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Two-dimensional system with a quasi-crystalline ground state
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(Requ le 29 juin 1987, accepte le 16 octobre 1987)

Résumé. 2014 Nous étudions les empilements denses de particules avec des interactions qui favorisent la symétrie
pentagonale. Ces structures peuvent être obtenues par décoration de pavages de Penrose ou directement par
une méthode de coupe et projection. Nous prouvons qu’elles forment l’état fondamental dégénéré, dans le cas
de potentiels de paire limités aux premiers voisins et pour des paramètres de forces d’interaction appartenant à
un large domaine de valeurs. Des trempes à partir du liquide, simulées par dynamique moléculaire, conduisent
soit à un verre, soit à un quasi-cristal, selon la vitesse de trempe.

Abstract. 2014 We study dense packings of particles with interactions favouring pentagonal symmetry. Such
structures can be obtained by decorations of Penrose tilings or directly with a cut-and-projection method. We
prove that they form the degenerated ground-state in the case of pair potentials limited to first neighbours and
for interaction strength parameters lying in broad ranges of values. Cooling runs from the liquid, simulated by
molecular dynamics, produce either a glassy state or a quasi-crystalline state depending on the quenching rate.

J. Phys. France 49 (1988) 249-256 FTVRIER 1988,
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1. Introduction.

The Penrose tilings [1-3] are two-dimensional

analogs of the structures of quasi-crystalline
materials. Thus the study of their properties has
much interest in the field of aperiodic lattices [4-10].
On the other hand many physical properties depend
on the atomic positions and not only on the underly-
ing lattice. Mosseri and Sadoc [11] have proposed
decorations which correspond to covalent coor-

dinations. Henley [12] has built packings of disks
placed on vertices of Penrose tilings and has studied
the packing fraction and the coordination numbers.
Levine and Steinhardt [5, 7] have described several
atomic models. They have reported that a numerical
relaxation can maintain orientational and transla-
tional order over the sample.
A decoration of the Penrose tilings has been

proposed by Lanqon et al. [13] (hereafter denoted as
paper I) to produce an atomic model of a dense two-
dimensional quasi-crystal. To study this two-compo-
nent system, pair interactions have been introduced
with peculiar bond lengths and bond strengths. A
molecular dynamics simulation has shown that the
quasi-crystal is stable over a broad range of tempera-
ture, it undergoes a first-order transition to the

liquid phase and it is more stable than the amorphous
phase.
The same atomic system has been recently used by

Widom et al. [14] and Minchau et al. [15]. Widom
et al. have shown that quasi-crystalline structures

can be obtained with Monte-Carlo runs. They have
also introduced another set of interactions to show
that the quasi-crystal is a degenerated ground-state.
We prove in this paper that this result is in fact true
in a broad range of interaction strengths values.

Minchau et al. [15] have defined growth algorithms
which stick particles onto an initial cluster. They
have generated structures they analysed as alterna-
tions of strips of the Penrose rhombs.
Another quasi-crystal growth model has been

proposed by Elser [16] : regular decagons are packed
in the plane. The two kinds of particles defined in
paper I can give a physical realization to these

decagon packings : the large particles have to be set
at the decagon centres and the small ones at the
centres of the regular interstitial sites.

In this paper, we study how dense packings with
pentagonal order can be obtained and we discuss
their stability. We also describe molecular dynamics
experiments : a quasi-crystalline or a glassy state can
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result from the quench of a liquid, depending on the
quenching rate.

2. Binary tillings.

In paper I it has been shown that a two-component
system having a pentagonal orientational order is
stable with radially symmetric particle interactions.
The bond lengths between particles are chosen so
that

where L and S denote large and small atoms

respectively. Now we aim to discuss the geometrical
properties of dense packings generated with these
interactions. Let us note that these particles are not
hard disks. Therefore we cannot use the packing
fraction to measure the efficiency of the packing.
Considering a polyatomic system defined by the
values of given bond lengths dal3 for each type of
pairs a - {3, our criterium for a close packing will
be : all geometric neighbours (in the sense of Vor-
onoi) - one of type a and the other of type 8 -
must be at a distance equal to the bond length
dal3. Geometrical neighbours are unambiguously
defined by the partition of the plane into Voronoi
polygons around each particle [17, 18] (also called
Dirichlet regions [19] or Wigner-Seitz cells [20]).
The network of the geometrical neighbouring pairs
is formed by triangles which completely fill the plane
[21]. Thus such a close packed structure is a tiling of
triangles with edge lengths equal to dLL, dLS or

dss. Because equilateral triangles formed by three
similar atoms do not lead to pentagonal order, we do
not consider tilings which contain such units. There-
fore the only types of triangles are LLS and LSS. If
we consider one of them, say LSS for instance, there
is necessarily an L atom on the other side of the edge
SS. Thus these structures correspond to tilings
formed with the two Penrose rhombs shown in

figure 1. The rhombs have the following vertex

Fig. 1. - Decoration of the two Penrose rhombs in a

binary tiling.

occupations : the vertices where the angle has a
value which is an odd multiple of 7T/5 (namely
7T/5 and 3 7T /5) are occupied by an L atom,
whereas the vertices where this value is an even

multiple of 7T/5 (namely 2 w/5 and 4 7T /5) are

occupied by an S atom. The edges of the rhombs are
the LS pairs, and the LL and SS pairs from the short
diagonal of the fat and the thin rhombs respectively.
The definite vertex occupations are actually very

simple matching rules for the packing of the rhombs.
These matching rules are completely different from
those of the original Penrose tiling and also from
those derived by Kleman et al. [9] for generalized
Penrose tilings. They do not assure translational

order, but they imply the following striking property
for the tiling : around any vertex the angles have
values which are either all odd, or all even multiples
of 7T/5. We shall call tilings with such a parity
property binary tilings because they can naturally be
decorated to produce a dense binary allow (one can
also set spins alternatively up and down on the
vertices). In the next section we shall see how to
construct such binary tilings, and that they can be
periodic, quasiperiodic or complex structures.

3. Quasi-crystalline packings.

3.1 DECORATION OF THE PENROSE CELLS. - In the

same way as a decoration of a periodically repeated
unit cell produces a crystal, a decoration of the two
Penrose rhombs involved in the generalized Penrose
tilings [6] produces a quasi-crystal. Such a decoration
(Fig. 2) has been proposed in paper I.

Fig. 2. - Decoration I of the two rhombic quasi-unit cells
(dashed lines). The rhombs of the resulting binary tiling
are drawn in solid lines.

It was noticed that there were two equivalent ways
of decorating the fat rhomb, putting the interior L
(large) atom near one or the other of the two acute
angles. Using one or the other way randomly during
tiling decorations, it happens that four L atoms may
cluster together and induce an LL pair length not
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equal to dLL, in contradiction with our close packing
rule of section 2.

In the case of a tiling being produced by the
projection technique, we propose a rule which

prevents such an event : following Duneau and Katz
[6], we denote A the principal diagonal of the 5-
dimensional cubic lattice. We consider for each fat
rhomb and among the two vertices which are situated
at an acute angle, the vertex which corresponds to
the point in the perpendicular space which is the
furthest from A. We put the interior L atom near this
vertex. Geometrical considerations in the perpen-
dicular space ensure that, when two fat rhombs have
a common edge, the interior L atom of one is not in
the neighbourhood of the interior L atom of the
other, and therefore the forbidden configurations
can never occur (see appendix B). The network of
LS pairs in the decorated tiling produces a binary
tiling shown in figure 3a.

Fig. 3. - Binary tilings (thick lines) obtained from the
same initial Penrose tiling (thin lines) by decorations
number I (left) and number II (right). The two types of
vertices are indicated as filled and empty disks.

Note that this binary tiling is quasi periodic but
presents particular occurrences of the unit rhombs
arrangements which are not those found in the

original Penrose tiling, nor those found in the more
general tilings obtained by translating the strip of the
cut-and-projection method along A [6]. Thus it

belongs to other local isomorphism classes (for a
definition of this concept, see [3, 7, 8, 22]). Let us
call this construction decoration number I. We shall

now describe another way to get binary tilings.

3.2 DECORATION NUMBER II. - The Penrose

rhombs can be decorated according to the scheme of
figure 4. This decoration breaks the symmetry of
both rhombs. Thus, to ensure a perfect binary tiling,
the decorations for the differently oriented rhombs
are deduced from each other by rotation of an angle
which is a multiple of 2 v 15.

This decoration is possible from any tiling built
with the Penrose rhombs : Penrose tilings, periodic
tilings (and among them periodic approximants of
Penrose tilings), binary tilings, ...

Fig. 4. - Decoration II of the two rhombic quasi unit cells
(dashed lines). The rhombs of the resulting binary tiling
are drawn in solid lines.

For instance two simple periodic binary tilings can
be constructed, using one or the other of the two
decorated Penrose rhombs as their unit cell. The

crystal constructed with the fat rhomb has already
been used in a previous molecular dynamics study
[23].

If the initial tiling is quasi-periodic, the associated
binary tiling is itself quasi-periodic and generally
belongs to a different local isomorphism class of that
associated by the decoration number I. Both are
shown in figure 3. The tilings obtained by decoration
number II can also be obtained by the cut-and-

projection method from a 10-dimensional cubic

lattice with the irrational orientation of the strip
different from that of the tiling plane (see appendix
A).

3.3 GEOMETRIC PROPERTIES. - If the numbers of

fat and thin rhombs in the original tiling are respect-
ively FA and TH, these numbers in the binary tilings
obtained by both decorations are :

The ratio of the sizes between the original and the
new tiles is 2 sin (2 7r 15 ). The numbers of L and S
atoms are NL = (3 f a + th )/5 and Ns =

(2 fa + 4 th )15 respectively. The binary tilings exist
for 1/2 === NLINs ,1, In the case of Penrose tilings,
FAITH = T, the golden mean. Relations (2) show
that faith = T and NL/Ns = T/2.

4. Energetic properties.

In order to study the physical properties of quasi-
crystals, we must now introduce more precisely
atomic interactions in our model. We assume pair
potentials limited to first neighbours with depths
-’LL, ELS, ess for the three different types of pairs. Let



252

NLL, NLS, Nss be the numbers of these pairs. In the
ground state, the energy per atom is

where N L and NS are the numbers of L and S atoms
respectively.
The candidates for the ground state structure are

the close packed configurations, i.e., the triangular
lattice of L-atoms, the triangular lattice of S-atoms
and the binary tilings. Depending on concentration
and on depths Eij, the ground state is one of these
structures or a mixing of them.

In a triangular lattice, say of L-atoms, the numbers
of pairs are : N LL = 3 N L and NLs = Nss = 0.
On the other hand, in the binary tilings, the

numbers of pairs are related to the numbers of

rhombs, and thus to NL and Ns : :

Therefore the energy is only dependent on the

atomic concentration : all the binary tilings at a

given concentration are members of a highly degen-
erate state. A similar conclusion has been drawn by
Widom et al. [14] for a special choice of the potential
depths ë a {3’ but actually is valid for any set of depths
ëa{3. °
The phase diagram can be calculated as a function

of the concentration and of the depths ëij. In the

special case where ELL = Ess, the binary tilings, and
among them the quasi-crystals, are the ground states
when :

If the concentration is out of the range of existence
of binary tilings, the ground states are mixings of a
binary tiling and a triangular crystal formed with the
atoms in excess.
When ELL &#x3E; ELS, the system is separated in two

monoatomic phases.
For the molecular dynamics simulation, we have

chosen :

as in paper I.

5. Molecular dynamics simulation.

5.1 INTRODUCTION. - We have shown that the

binary tilings form the ground state when one

chooses the potential parameters as given by equa-
tions (1) and (6). In paper I, it was shown by
molecular dynamics that such a state is stable at low
temperatures. This result is confirmed by Widom
et al. [14] on quasi-crystalline structures obtained by

Monte-Carlo coolings from random configurations.
While Monte-Carlo and molecular dynamics techni-
ques shall lead to the same thermodynamical quan-
tities for equilibrium states, the former uses artificial
processes, such as particle « flips », when the latter
computes particle trajectories which correspond to a
physical dynamics. A kinetic study, undertaken in
paper I, has shown that a quench from the liquid
state leads to a glassy state. We show in this section
that this result is dependent on the quenching rate.

In order to analyse the quenched states, we

compute their diffraction patterns (with the same
atomic scattering factor for L and S atoms). The
diffraction pattern for a perfect binary tiling structure
is shown in figure 5 (*). Because the LS pairs do
form the tiling, we focus on them. We consider the
angles formed by an arbitrary vector and the vectors
from L atoms to S first-neighbours, and compute the
bond orientational distribution shown in figure 6 in
the case of a quasi-crystal.

Fig. 5. - Model of a two dimensional quasi-crystal and its
computed diffraction pattern (intensities above some given
threshold are represented by the areas of the spots). The
dotted line indicates the periodic boundaries used in the
molecular dynamics calculations.

Fig. 6. - Left : Network of LS pairs between large and
small neighbouring particles in the quasi-crystal model
shown in figure 5. Right : Corresponding bond orientation-
al distribution.

(*) Because we wish to use periodic boundary con-
ditions, we consider periodic approximants to aperiodic
tilings. They correspond to continued-fraction approxim-
ants to the golden mean T [13].
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5.2 METHOD. - We have employed the molecular
dynamics technique with constrained equations of
motions [24]. In this method, the temperature and
pressure are constants of the motion [25, 26]. These
equations can be generalized to produce a given
variation T of temperature or a given variation

P of pressure with time [27, 23]. Let qi be the

coordinates of atom i, pi be the momentum of i
divided by its mass mi, Fi be the force acting on i, V
be the volume occupied by the N particles, and n be
the space dimension. The constrained equations of

motions are :

For given derivatives of the temperature and of the
pressure, T and P, the damping coefficient {3 and the
volume variation coefficient 9, have the value :

where cp ij is the pair potential between the i and j
atoms and is a function of their distance qij . We have
chosen the modified Johnson potential [28] properly
scaled for each of the three types of pairs. Let

ro = dLS be the unit of length and let eo = ELs be the
unit of energy. For simplicity, we let the mass of the
L and S atoms be equal to the unit of mass

mo. With this set of units, the unit of time,
to, is (mo ro2)"2, the unit of (two-dimensional)
pressure, Po, is Eo / ro2 and the unit of temperature,
To, is Eolk. The numerical integration of the dynami-
cal equations is done with a predictor-corrector
algorithm [29], and with a time step equal to

0.001 to.

5.3 NUMERICAL EXPERIMENTS. - Our starting
point is a liquid state obtained in paper I. It contains
152 L particles and 188 S particles equilibrated at the
temperature 0.7 To and the pressure Po. We have
carefully checked that all initial clusters of geometri-
cal neighbours have been destroyed during this

equilibrium run. In all the simulations the pressure
has been kept constant at Po. Because the derivative
T of the temperature appears explicitly in equations
(8) and (9), we can simulate cooling down linear
with time. During a quench, the system goes through
three temperature ranges : above the melting tem-
perature Tm, the system is in thermodynamic equilib-
rium ; below the glass transition temperature Tg, the
system is frozen because the diffusion coefficient is
too low ; and thus it is during the supercooled liquid
temperature range between Tm and 7g that more
efficient atomic reorganizations are likely to occur.
In this temperature range, the two simulations

reported here have been made with quenching rates
in the ratio 1:104.

The values of Tm and Tg have been determined in
paper I to be about 0.4 To and 0.3 To respectively.
For the slow cooling, the quenching rate from the
high temperature 0.7 To down to Tm and from
T. down to the low temperature 0.01 To was equal to
2 x 10-3 ToAo- In the critical temperature range
from Tm down to Tg, the quench was made with a
rate equal to 2 x 10-5 To/to and followed by an
isothermal treatment during 260 to before quenching
to lower temperatures. For the fast quench the rate
was constant and equal to 2 x 10-1 ToAo*
The glass obtained with the higher cooling rate is

shown in figure 7 ; its amorphous structure is con-
firmed by the diffuse rings in the diffraction pattern.
With the lower cooling rate, the state obtained is
shown in figure 8 : the diffraction spots indicate a
pentagonal symmetry and the presence of transla-
tional order. This state corresponds to an imperfect
quasi-crystalline structure. The potential energy of
these configurations are respectively 14 % and 4 %
above that of the ground state. The perfection of the
packings can be estimated by looking at the Penrose
rhombs present in the configurations. Figures 9 and
10 show the network of rhombs formed by the LS

Fig. 7. - Two-dimensional glass obtained by cooling the
liquid state and its diffraction pattern.
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Fig. 8. - Imperfect quasi-crystal configuration obtained
by cooling the liquid state and its diffraction pattern.

pairs. Their short diagonal must be an LL or an SS
pair. Because the rhombs can be distorted, we
consider as first neighbour pairs all those which
contribute to the first peak of the radial distribution
function. The quasi-crystalline configuration con-

tains defects. Note that some of these maintain the

pentagonal symmetry. The bond orientational dis-
tributions are also shown in figures 9 and 10. Because
they are distributions of the angles of the LS pairs
with a fixed direction, they do not correspond to a
local orientational parameter and therefore no

fivefold symmetry appears in the histogram of the
glassy state (Fig. 9) ; on the other hand, the distribu-
tion of figure 10 shows that the pentagonal symmetry
propagates through the whole configuration obtained
with the lower cooling rate.

Fig. 9. - Network of LS pairs in the glass shown in
figure 7 and the corresponding bond orientational dis-

tribution.

Fig. 10. - Network of LS pairs in the quasi-crystalline
configuration shown in figure 8 and the corresponding
bond orientational distribution.

6. Conclusion.

We have introduced two-dimensional quasi-crystal-
line tilings constructed with the Penrose rhombs and
with special matching rules. These tilings belong to
the general class of structures that we have called
binary tilings because atoms with two different sizes
setted at their vertices decorate them to form dense

binary alloys. We have proved that pair potential
interactions with given bond length values are suffi-
cient to make them the ground state in a broad range
of bond strength values. Molecular dynamics simula-
tions show that the quasi-crystal or the glassy states
are obtained by quenching the liquid state with
different cooling rates.
One of us (F. L.) thanks D. Gratias and J. Toner

for their stimulating lectures on quasi-crystals as well
as helpful discussions at the « dcole de physique de la
mati6re condens6e » organized by C. Godreche at
Beg-Rohu, France, on September 1986.

Appendix A.

BINARY TILINGS CONSTRUCTED BY PROJECTION :
From a Penrose tiling produced by the projection
method from Z5 [6], we wish to construct a binary
tiling by the same technique and with the following
property : all the vertices of the initial Penrose tiling
are vertices of the derived tiling. Let Cn =
cos (n7r/5) and Sn = sin (n7r/5), and let (el, ...,

es) be the natural basis of (R5. The tiling plane,
ET, is generated by the vectors x, = (C2 i )i = o, 4 =
(1, C2, C4, C4, C2) and x2 = (S2i)i=o,4 = (0, S2,
S4, - S4, - S2). The vertices of a generalized Penrose
tiling [6] are the projection onto ET of the points of
the cubic lattice Z5 which are contained in a strip S
parallel to a plane Ejj. In this case the two planes
ET and Ep are the same. More precisely the strip is
constructed by translating the unit 5D-cube by a
vector t and then moving it along Ep . Tilings, which
are members of different local isomorphic classes,
can be produced with suitable choices of vector t.

Let (ul, .... eio ) be the natural basis of Rlo. We
introduce the linear mapping, M, of Z5 into
Zlo which transforms el into M (el ) = £8 + E9,
e2 into M(e2) = E 1° + El and so on by circular

permutation of the indices. Let ET be the plane of
(RIO generated by Xl = (Ci)i=o,g == (1, - C 4’ C2,
- C2, C4, - 1, C4, C2, C2, C4) and x =
(Si )i = 0, 9 = (0, S4, S2, S2, S4, 0, S4, - S2, - S2,
- S4). If we identify ET and ET, and by calculating
the orthogonal projection of ei and M (ei ) onto these
planes, we can easily check that the projection of a
point P is transformed into the projection of

M(P) by a rotation of - 7r/2 and a scaling by a
factor equal to 2 S2. In particular this will be the case
for the vertices of the initial Penrose tiling. Let P be
a lattice point contained in strip S and thus which is
projected at a vertex of the Penrose tiling. If vector t
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is the translation of the strip, P can be written in the
form :

where v E Ell and A i E [0, 1 [.
M(P) is equal to :

where a 8 = A 1, a 9 = A 1 and so on with a circular
permutation of the indices. Since the a i lie within to
the range [0,1 [, M (P) is contained in the strip
S’ which is constructed by translating the unit 10-
cube by a vector M (t ) and then by moving it along
Elj = M(EII). Note that the plane Elj which defines
the strip is different from the tiling plane ET. In

other words, all the points which are in strip S and
are projected onto ET at the Penrose tiling vertices,
lead to points which are in strip S’ and which form,
by projection onto ET, the same tiling (up to the
- 7T/2 rotation and the inflation by a factor

2 S2 seen above). But M transforms S only into a
subset of S’. Hence the tiling obtained by the

projection of the lattice points contained in strip
S’ has new vertices which decorate the initial tiling as
shown in figure 3b. Since Penrose tilings which are
members of different local isomorphic classes corre-
spond to different translations of the unit 5D-cube
along its diagonal, they lead to binary tilings which
correspond to different translations of the unit 10D-
cube along its diagonal and thus which are them-
selves members of different local isomorphic classes.

Appendix B.

ANALYSIS OF DECORATION I : Because decoration

I, shown in figure 2, breaks the fat rhomb symmetry,
there are two equivalent ways of setting the interior
L (large) particle. We show here that the rule given
in section 3.1 is an unambiguous way to do it. We
assume that the tiling to be decorated is obtained by
the projection method from the cubic 5D-lattice and
that the tiling plane, ET, and the plane, EII , which
fixes the orientation of the strip, are generated by
the two vectors xl = (C 2 )i = o, 4 and x2 = (S2 )i = o, 4
(same notations as in appendix A). The perpendicu-
lar space, Ej_, to plane Ep is a three-dimensional

space generated by the vectors x3 = (C 4 i )i 0, 4,
X4 = (S4 i )i = 0, 4 and xs = (1, 1, 1, 1, 1). Let F1 be
the plane generated by vectors x3 and x4, and A be
the principal diagonal of the 5D-cube which defines
the strip.
Penrose rhombs are the projections onto ET of

2D-facets of the 5D-lattice, i.e., their edges are

formed by two vectors (eill, ejll) (i =Aj), where
eill II is the projection of the basis vector ei onto

Ep . The fat and the thin rhombs are generated by
vector pairs of type (ei II , ei + 111) and (ei jj , ei + 211 )
respectively.

Consider a fat rhomb, for instance one whose

corners are : Mo, Mo + el 11 , Mo + e2 11 and M1 =
Mo + el II + e211’ Points Mo and M1 are the two acute
angle corners of the rhomb. Let ei _L be the projec-
tion of ei onto Fl (note that for our purpose we do
not use this notation for the projection onto

El ) . The above rhomb corners correspond respect-
ively to the following points of Fl : No, No +
e1.l’ No + e2.l and N1 = No + el 1 + e2.l’ which
form a thin rhomb.

The plane Fl is divided into two half-planes : the
location of the points No where No is nearer to 4 than
N1 1 and that where No is further from A than

N1 (Fig. 11). The interior L atom is set near

M1 in the former case and near Mo in the latter case
(when No lies on the boundary line, D, we arbitrary
choose the first solution). This rule defines a unique
way to decorate each fat rhomb.

Fig. 11. - Above : rhombs number 1, 2 and 3 (left) whose
common edge is lVlo, Mo + eel 11 ; and their corresponding
rhombs in the perpendicular space Fl (right). Below :

projection onto the perpendicular space Fl of the unit 5D-
cube. The line D; is the boundary line corresponding to
rhomb number i : the arrows indicate the half-plane which
is the locus of points No such that the interior atom of
rhomb number i is next to the edge Mo, Mo + el 11 -

We now show that this procedure excludes the
possibility to get two interior L atoms on each side of
a common rhomb edge, i. e. , they cannot be neigh-
bours. Let for instance Mo and R4o + ei 11 be the
extremities of the common edge. If one of the two
rhombs, called rhomb 1, is constructed with Mo,
elll jj and e2li the other is constructed either with

Mo, el 11 and - e2 11 (rhomb 2) or with Ivlo, el 11 and

es 11 (rhomb 3). The first situation never exists in the
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tilings where Ep is defined as above, but it can occur
in the periodic approximants. Let D1, D2 and

D3 be the boundary lines corresponding to the
corner No of the rhombs 1, 2 and 3 respectively
(Fig. 11). Lines Dl and D2 are parallel. They divide
Fl in three regions in which, wherever No lies, the
interior L atoms are never next to the common edge
at the same time.

Lines Dl and D3 divide Fl in four regions. Only in
the left quarter shown in figure 11 would both the

interior L atoms of rhomb 1 and 3 be next to the
corner Mo. But actually, this situation never occurs
because, for these locations of No, the opposite
corners would be outside of the unit cube projection
onto E 1- ; i.e., they would correspond to points of
the cubic lattice which should be outside of the strip.
Therefore this quarter is a forbidden region for the
local pattern formed by rhombs 1 and 3.
Thus decoration I always produces a close-packed

structure as defined in section 2.
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