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Résumé. 2014 L’évolution de sillons creusés à la surface d’un monocristal en dessous de sa température de
transition rugueuse est étudiée théoriquement de façon qualitative. Dans le cas d’une modulation

bidirectionnelle, la hauteur h(t) est une fonction linéaire du temps t et le temps de vie est proportionnel à
03BB3h (0), où A est la longueur d’onde. Comme l’ont suggéré Bonzel et al., la formation de facettes est une
indication sensible que la surface est en dessous de sa transition rugueuse. Près des facettes, le profil présente
une singularité en (x - x0)3/2, comme dans le cristal à l’équilibre. Le cas d’une modulation unidirectionnelle est
encore peu clair, bien que des hypothèses heuristiques appropriées mènent à des résultats qualitatifs en accord
avec les résultats expérimentaux.

Abstract. 2014 The decay of a profile artificially produced on a crystal surface below its roughening transition is
studied by means of a qualitative theory. In the case of a bidirectional modulation the height
h(t) is a linear function of time t and the lifetime 03C4 is proportional to 03BB3h(0), where 03BB is the wavelength. As
suggested by Bonzel et al. the formation of facets is a sensitive information to determine whether a surface is
below its roughening temperature. Near the flat part the profile has a (x - x0)3/2 singularity as in a crystal at
equilibrium. The case of a unidirectional modulation is still open although some heuristic treatments give a
qualitative agreement with experimental results.
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1. Introduction.
It is well known that the surface of a crystal in

equilibrium with its melt or its vapour can undergo a
roughening transition at a temperature TR which
depends on the surface [1-3]. Below this tempera-
ture, on the atomic scale, the surface is smooth while
it becomes rough above. The transition is generally
of Kosterlitz-Thouless type. Experimentally the

roughening transition has been reported in many
different systems : helium crystals in equilibrium
with superfluid helium [4-7], crystallites of lead [8]
and indium [9], Zn-Bi-In alloys [10], and Cu and Ni
crystals both for low Miller index orientation and
vicinal surfaces [11-14].
The roughening transition has important macro-

scopic consequences : according to whether the

surface is in the smooth or in the rough state, both
the growth kinetics [15] and the equilibrium shape of
crystals [3, 16] are very different. The latter is

particularly important in order to observe exper-
imentally the roughening transition. Above TR the

surface is rounded while below TR we have the
formation of facets which are macroscopically flat. A
facet in the equilibrium crystal-shape is obtained
from the Wulff construction as a consequence of the
existence of a cusp in the surface tension l’ (ft) plot
[3, 16] (n indicates the orientation).

Recently, one of us [17] has studied the smoothen-
ing kinetics of a rough surface due to surface
diffusion when the crystal is cooled down from
T &#x3E; TR to r TR. The model developed there,
analogous to the Lifshitz-Slyozov theory of the

growth of clusters in a supersaturated binary sol-
ution [18] is valid for nearly flat surfaces where
terraces do not interact. It predicts that after a long
time t the surface is flat on lengthscales smaller than
.
On the other hand, existing experimental data

correspond to a different situation, namely artificial,
one-directional grooves [19]. A theory of Mul-
lins [20, 21] predicts a lifetime proportional to the
fourth power of the wavelength A above TR. The
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present paper deals with the same problem below
TR, but in the case of strong surface modulation,
where steps are so close to each other that their
interaction is not negligible. We assume here contact
interactions [22-25] rather than elastic or electrostatic
ones [24] which, anyway, would make the theory of
reference [17] invalid.
As a matter of fact, a theory of the decay of one-

directional grooves below TR was already given by
Bonzel et al. [26]. This theory has the merit of

explaining the very interesting qualitative results

obtained experimentally by Yamashita et al. [19].
These authors observed the time evolution of the

geometry of initially prepared sinusoidal profiles
(Fig. 1) with various amplitudes and periodicities on
Ni (100), (110) and (111) single crystals for tempera-
tures between 1073-1327 K. The evolution toward
the equilibrium was found very different depending
on which surface the profile is created. For the (110)
surface the profile maintains the sinusoidal shape
during the decay (Fig. 2a) while, on the contrary,
the profiles on the (100) and (111) surfaces assume a
trapezoidal shape (Fig. 2b) and decay more slowly
with time [19]. This difference can be interpreted as
follows : in this range of temperature the (110)
surface is rough [13], so that the theory of Mul-
lins [20, 21] can be applied. This theory predicts that
an initially sinusoidal profile keeps a sinusoidal form

Fig. 1. - Initial profile (at a realistic scale the number of
steps would be much larger).

Fig. 2. - Profile experimentally observed after some

time. a) Above the roughening transition temperature ;
b) below TR [19, 26]. Ledges have not been shown.

when decaying. On the contrary, the [100] face is
smooth (in contradiction with the claims of refer-
ence [14], but in agreement with references [11-13]
as well as the [111] face, so that a new theory was
necessary. That of Bonzel et al. [26-28] could explain
the trapezoidal shape below TR, and thus revealed
the interest of this experimental method for the
investigation of roughening. However this theory
failed, for instance, to give the analytic dependence
of the relaxation time as a function of the
wavelength. The present investigation was under-
taken in the hope to obtain these informations.

However, the decay of unidirectional grooves turned
out to be a more difficult problem than we expected
and we prefered to solve the easier problem of a
bidirectional modulation. The difficulties related to
a unidirectional profile are explained in sections 2 to
4 and our solution in the bidirectional case is

presented in sections 5 and 6.
In this paper it is always assumed that the

dynamics is governed by surface diffusion. Transport
through the bulk and through the vapour is neglected
as in references [26-28]. The wavelength 4L of the
profile as well as the amplitude h are assumed to be
much larger than the interatomic distance. The ratio
h/L is assumed to be of order 0.1 or less as in the

experiments [19].

2. The equations of motion above TR, and why they
fail below TR.

In this section we recall the calculation of Bonzel
et al. [26-28] in the one-directional case.
Throughout this paper it is assumed that atoms

move only at the surface. Let z be the direction
normal to the average surface, y the direction of the
grooves and x the direction perpendicular to y and z
(Fag.1). The height z of the surface obeys the

continuity equation

where j is the current density of atoms. In addition to
this exact equation, Bonzel et al. assume the follow-
ing equation which is phenomenological, but stan-
dard [21] :

where &#x3E; is the local chemical potential which is

assumed to be zero for a flat surface due to an

appropriately chosen origin. Now, u is given by a
formula of Herring [29, 20, 21], (rederived here in
Sect. 3) namely

where z’ = az/ax and G (z’ ) is the free energy per
unit projected surface area on the xOy plane. Thus,
the surface tension is
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Formula (2.3) will be rederived in section 3.
Above the roughening transition, G is an analytic
function of z’ :

At sufficiently long times or for sufficiently
smooth initial profiles one can neglect fourth and
higher order terms. Equations (2.1) to (2.5) yield

Thus, an initially sinusoidal profile remains
sinusoidal. The [110] Ni surface has this property at
about 1100 to 1 200 K [19], but not the [111] and the
[100] faces. The only possible explanation is that
these surfaces are below their roughening transition
temperature. It turns out that the initially sinusoidal
profile transforms into a faceted one (Fig. 2) after
some time in the case of [111] and [100] nickel faces.
Since facets are known to appear below TR at

equilibrium [3, 4, 5, 8, 9, 16, 21, 30] it is not too

surprising that they also appear in a dynamical
pattern. However, the extension of the classical

theory of faceting [3, 16] to a dynamic case is not

straightforward since the chemical potential pt oscil-
lates around a vanishing value. In the static case,
instead, g is constant and it is sufficient to solve the
single equation (2.3), which yields the Wulff con-
struction. In the dynamical problem one should
work with three equations (2.1) to (2.3). But there
are more fundamental difficulties.
As noticed by Bonzel et al. [26] the analytic form

(2.5) is not correct below TR. Instead one should use
the Gruber-Mullins-Pokrovski-Talapov formula [22,
23, 30]

Bonzel et al. inserted (2.7) into (2.3), obtaining

Then they solved numerically the system (2.1,
2.8), replacing the continuum by a lattice and the
delta function by a sharply peaked one. The correct-
ness of this trick is questionable. As a matter of fact,
(2.8) is already dubious since z" 8 (z’ ) = 0 x oo is

undetermined on flat parts, and flat parts occupy a

large proportion of the surface according to exper-
imental results. Replacing the 5-function by an
analytic one, Bonzel et al. force u to vanish on
facets. In reality g should be allowed to vary on
facets, reflecting a variable density of mobile atoms
and holes.
Another difficulty is the following : the second

term of (2.7) is just proportional to the number of

steps. So, it corresponds to an attractive energy
between the two top steps of figure 1. If these 2 steps
recombine, there is an energy gain 2 g per unit

length in the y direction. However, this is a contact
interaction. If both upper edges are very far from
each other, as experiments suggest (Fig. 2), they do
not feel each other ; this suggests that the first term
of the right hand side of (2.8) should be omitted or at
least replaced by some more complicated term,
possibly non-local in time, since the steps require
some time to establish contact.
Some unsuccessful attempts to overcome this

difficulty will be described in section 4. In section 5 a
different geometry will be considered where this

problem does not arise.

3. Equations of motion below TR in the sloping parts.

In the non-horizontal parts of the profile, equations
(2.1, 2.2, 2.3) and (2.7) will be applied. The validity
of (2.2) has been questioned by Nozi6res and for this
reason it is discussed in this section. It is assumed
that almost all mobile atoms are on ledges, so that it
is sufficient to know the chemical potential JL n of an
atom lying on the n’th ledge (Fig. 3). JL n is equal to
the difference 4&#x3E; - 4&#x3E;; , where 0 is the free energy

per atom when these atoms are present, and

n is the free energy when they are removed. We
assume

where f,, is the average distance between steps n and
(n -1 ). On is given by the same expression except
that f , and Qn + 1 are replaced by (f , ) + 1 and

(fn + 1 ) -1 respectively. The chemical potential is

therefore, for large Qn

or

where

As previously promised we can now derive relation
(2.3). In the continuum limit the value of ILn at a

Fig. 3. - Labelling of ledges [ ] and terraces ( ). In

contrast with us, Nozieres [32] puts terrace (n) at the right
of ledge [n].



260

point where $n has the value f is given by the
following relation derived from (3.2).

or, since f =1 /z’ where z’ = azlax,

On the other hand, the function G of (2.3) is
related to 0 by G = 0 If = Go + cp /P, therefore

Insertion into (3.3) yields (2.3) as promised.
Below TR and for large f, cp(f)=f(G-Go) is

given, according to (2.7), by

It is of interest to recall the statistical mechanical

meaning of this equation : if f is small, each ledge is
squeezed against its neighbours and has less entropy,
therefore more free energy. Insertion of (3.4) into
(3.2) yields

JL n has been defined as the free energy loss per
atom when an atomic row is removed at the n’th

ledge. For large n, it is also seen to be equal to the
free energy gain per atom when an atomic row is
added. Thus, if 9 n = 9 n - 1, one can transfer the

atoms from the ledge N° n to the ledge N°

n -1 (or vice versa) with a free energy change
9 n - 11 n - 1 = 0. Thus, the current density in between
step n and step n - 1 (counted as positive if atoms
move to the right) should vanish when tk n = /1 n - 1
It is reasonable to assume a linear relation

This is the discrete version of the standard

equation (2.2) which can be found in textbooks [31].
However, it is worth recalling the meaning of these
equations since Nozi6res [32] suggested D might
have a singular behaviour which f goes to 00.

jn may be seen as a sum of the current jn -1 1 from
ledge (n -1 ) to ledge n, and a current jn in the

opposite direction. These currents are nearly equal,
and strictly equal if the chemical potentials JL nand
JL n - 1 are equal. Otherwise the detailed balance

principle yields

When (J.L n - J.L n - 1) is small the total current is

It may be convenient to consider the case when
almost all atoms which reach the (n - 1 )’th ledge
are adsorbed by it. In this case in is the current of
particles which start from the n’th ledge and reach
the (n -1 )’th ledge (Fig. 4). This is the product of
the current emitted by the n’th ledge in the negative
direction, multiplied by the probability p (£ n) that a
particle can accomplish a random walk of length
Qn without coming back to its starting point before ;
p (Q ) can easily be calculated from the equation
p (2 Q ) =1 p (Q ) which results from the observation2

that, if the particle is just midway, it has the same
probability 1/2 to reach the goal or to come back to
the starting point. It results p (l ) - llf and formula
(3.6). A quite different argument has been given in
reference [17]. An apparent weakness of both deri-
vations is that it neglects the fluctuations of the
distance f. In particular two neighbouring ledges
have contact points where p (Q ) becomes equal to 1.
However, it is easily seen that the number of contact
points is proportional to 1 /l n, so that they cannot
produce a divergence of K in (3.6). We conclude
that K has a well-defined value, which will be
calculated in section 6.

Fig. 4. - Diffusion of atoms between ledges. Atoms are
shown as cubes.

Nozi6res [32] used equation (3.6) without the
denominator f n. The reason is that he assumes the
chemical potential to be well-defined for terraces
rather than for ledges. Then, since two neighbouring
terraces are in contact, there is no reason for the
factor I/Qn in (3.6). In practical situations when a
current is present it is presumably not strictly
possible to define a chemical potential neither for
terraces (as Nozi6res does) nor for ledges (as we do).
However, our assumption that diffusion along ledges
is very fast so that ledges reach thermal equilibrium
before atoms can be exchanged between ledges is

acceptable, in this sense that it does not violate any
physical law. Nozi6res’ assumption would imply
serious complications for at least two reasons.
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Firstly, on the top terrace, which is very broad, the
chemical potential is not uniform. Secondly, since
the free energy and chemical potentials are expressed
as functions of ledge location, it is much easier to
assume they are defined on ledges rather than on
terraces. Anyway the essential results (Sect. 6)
would probably not be much alterated if one uses
Nozi6res’ formula as will be argued in section 7.

It is of interest to check that the equilibrium shape
of a bar can be obtained from (3.5) if ILn = 4 is
constant. In the continuum limit one obtains

which does reproduce the standard Wulff construc-
tion.

4. How does the top of the wave look like ?

As noticed in section 2, the non-analytic nature of
the chemical potential (2.8) creates difficulties for
z’ = 0. These difficulties are also related to the

existence of a contact, attractive interaction between

the two top ledges which may be very far from each
other, as explained at the end of section 2.
Suppose one starts, as in the experiment [19] with

a sinusoidal profile prepared at room temperature
and then heated to 1 000 K. Thermal fluctuations
establish after some rather short time T, the contacts

between ledges which, away from the top and the
bottom of the wave, are responsible for the repul-
sive Gruber-Mullins-Pokrovskii-Talapov interaction
(3.4) or (2.8) between ledges of the same « sign ».
The « sign » of a ledge is here defined « plus » if the
upper terrace corresponds to larger x values,
« minus » in the opposite case. On the other hand,
the upper (or lower) two ledges of each period have

Fig. 5. - Top view of the top of the profile : a) initial
state ; b) when closed terraces are present ; c) when they
have disappeared. This picture neglects fluctuations and is
only locally true : closed terraces may be present at some
place and have already disappeared somewhere else. The
anisotropy of the problem is not reproduced : the closed
terraces of (b) would be elungated ellipses in a realistic
picture.

an attractive interaction, which results after a time of
order T in a decay of the upper terrace into a series of
smaller terraces (Fig. 5b). If those terraces have a
radius of order R, they are expected [17] to emit a
current Const. IR 2 and to decay in a time pro-
portional to 1/R3. This has the effect to repel the
other terraces, and this is in agreement with the
experimental observation that the top of the profile
forms a facet [19]. However, when the closed
terraces have disappeared (Fig. 5c) the upper two
ledges B, B’ do not touch each other, so that the
attractive interaction between them is not effective.
Then, the effect which pushes the upper two ledges
together again is the pressure of the lower ledges,
but this seems to imply that all ledges come back
together, thus preventing the formation of a facet.
This would disagree with experiment.
We see several possible explanations to this

puzzle.

a) The model might be wrong : transport through
the gas and the solid might be effective. We do not
expect this effect to favour faceting, and this does
not seem to be a satisfactory explanation.

b) The unidirectional profile might be unstable
with respect to periodic perturbations parallel to the
ledges (Fig. 6).

Fig. 6. - A possibility, to be tested by further numerical
calculations : the one-directional profile might become
unstable.

c) The alternation of the situations of figures 5b
and c might influence only the upper ledges. There
would not be facets in a strict sense, but the tops
would just be very flat.

The possibilities (b) and (c) should be tested by
numerical analyses which are not extremely easy.
We prefer to leave the question open and to

concentrate on a bidirectional modulation (Fig. 7)
which does not show the same difficulties as the
unidirectional one. This problem will be treated in
the next section.

Before doing that, we close this study of the
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Fig. 7. - Top view of the initial two dimensional profile.
Full lines : z &#x3E; 0 ; dashed lines : z  0.

unidirectional case by mentioning a last (unsuccess-
ful !) attempt. The situation of figure 5c may reason-
ably be expected to have a longer duration than
figure 5b since the closed terraces have a rather
short lifetime. Since the attractive interaction be-
tween B and B’ is uneffective in figure 5c, one may
try to neglect them. Then equations (3.5) and (3.6)
yield

Here h is the index of the left hand upper ledge (B
on Fig. 5c, A on Fig. 5a). For n =1, the symmetry
of the problem implies fn -, 1 = fn - 1 and (4.1) can be
written as

Finally for the upper step n = h, we just neglect
the attractive interaction with the next step as

explained before and write

This is the crucial approximation of the theory.
The remaining equations are

where xn is the position of the n’th step, the motion
of which is given by

This equation holds for 1, n , h and also n = h
provided one defines

since the current vanishes at the top of the wave
because of symmetry.

Finally h is defined as the largest value of n which
satisfies

where 4 L is the wavelength of the profile.
After disappearance of transients the structure is

expected to take a form which corresponds to weak
currents jn’ This conjecture is correct in a linear

system (e.g. in the present problem above TR) since
long-lived eigenmodes correspond of course to weak
currents. Thus it is reasonable to neglect jn in (4.1)
and (4.3). It follows

A straightforward calculation shows that the current
deduced from (4.1) and (4.3) is weak and therefore
the treatment is self-consistent.
Formula (4.8) can be written as dzldx - (h - z )1/3

or h-z- (L - x )3/2. The curvature is thus infinite
at the top of the profile, in total disagreement with
experiment. The law 6z- (5X)312- is known to de-

scribe the neighbourhood of a facet in an equilibrium
configuration [30] and this is not surprising since we
have neglected the current, which of course is zero at
equilibrium, so that the equations we solved are
precisely the equilibrium equations. Unfortunately,
we failed to reproduce the facet. This proves that
attractive interaction between top ledges should be
taken into account.

5. Bidirectional modulation.

In this section we study the decay of a profile
modulated in two orthogonal directions with a

wavelength 4 L (Fig. 7). The initial height of the
surface at coordinates x, y may for instance be
chosen to be

This geometry is more difficult to realize in

practice... but more accessible to theory. Indeed the
difficulties related to the disappearance of closed
terraces as in figure 5b are avoided since all terraces
are closed.
Above TR a linear equation which generalizes

(2.6) may be written. (5.1) is seen to be the stable
profile form, if ho is replaced by ho exp (- t/TL ) with
T L ’" L - 4. From now on we consider the problem
below TR.
One essential difference between the unidirec-

tional profile of sections 3 and 4 and the bidirectional
profile considered now is that the chemical potential
of an atom on a ledge of average radius R contains a
term g/R in addition to (3.5). Here g is a constant
(we use the notations of Ref. [17]). The fact that the
shape of the terrace is described by the single
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parameter R involves of course approximations. The
chemical potential on the n’th step is

where

The second term of (5.2) is very large for small
Rn and has no reason to be compensated by the first
term. Therefore, it is a natural Ansatz to neglect the
first term for small radii Rn. In that case the

argument of reference [17] can be applied and

predicts that only the inner terrace shrinks while the
others swell. This swelling will presumably be limited
by the repulsion between ledges, i.e. by the first

term of the r.h.s. of (5.2). It is thus expected that
after some time a « quasi-equilibrium » is reached,
where all ledges except the inner one are almost
immobile. This inner terrace has thus a different
behaviour and can be compared with the closed
terraces of figure 5b, while the other ledges are

comparable to the infinite ones. Therefore we shall
denote h the last nearly immobile ledge, i.e. the next
to last ledge. For the ledge N’ h (5.2) is replaced by

as soon as the last ledge (N r h + 1) is far enough, so
that fh 11 i can be neglected.
Now we need equations from the currents. The

current jn from the n’th step to the (n -1 )’th is

again given by

for n , h. Inside the h’th step one can no longer
disregard the atoms which are between the h’th and
the (h + 1 )’th ledge since those are responsible for
the decay of the last terrace. These atoms, which are
not on ledges, will be called « free ». Since holes as
well as atoms contribute to the decay, we shall speak
of free « particles », as in reference [17]. The density
p of free particles between ledges N r h and (h + 1 )
satisfy with a good approximation the equation
p = AV2 p = 0, as argued in reference [17]. Hence

where p o and A are given by the following boundary
conditions on terraces N r h and h + 1

where A is the diffusion constant, a, y and

a, y respectively the particle emission and absorp-
tion probability by a ledge. We have changed the
signs of reference [17] because we want to count
positively currents going toward the centre, consis-
tently with (3.6).

We want to know the particle flux Jh + 1 = rj =
AA, which is readily obtained from (5.6), namely (in
the limit of large Rh, Rh + 1 )

y/y satisfies the detailed balance equation

where /3 = 1 /KB T and the constant Eo is essentially
the energy difference between an atom on a ledge
and an atom running on a terrace (one of the little
cubes in Fig. 3). Relation (5.4) yields

Analogously

Pn + i is negligible most of the time. Assuming
g/Rh  KB r= 1//3 and G3/Qh  KB T, (5.7) and
(5.9) yield

which is the flux between the last terrace and the
next one.

The two-directional geometry of the profile im-
plies a complication near z = 0 (or n = 0). Indeed
the second term of (5.2) does not vanish, but goes to
a positive limit gIR, when n goes to zero. It is so on
all hills, while in valleys it goes to - g/R1. In fact
both terms of (5.2) should obey the symmetry rule
I- (x, y) = - g (- x, y) = g (- x, - y). Thus, the
difference in chemical potential between the lowest
ledge on a hill and the highest ledge in a neighbour-
ing valley has the rather large value 2 g IR,. This
implies that flat parts appear in the plane z = 0
which corresponds to the position of the surface at
infinite time. These flat parts form an infinite facet

(Fig. 8). Thus, Rl is not nearly equal to L as might

Fig. 8. - The two-dimensional profile after some time.
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be expected. It will be seen in section 6 that, if

h/L is sufficiently small, then Ri = R = 0.6 L.
Equations (5.2), (5.3), (5.4), (5.10) and (3.6)

should be completed by

and

The resulting system of equations might be solved
numerically but we prefer to give an approximate
solution valid for if the height h is much smaller than
the facet radius R.

6. Approximate solution.

Since z’ = 1/f is expected to vanish continuously
when approaching a facet, it is a reasonable Ansatz

(to be checked later) to neglect the term containing
G3 in (5.10).

or

where f (x ) increases monotonically from 1 to oo

when x increases from 1 to 00 . f (x ) takes the value 2
for x = 3.5 and is therefore of order 1 most of the
time. The divergence for very small Rh + I should
have no consequence since the quantity of matter to
be evacuated is then very small. If one compares
(6.1) with (3.6) and (5.4) for G3 = 0 and

Rh/Rh + 1 = 1 one finds

According to (6.2) the average value of I Jh -, 1 1
should be around

We shall now give an approximate solution of
(3.6). We make the Ansatz (the selfconsistency of
which should be checked later) that (in agreement
with the picture of Sect. 5) all terraces are immobile.
This implies that the total current J,, = jn Rn is a

constant J. (3.6) can be written in the continuum
limit on the sloping parts as

Integration yields

If the left hand side is replaced by (5.2) and if the
notations z’ = az / ax = 1/t, z" = az’lax are used,
one obtains in the continuum approximation

Now we replace the right hand side by its Taylor
expansion around the point xl where its second
derivative vanishes.

(6.5) reads

where ) = x - x 1,

(6.7) may be compared with the equilibrium
equation (3.7).
Expansion (6.7) will be seen to be qualitatively

correct even near the facets if h/L is reasonably
small (say, h : L/10). In other words the right hand
side is finite near a facet (as it is at equilibrium) and
of order f 1 ç. Of course, (6.7) does not hold inside a
facet. Integration of (6.7) yields, away from facets,

where zM is the value of z’ for x = xl.
The location of the facets is given by putting

z’ = 0 into this equation. Neglecting terms of order
e 4 and higher, one finds

The horizontal width L’ of the steep parts in

figure 8 is equal to the distance between both

solutions of this equation. On the other hand

zQ = hIL’. Thus, L’ satisfies the condition

or, inserting (6.8a)

and according to (6.4)

R can now be determined if one remarks that L is
the sum of L’, the radius R of the upper terrace and
the half-distance R’ between bumps (Fig. 8). Since
the total current J = j n Rn is independent of n,

relation (3.6) yields for n = 1
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Now, as seen at the end of section 5, ttl - R, 9R1
while [ J [ = 1.3 Kg /R according to (6.4). It follows
R’ = 0.6 R and L ’ = L - 1.6 R, so that (6.10) reads

G3 is related to thermal fluctuations of ledges, so
that G3/g is very small at low temperature. Even at
the temperature of interest, T , 1000 K, G3/g is

expected to be fairly small as can be seen from a
standard calculation [33]. In the experiments which
have been performed [19] hIR is pretty small. In this
situation, the width L’ of the steep parts is rather
small with respect to L, as seen from (6.11). Since
R’ = 0.6 R the equality L’ + R + R’ = L yields

The current J is of order

Equating this to (6.4) and integrating one obtains
(Fig. 9)

Fig. 9. - Amplitude of the profile modulation as a

function of time.

The lifetime of the profile is therefore

Near a facet, (6.9), (6.8a) and (6.4) imply

where 8x is the distance to the edge of the facet.
Integration of this equation yields the same law as

near a facet at equilibrium [30], namely

It is of interest to know the value llfh of
z’ near a facet. It is obtained by replacing 5x and
1 lz’ by Q in (6.15)

The essential results of our calculation are

equation (6.11) which gives the radius R of the

facets, (6.13) and (6.14) which describes the evolu-
tion of the profile, and (6.16) which gives the shape.
Now we have to check the self-consistency of the
Ansatze which have been made. Firstly, it is legiti-
mate to neglect higher order terms in (6.9) even near
the facets since f3 L "/ f, ,== L 2IR 2 is rather small
compared to L according to (6.11).
Then, we can check that G3 Qh 3 is much smaller

than glrh and glrh-,l 1 in (5.10) since (6.11) and
(6.17) imply

The last Ansatz to be checked is that the current

jn Rn does not depend much on n. This is true if

Rn does not depend much on time, and actually it is
so far h .e- R since all Rn - L according to (6.11).
More precisely one finds by differentiation of (6.11)
that

Since both factors are at the right hand side rather
small with respect to 1 it is reasonable to assume a
constant current.

7. Discussion.

The results obtained here can be compared with that
of reference [17] where non-interacting ledges (i.e.
with very large f) were considered. The lifetime of
terraces of size L was found to be proportional to
L 3. Formula (6.14) of the present work may be seen
as an extension of this result for terraces of height
h &#x3E; 1 interatomic distance.

It may be interesting to mention a by-product of
the present calculation, namely the motion of two
parallel ledges with identical « sign » and average
distance f. The difference in chemical potential is
2 G3/l3 according to (3.5) and the equation of

motion is given by (3.6), namely

Therefore f (t ) - t 115 instead of t 114 as would be the
case in the presence of a vapour [34].

It is interesting to compare our results with those
of Bonzel et al. [26]. Although these authors investi-
gated the unidirectional geometry (Fig. 1), their
results fit fairly well our results obtained for the two-
directional geometry (Fig. 7 and 8). In particular,
curves b, c and c’ in figure 8 of Bonzel et al. [26]
become linear functions if plotted in linear rather
than in logarithmic coordinates, and this is in

agreement with our equation (6.13).
In the case of unidirectional grooves (Fig. 1), the

equations of sections 3 and 4 would predict facets at
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the top and at the bottom (Fig. 2b) provided the
current is assumed to be constantly of order

Kg/R2. Since this has no obvious reason to be true
in the situation of figure 5c, we consider this argu-
ment purely phenomenological, and for the same
reason we would qualify the theory of Bonzel et al. a
phenomenological one. However, we have not been
able to do better in the unidirectional case !

It would be nice to have experiments for the
bidirectional geometry and to compare with figure 8.
Possibly the cliffs would be less steep due to

evaporation and diffusion through the vapour and
the solid.

Although this work leaves some questions open
and therefore suffers deficiencies, it would have
been much worse if its first version (devoted to the
unidirectional problem of Fig. 1) had not been read
by two distinguished censors, Ph. Nozi6res and H.
van Beijeren. Ph. Nozi6res drew our attention to the
difficulties of the unidirectional geometry mentioned
in section 4. Moreover, in that first version we
assumed the chemical potential on the upper ledge
to be of order g/R, which is the value at equilibrium
for a system of finite size. R. H. van Beijeren
pointed out that this was in contradiction with

equation (4.3) if one assumes j , 9 / R2 (see Eq.
(6.4)). It is interesting to note that the change in
chemical potential along the steep parts is much
smaller than g/R although it is of order g/R on the
flat parts. So to speak, nothing very important
happens in the rather narrow sloping parts. For this
reason the essential results (6.13) and (6.14) would
not be affected if one used the equations of Nozi6res
[32] instead of (3.6).
We are also indebted to F. Langon who solved

numerically equations similar to (4.3) and checked
that a profile roughly looking like (4.8) is obtained
after some time.

It is a pleasure to thank W. Selke for discussions.
He gave a Monte Carlo treatment of a related

problem which will be submitted soon. However, he
assumed a different dynamics because the two-di-
mensional diffusion would imply a fantastically long
computer time.

Finally, the present work would not have been
done, had we not benefitted of H. Bonzel’s sugges-
tions. He is really responsible for the basic idea
expressed by the title of this article. This idea

directly stems from the works of him and his

coworkers.
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