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Résumé. 2014 Nous avons mesuré la conductivité d’empilements bi et tridimensionnels de grains conducteurs
soumis à une pression uniaxiale verticale. La conductance en fonction de la contrainte suit une loi de puissance
dont l’exposant est différent de l’exposant microscopique prévu par la loi de Hertz. Nous proposons une
explication théorique simple.

Abstract. 2014 We measured the conductivity of 2d and 3d packings of conducting grains under a uniaxial vertical
pressure. The conductance as a function of stress is a power law with an exponent which is different from the

microscopic Hertz exponent. We propose a simple theoretical explanation.
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1. Introduction.

The properties of granular media depend generally
on the geometrical properties of the system, on the
properties of the grains themselves, but also on the
properties of the contacts between grains. For the
mechanical or transport properties, these contacts
are very important. Our goal here is to study the
effects on the electrical conductivities of the

materials, of the heterogeneities induced by uniaxial
pressure on packings of spheres or cylinders.
The microscopic strain-stress law at the contact

between two grains may be written (Hertz law)

Recently [1], we have verified that in a compact
granular packing submitted to a uniaxial force, the
strain-stress law may also be written in a « power »
form

In general, the macroscopic exponent m is diffe-
rent from the microscopic one : m 0 g ; it strongly
depends on the material, the quality of the contacts
between grains and the way the packing is made.

Photoelastic studies for plexiglass cylinder packings
show that the force is transmitted through a con-
nected subnetwork of the network of the real

contacts (the so-called strongest stresses network),
which develops in the bulk as the stress increases and
new contacts appear ; its geometry depends on the
geometrical features of the packings (defects and
ordering in monosize systems [1], grain size distribu-
tion in mixtures [2]...).
When the grains are conducting, the conductance

g at the contact between two grains derived from
Hertz microscopic law reads

where T - 1/3. As in the above mechanical case, at
the macroscopic level, we expect a power law

Such a law is surely not true, with the same

exponent, on the whole range of force : at low stress,
grains rearrange by rotations and local slidings
(consolidation phase) and Hertz deformations surely
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plays a little role. Our experimental situation corres-
ponds to an intermediate force range, where only
elastic deformations take place and yield the main
contribution to the compression. All possible con-
tacts are not created ; the strongest stresses network
plays a proeminent role as electrical current chooses
preferentially good mechanical contacts. The resist-
ance of a contact depends on the applied stress, first
because of « Hertz effects » (increasing of the contact
surface with increasing applied pressure), but also
because pressure can destroy the insulating layer at
the surface of the grains (oxyde, impurities, etc.) ;
then, if it exists, the exponent t may be different
from 1/3. Finally, at large force, all contacts are

realized, and one expects t - 1/3 ; practically, the
plasticity threshold is reached long before and other
processes like rupture may occur. One interesting
question is the force range of the three regimes
which are schematized in figure 1.

Fig. 1. - Schematical behaviour of conductivity vs. the

pressure in log-log scale and arbitrary units : a) consolida-
tion phase, b) experimental region, c) asymptotic be-
haviour (not reached practically).

Such a behaviour was described in a review paper
by Euler [3] for compacted powders. The exper-
imental intermediate exponent t is actually observed
on one or two decades in pressure. Depending on
the powder under study, t varies from 1/3 to 5/3, with
some anomalous values (t  0 or t = 8). However,
in the cases reviewed by Euler, the process is only
partially reversible as the grains remain sticked

together and deformed.
We present here the results of conductivity meas-

urements of 2d (cylinders) and 3d (spheres) conduct-
ing model packings under uniaxial vertical pressure ;
we remain in the elasticity zone so that the compres-
sion process is reversible. In section 2, we describe
the experimental apparatus and the model packings ;
in section 3, we give the experimental results.

Finally, in section 4, we propose a theoretical model
already used to explain the mechanical behaviour.

2. Description of the experiment.

The 3d samples are packings of calibrated steel

spheres of diameter 0 = 1 mm. The spheres are
packed in a cylindrical copper vessel, large enough
to make the size effects negligible (diameter =
3.2 cm, height - 4 cm). The internal vertical walls
are insulated with PVC and the upper and lower
walls are coated with indium to prevent the deforma-
tion of the cell and improve the contacts between the
spheres and the electrodes. To prevent a regular
disposition of the spheres, we add along the upper
and lower surfaces some larger spheres of diameter
2 mm which forbid the formation of a local order

starting from the planar surfaces. We thus get a

monosize disordered packing, with mean coordina-
tion number z - 6-7 [4].
To complete the study, we have realized a two

dimensional packing made of identical horizontal
steel cylinders (diameter 0 = 4 mm, length =
2.5 cm), with parallel axes (Schneebeli model [5]) ;
the cylinders are ordered along a triangular regular
lattice. The packing is made of 48 lines of alternative-
ly 44 or 45 cylinders. Because it is built under gravity
and the pressure is exerted vertically, the horizontal
contacts play little role in the transmission of the
force. One of the most important questions in that
sort of experiment is that of the influence of the
walls and of the size of the sample. A study of
mechanical and photoelastic properties of samples
with different sizes has shown that this influence is

negligible for the packing we consider here [6].
Moreover, about 80-90 % of the applied pressure is
transmitted at the bottom of the packing and so
arching effects are weak.
The samples are placed in an INSTRON 1175

universal testing machine and a uniaxial vertical

pressure is applied, growing from 0 to 4 000 N [1, 6].
The electrodes are made of copper so that their

resistivity is as small as possible. Several pressure
cycles are performed until the results are repro-
ducible : 3 or 4 cycles for cylinders (the regular
packing is rapidly stabilized) but 40 cycles for

spheres. The measurements are done at increasing
pressure as the force is no more uniaxial on the
decreasing part of the hysteresis [7], and for each
point, we wait until the system is in equilibrium.
The results given in section 3 for the macroscopic

exponent t are averaged over three different samples.
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3. Experimental results.

3.1 CONDUCTIVITY OF 3d PACKINGS. - i) In a first
experiment, the metallic spheres are used as given
by the manufacturer. They are « dirty » and exhibit
under the microscope irregularities prejudicial to the
quality of the contacts. However, the packing is

conducting from the beginning and the law for

conductivity vs. applied force looks as indicated in
figure 1 with a transition at F - 400 N. According to
the sample (essentially to the surface of the spheres),
the exponent we have observed when 400 N 
F  4 000 N (i.e. one decade in pressure) varies
between 2.5 and 3.

ii) Then, the spheres are cleaned with alcohol and
they are cleaned again from time to time. Under the
microscope, they look clean and regular. The pack-
ing is conducting from the beginning, but the resistiv-
ity at low force is much weaker (100 or 1 000 times)
than in i), which indicates that the electrical contacts
are much better. The behaviour is again like in

figure 1 but with a smaller intermediate exponent
t =1.8 ± 0.1, valid for more than one decade in

pressure (see Fig. 2a).
iii) The experiments above were done on a

« large » packing, 41 mm high, which contains about
35 000 spheres. To be sure that we are in the

conditions where the finite size effects are negligible,
we have performed the same study with packings of
lower height. The exponent remains constant and
close to 1.8 even for small heights. At h = 7 mm
(i.e. when there are about 10-12 layers of spheres) a
transition occurs and t decreases to value 1.4 at

h = 3.7 mm.

iv) The same experiment was then performed
with partially ordered packings : we fill the con-

tainer, layer by layer, and try to rearrange each layer
in the more ordered way possible. Contrary to the
previous case, the exponent t remains equal to 1.4 up
to large heights, of the order of 30 mm (i.e.
50 layers). Then, it begins to grow up to the value
t = 1.8. Because of the size of our cell, it was not

possible to prepare packings higher than
h = 41 mm ; moreover, it is technically difficult to
order - even partially - large packings, the fluctua-
tions are rather important. Thus, it is not possible to
decide whether we are still in the transitional domain
or not. There is a priori no reason that the asymptotic
exponent t would be the same in ordered and

disordered packings.

An explanation may be given by reference to the
photoelastic studies on plexiglass cylinders in the
mechanical problem [1, 6]. When the height of the
packing is small, strength arms go from the top to
the bottom of the container and transmit most of the

force (and of the current when grains are conduc-
ting). When the height increases, strength arms

Fig. 2. - Log-log plot of the conductivity (in arbitrary
units) as a function of the macroscopic force (in Newtons),
a) for a disordered packing of spheres (h = 41 mm,
35 000 spheres), b) for an ordered packing of 1 600 cylin-
ders ; the fluctuations at high pressure become very

important.

begin to interfere. In disordered systems, this be-
haviour occurs for small heights while in the ordered
case long quasi rectilinear strength arms may exist,
generated from some grains of the upper layer
(orientational order seems to play an important role
in that case) and this could explain the discrepancy
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between the transitional heights (4 mm and 30 mm)
in the disordered and ordered cases respectively.

3.2 CONDUCTIVITY OF 2d PACKINGS. - We per-
formed a similar experiment on packings of cylin-
ders. There is again conduction from the beginning,
and in a log-log scale, the experimental points are
roughly along a straight line in an intermediate zone
which covers one decade in pressure (200 to

2 000 N). We get a weaker exponent

which is nevertheless clearly distinct from 1/3 (see
Fig. 2b). When F &#x3E; 2 000 N, the measured quan-
tities are so small that parasite effects (for example,
the electrodes are not rigorously equipotential) may
become important and the experimental plots show
off large fluctuations ; it is not possible to test

whether t is close to 1/3.
Because of the fluctuations, it was not possible to

perform a size effects study like for the spheres.

4. Theoretical models.

The behaviour in « three regimes » (Fig. 1) may be
understood using electrical analogies such as diodes
with random thresholds on regular lattices [8], but it
is not possible to use these models to describe at the
same time the mechanical behaviour [9]. We propose
here two simple models which describe qualitatively
both mechanical and electrical exponents, provided
the good mechanical contacts are too the good
electrical contacts. In the first model, we use an
effective medium theory, in the second one we try to
take into account the connected aspect of the

strongest stresses network. Their results are compat-
ible and agree qualitatively with the experimental
exponents.

In both cases, we assume that the packings behave
more or less like the regular packing with the same
coordination number z. The disorder of contacts,
which leads to a variation of the total number of
contacts as the applied pressure increases, seems to
be more important than translational disorder [1].
The 2d cylinder packings are easily modelized from a
distorted square lattice with z = 4 (horizontal con-
tacts are inefficient for transmitting the force). Our
3d disordered sphere packings which have a coordi-
nation number z - 6 and a packing fraction c - 0.60
will provide intermediate values between the simple
cubic (z = 6, c - 0.52) and the body centred cubic
(z = 8, c - 0.68) lattices.

4.1 EFFECTIVE MEDIUM THEORY MODEL. - The

percentage of good electrical contacts is an increasing
function a (P ) of applied pressure P. We assume
that they are distributed at random in the sample. As
far as the scale of the heterogeneities is smaller than
the sample size, the effective medium theory is

believed to work and the mean conductance gm (P )
at pressure P is given by [10]

where A = z/2 - 1, z is the coordination number,
a = a (0) is the number of mechanical contacts
which exist at P = 0, go (P ) is the conductance at

pressure P of these contacts and g p, (P ) the conduct-
ance at pressure P of the contacts which are created
at pressure P’ ; go(P ) and 9p’ (P ) are given by the
microscopic law equation (2). The distribution func-
tion N (P’ ) of the mechanical thresholds tells how
rapidly these contacts are created. It is normalized
so that

and

The microscopic force f at the contact between
two grains - which is needed to calculate gP,(P ) -
is determined by assuming that the packing is

arranged in layers which, on average, all behave in
the same manner ; in each layer, all grains, whatever
stressed or not, undergo the same vertical dis-

placement. This is the model of Ko and Scott [11] for
sands ; further applications and improvements may
be found in reference [12].

Thus, the parameters are

i) the percentage a of contacts which are active
from the beginning. One knows that it is surely
rather small, of the order of 0.3 or 0.4 in the

vulnerability measurements by Ottavi etal. [13] ; it

might be still smaller for badly calibrated « grains »
(a = 0.15 or 0.20 for plexiglass cylinders as seen in
photoelasticity).

ii) the distribution law lV (P’ ). It seems that

contacts are not easily established at small force,
their number increases rapidly afterwards [13]. This
behaviour may be simulated with a polynomial law :

where k is an integer and Pm a maximal pressure.
In table I we give the intermediate exponents t for

several percentages a and coordination numbers z
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Table I. - Macroscopic intermediate exponent t for
several lattices and different values of the rate a; the
distribution law for creating new contacts is given by
Equation (4) with k = 1.

when k = 1. At very high pressure (all the contacts
are created), we get the Hertz exponent 1/3. When
«  0.5, the intermediate zone runs over one or two
decades in pressure ; it is smaller when a &#x3E; 0.5, but
this is probably not the experimental situation.
When a : a c’ the fraction of electrically active

contacts at the percolation threshold (in the effective
medium model, a c = 1 / (A + 1 ) = 2/z), the pack-
ing is not conducting at low pressure, but it may
become conducting beyond a threshold pressure
Po where « (?o) = a c. This has not been observed
in our packings made of conductors only but exists in
mixtures of insulating and conducting grains [14].
The exponent t increases with parameter k. It may
become important near the percolation threshold (if
a = a c, t - k + 4/3) ; this could give an explanation
to the high exponents (2.5 to 3) found for the dirty
spheres (see Sect. 3.1).

Notice that the geometrical reorganization of the
consolidation phase is not well described as only
Hertz deformations are taken into account : at low

force, we necessarily recover exponent 1/3. It is

possible to include in the model the destruction of
part of the initial contacts and recreation of new
contacts and so to take into account rotation and

local sliding. This will be done elsewhere [12].
This model is not entirely satisfying, in spite of a

correct agreement with experiment, as we know that
good contacts are not at all at random and may even
run along strength arms longer in ordered than in
disordered systems [1].

4.2 INTRODUCTION OF THE STRONGEST STRESSES
NETWORK. - It is possible to get a perhaps more
realistic description in assuming that the strongest
stresses network is macroscopically regular. Let us
first consider 2d models. Roughly, we assume that
the more stressed bonds, which are conducting from
the beginning form a regular distorted square lattice
(horizontal bonds are inefficient), in which each link
is made of n bonds. At a threshold pressure
P 1, the strength arms are divided into two equal

Fig. 3. - Schematization of the strongest stresses network
in the 2d ordered model. a) large full line : initial step, b)
thin full line : strength lines created at pressure P1, c)
dotted line : strength lines created at pressure P 2’

arms made of n/2 bonds, then at a new threshold
pressure P2, all the arms are again divided into arms
made of n/22 bonds... (see Fig. 3). In that simplistic
image, the network remains a distorted square
lattice. The conductance may be written :

where gi is the conductance of the new arms which
appear after i divisions and is given by the micro-
scopic law equation (2). A similar relation holds for
a cubic lattice :

Practically, for a 2d ordered packing, the number
of divisions s is reasonably equal to 2 or 3. For our 3d
quasi ordered packing, it may reach the value 4.
We performed some numerical tests for s = 2, 3, 4

and d = 2 or 3. We have considered two cases which

correspond approximately to a constant or a linear
function N (P ) in the previous model :

a) new contacts set in at regular pressure intervals

b) new contacts set in slowly at low pressure and
more rapidly at the end of the pressure interval

(0, P ,, )

Actually, we have included some fluctuations
around the different thresholds so that the new
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contacts set in more regularly. Results are given in
table II. Columns a) and b) correspond to the laws
a) and b) above. The exponents increase with the
number s of divisions ; their numerical values are
compatible with the experiments described in sec-
tion 3.

It is not easy to compare results obtained with the
two models, though, in each case, the problem
reduces to the estimation of the percentage of good
contacts : in the last model, we deal only with the
backbone of the mechanical network while in the
first one, a (P ) includes dead arms which may be
important.

Table II. - Electrical exponent in the ordered model
for 2 and 3 dimensional regular packings and s = 2,
3, 4. Columns a) and b) correspond to a constant and
a linear set in of the contacts respectively.

5. Conclusion.

We have verified that the conductivity of a packing
of steel spheres behaves as indicated in figure 1 in an
intermediate zone running over one or two decades
in pressure, as was already observed in the strain-
stress law. The macroscopic exponent depends on
the quality of the contacts and on the geometry of
the packing. This behaviour may be described by
simple models which work both for mechanical and
electrical laws.

The experiments described above deal with pack-
ings of conducting grains only. Actually, we often
need mixtures of insulating and conducting grains.
The current may take place only above a minimal
pressure (pressure threshold) where the rate of

conducting contacts reach the critical site-bond per-
colation threshold. The model in section 4.1 may
certainly be used to explain this situation as it

corroborates, at least qualitatively, measurements
made on mixtures of spheres [14]. Experiments with
mixtures of equal cylinders made of steel and rubber
will soon be performed to this end.
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