ; Tl, Hl ) of the (Tl, Hl)-domain sizes at time
t. Although this distribution has not played an
explicit role in the subsequent calculations, it is
nevertheless interesting to remark that is satisfies the
master equation

in which A is the growth rate of a domain of size s at
temperature T, which, according to equation (3.13),
equals

The time constant Tb is defined by equation (3.16).
One easily checks that equation (A.1) is compatible
with the normalization

According to (iv) in section 3.1, if at time t = 0 the
system is quenched to below T9, we have that the
initial condition is a delta peak at s = 0, regardless of
(T, H) :

It is clear that in experiments in which after the
quench only a finite number (say n) of temperature
or magnetic field jumps are applied, the function
p(s, t ; T, H) can be the sum of at most n delta
peaks.
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