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Résumé. 2014 Quand un système quantique évolue de façon à décrire un chemin fermé dans l’espace des matrices
densités, il doit acquérir, comme conséquence de la topologie non triviale de cet espace, une phase dépendante
du chemin. Pour une évolution du vecteur d’état | 03C8 &#x3E; telle que 03C8 | d/dt | 03C8 &#x3E; = 0, la phase résultante est celle
introduite par Aharonov et Anandan (appelée par la suite la phase A.A.). Mathématiquement, cette condition
correspond à un transport parallèle de | 03C8 ~ associé à une connection sur un espace fibré. Ce travail contient
une discussion élémentaire, ne nécessitant aucune connaissance préalable des concepts mathématiques mis en
jeu, de la phase A.A. pour un système de spin 1. Cette phase apparaît alors comme l’holonomie de la
connection naturelle définie sur l’espace complexe projectif P2(C). Une vérification expérimentale de ces
idées requiert les expressions, d’une part de la phase, par une intégrale de contour, d’autre part d’un
hamiltonien qui réalise le transport parallèle du vecteur d’état. Ces expressions sont données en termes de
quatre quantités directement mesurables, qui paramétrisent la matrice densité d’un spin 1 dans un état pur. Il
n’est pas possible de mesurer directement la phase A.A. sur un système isolé. On doit opérer une séparation,
puis une réunion, de deux sous-systèmes qui subissent des évolutions différentes. Nous suggérons deux types
de méthode qui, en principe, pourraient conduire à une détermination expérimentale de la phase A.A.

Abstract. 2014 When a quantum state evolves in such a way as to describe a closed loop in the space of pure state
density matrices, it must, as a consequence of the non trivial topology of this space acquire a path-dependent
phase. When the state vector | 03C8 ~ evolution is such that  03C8 | d/dt | 03C8 &#x3E; = 0, the resulting phase is that

introduced by Aharanov and Anandan (thereafter called the A.A. phase). Mathematically this condition
corresponds to a parallel transport of | 03C8 ~ by a connection defined on a fiber bundle. This paper contains an
elementary and self-contained discussion of the A.A. phase for a spin-1 system. In this case, the phase appears
as the holonomy of the natural connection over the complex projective space P2(C). Experimental verification
of these ideas requires expressions for both the phase in terms of the path and a Hamiltonian which will
parallely transports the state vector along the path. They are given in terms of four directly measurable
quantities which parametrize the pure state spin-1 density matrices. It is not possible to measure directly the
A.A. phase on an isolated system ; it requires the separating and subsequent bringing together of two
subsystems which undergo different evolutions. We suggest two ways in which, in principle, the A.A. phase
might be measured in the laboratory.
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Introduction.

One of the most fundamental tenets of Quantum
Mechanics is the Superposition Principle. Superfi-
cially this would seem to imply that the theory is

basically a linear one. However, by virtue of the
equally fundamental assumption that two wave func-
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tions related by multiplication by a non-vanishing
complex number define the same physical state,
Quantum Mechanics contains some essentially non-
linear features which lie at the heart of two phenome-
na which have received some attention recently. The
first of these is the so-called « Berry phase » [1, 2]
which is a contribution to the phase acquired by the
wave function when some external parameters defin-

ing the system undergo an adiabatic cyclic change.
The second and in many ways more fundamental

phenomenon is what we shall call the « Aharonov-
Anandan » or A.A. phase [3]. This is a contribution
to the phase whichy results when the state itself,
represented by a pure state density matrix

p = tjl :&#x3E; ’ undergoes a cyclic change which need
( Q 141 )’

not necessarily be adiabatic.
The Berry phase is a consequence of the geometry

and topology of the space of parameters. The A.A.
phase is a consequence of the fact that the space of
quantum mechanical states, E (p ), is itself a non-

linear space with a non-trivial topology, carrying non
trivial geometric structures. Our purpose in this

present paper is to provide a simple discussion for
the spin-1 case which relates the A.A. phase to
physically measurable quantities and to explain how,
in principle, it may be measured in the laboratory.
We have tried to write the paper in such a way as to

make it self-contained and accessible to someone

knowing no-more than elementary Quantum
Mechanics ; as such, we hope that it may serve as a
physicist’s introduction to those concepts from fiber
bundle theory which are useful for Quantum
Mechanics [4].
We begin, in section 1, by expressing the differen-

tial of the A.A. phase along an arbitrary path in
state-space, E (p ), in terms of 4 angular variables
which parametrize the set of pure state 3 x 3 density
matrices. This is done using an elementary operator
technique. Mathematically E (p ) coincides with the
complex projective plane, P2(C) (it would be

P,,(C) for a spin n/2 system). The A.A. phase may
be understood mathematically in terms of a natural
connection which allows one to parallely transport
the phase along an arbitrary curve in P2(C). We
shall make contact with the standard mathematical

machinery of connections on line bundles in section 2
where our 4 physically motivated parameters will be
shown to provide an especially convenient set of

coordinates for P2(C) and in particular to provide a
remarkably simple form for its natural metric and
connection.

To study the A.A. phase experimentally it is

necessary to construct a time-dependent Hamil-
tonian which will take the pure state around an

arbitrarily chosen closed loop in the pure state

density matrix space E (p ) and at the same time
parallely transport the phase. We shall show in

section 3 that there are infinitely many Hamiltonians
corresponding to a given closed loop in E (p ), all

related by a kind of non-Abelian gauge transforma-
tion associated with the group U (2) x U (1). This is
connected with the fact that P2 (C ) may be regarded
as the coset space U (3)/U (2) x U (1). This free-
dom will be made use of to construct a particularly
simple Hamiltonian which also parallely transports
the phase.

Since the density matrix contains all possible
information about an isolated system the A.A.

phase cannot be measured on an isolated system.
This is in contrast with the Berry phase, differences
of which may be measured on an isolated system
provided it does not start out in an energy eigenstate.
This will be explained in more detail in the con-
clusion where we shall give two suggestions as to
how, in principle, the A.A. phase might be measured
in the laboratory.

1. The A.A. phase and closed circuits in the space of
pure state density matrices.

Let us consider a quantum system described by a
Hilbert space state vector 14/ (t)) which performs a
cyclic evolution generated by some Hamiltonian
H(t) during the time interval 0 _ t T. By cyclic
evolution we mean that I ql (t )) = exp i 0 1 ql (0 )) .
(We assume here that the states I t/J (t» are of unit
norm). At a given time t, the results of physical
measurements performed upon the system described
by I t/J (t ) ) remain unchanged if we transform

I t/J (t » by the U (1) transformation :

The density matrix associated with I t/1 (t ) &#x3E; ,
I t/1 (t) &#x3E;  t/1 (t) I is obviously invariant under the

above Abelian gauge transformation. The A.A.

quantum phase {3 is the gauge invariant quantity
given by :

where I &#x26; (t» is any quantum state associated with a
closed curve in the manifold E (p ) of pure state

density matrices i.e. such that p 2 = p and

Tr p = 1 (1).

(1) It is easily seen that any Hermitian positive definite
matrix such that p 2 = p and Tr p = 1 can be writen as
11/1 (t» (1/1 (t) I (with (1/1 (t) 11/1 (t» =1). Let us consider
a basis which diagonalizes p, A 1... A, ... À n being eigen-
values with À i ;?; 0. The normalization condition Tr p = 1

reads A, = 1, while the condition p 2 = p implies

À i2 = À i: i.e. À i = 0 or 1. The two conditions can be

realized simultaneously if and only if A ; = 1 for i = i o and
À i = 0 for i =1= i o. It follows immediately that

P (t ) = 1 1/1 (t» (l/1(t)l. -
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Let us first briefly consider the simple case of the
spin 1/2. The pure state density matrix p has the
form :

with p (t) =  (J" (t ) (p2 = 1).
A quantum cycle in the space E (p ) can be

associated with a closed curve drawn by the tip of the
vector p on the unit sphere. In reference [5] we
considered the Hamiltonian HII = s . p A p, which,
for a given p (t ), satisfies the two equations :

,8 was obtained by solving the Schrodinger
equation associated with Hp (t ). As we shall explain
in more detail later on for the spin-1 case, Hp (t)
generates the parallel transport of an element of a
U (1) fiber bundle constructed over the complex
n =1 projective space PI (C) (PI (C) is isomorphic
to the S2 sphere).,
The spin-1 case is much more involved and we

shall proceed step by step. In this section we shall
first study the density matrix for pure spin-1 state in
order to get a convenient parametrization of the
E (p ) manifold. An arbitrary spin state (not necessar-
ily a pure state) is completely described by the
polarisation vector p = It-I (8), and the alignment
tensor Aij = (2 1t2)- 1  {Si’ Sj} &#x3E; where S is the spin-
1 operator. The normalized 3 x 3 density matrix p
can be written as a linear combination of the unit
matrix 1, and the eight traceless matrices Si and 1/2

{ Si, Sj} - 1/3 82 8 ij. The normalization condition
Tr p = 1 implies the coefficients of the unit matrix
be 1/3, while the other coefficients are simple linear
functions of the components of the polarization
vector p and the alignment tensor Aij. It is conve-

nient to introduce the quadric surface

The matrix Aij being positive definite the surface is
in general an ellipsoid. To specify completely the
ellipsoid we shall use the following 5 real parame-
ters : the three Euler angles which give the space
orientation of the principal axis and the two extra
parameters to define the shape, taking into account
the trace relation Aii = 2. Together with the compo-
nents of the polarization vector, we need eight real
parameters to describe an arbitrary spin-1 state. Let
us show that these eight parameters reduce to four in
the case of a pure state p (t ) = t/J(t» (t/J(t)! : :
I t/J (t» is a normalized complex 3-vectors, so it
involves 5 real parameters but since p (t ) is invariant
by an arbitrary phase multiplication of I t/J (t» we
are left with 4 parameters.

To establish the geometrical relations between the
polarization vector p and the alignment tensor

Aij for pure states it is convenient to apply a rotation
to the spin system in order to bring p along the z
axis :

with

R (n, a ) stands for a rotation of angle a around the
axis defined by the unit vector n, the angles 0
(0 -- 0 -- 7T ), p (0 p :: 2 7T) and the positive
number p (0 , p ,1 ) are the spherical coordinates
of p.

We define

By construction we have :

Let ê (m) be the components of 1.[, (t) &#x3E; upon the
eigenstates 1 m) of S_, with eigenvalues mh :
Introducing the operators S- = Sx ± Sy, the condi-
tions (Sx) = (Sy) = 0 are equivalent to :

Using the relations :

we get the conditions to be satisfied by the

C(i):

We deduce a relation involving p and C (0 ) :

If we assume that p is non-zero, the relations

From the above conditions it follows immediately
that

Let us choose the following parametrization for

ê (:t 1) : :
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We have

Using the relation

we get :

By applying to the state [ $ (t)) the rotation

the alignment tensor is put in diagonal form. Using
the trace relation Aii = 2, we get :

The geometrical interpretation of this result is the
following : for pure states the alignment ellipsoid has
its major axis along the polarization p. There is a

single quadratic relation between the length of the
polarization vector p and the anisotropy of the

alignment tensor e = Axx - Ayy

To put the results of the above analysis in a

convenient form we introduce the rotation R (t )
given by :

and the orthonormal set of unit vectors ei (t ) =
R (t ) ic’i where fci for i = 1, 2, 3 stand for the unit
vectors along the x, y, z axis, respectively. The
polarization vector p and the alignment tensor A for
a pure state can be written as :

where 5 (t ) is given in terms of the angle X (t) by
8 (t ) = 7T/2 - 2 ,Y (t ) with 0  6  7 /2.
A closed circuit is drawn in the manifold E(p ) of

pure state density matrices in the time interval

0 _ t _ T if the following conditions are satisfied

where n and k are arbitrary integers.

Starting from the eigenstate of Sz, 11 ) , we now
proceed to the construction - up to an arbitrary
phase - of the state I t/1 (t) &#x3E; corresponding to a

given polarization vector p (t ), and alignment tensor

A y(t), compatible with the pure state condition

p = p-
It is convenient to introduce the set of four 3 x 3

matrices (with i = 1, 2, 3) satisfying the relations :

The state I (t» = cos X 11 1&#x3E; + sin X 11 - 1&#x3E; is

built from the state 1 1 ) by applying the unitary
operator V (X (t ) ) defined as :

The state [Q(t)) is obtained from If, (t » by
application of the unitary operator associated with
the rotation R (t ) given in equation (8). We get
finally the following expression giving I t/J (t) &#x3E; in

term of the state ! 1 1 ) :

We are now in a position to compute the A.A. phase
relative to a given closed circuit in the manifold

E(p).
Using the conditions (11), we have :

We deduce that .0 = - k7r mod (2 7r).
Let us now compute 4, (t) I .f (t) &#x3E;. We have :

Using:
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we get:

with:

Using the definition of V (X (t ) ) given by
equation (13) one gets :

One immediately sees that l I IP(t)ll 1) = 0.
To get Q (t ), we write the action of the infinitesi-

mal rotation R- Y (t ) dR (t ) on an arbitrary vector x
as :

Then it follows (see the appendix) :

The computation of w (t ) is given in the appendix.
Remembering that [ $ (t )) = V (X (t)) 111) one

can write  1 11 Q (t ) 11 1) as:

By construction the polarization of the state I;; (t) &#x3E;
is along the z axis so that :

Using the results of the appendix one finally arrives
at the following result for i B.p (t) I .j (t) &#x3E; :

The A.A. phase is then given by the following
expression :

where

The above derivation is strictly valid only if
0  8  7T /2. We would like to indicate that the
above formula remains valid when the two limits
8 -+ 7T/2 and 6 - 0 are taken. When 5 = 7T /2, the

state I tÎJ (t » previously introduced reduces to

exp (i a ) 11 1) (cos x =1 ). The state is invariant

upon any rotation around the p axis, so that the
alignment ellipsoid is axially symmetric and the

angle a has no physical content. 6 should reduce to
the Berry phase for ms = h. Indeed we have :

The limit 6 - 0 is more subtle since there is no

longer any polarization axis, and the method devel-
oped in this section is no longer valid. We shall give
a detailed discussion of these break-downs of our

parametrization in section 2. We will show that the
result obtained by taking 5 = 0 in (16) is the correct
one.

2. The A.A. phase as the holonomy factor in the

parallel transport of a line bundle element (2).
In this section we give a derivation of the A.A. non
integrable quantum phase, based upon the concept
of line bundle over the projective space P2(C). Then
we shall choose a parametrization which involves the
physical parameters 0, cp, a, 5 introduced in sec-
tion 1.

We first introduce the concept of ray. We say that
two vector states I qi ) and I ip’) belong to the same
ray, if there exists a complex number 6 such that
I tP’) = 6 1 qi . To a given ray corresponds the
normalized density matrix p :

p is clearly identical for all the vectors I ip ) belonging
to the same ray. In each ray we choose a representa-
tive Z) . It will be convenient to choose Z) in such
a way that when the density matrix follows a closed
path during the time interval 0 , t -- T,
p (T ) = p (0), the representative vector 1 Z) behaves
in the same way, i. e. I Z (T)) = I Z (0)) . The set of
rays associated with a 2 S + 1 dimension Hilbert

space constitutes a 2 S = n dimensional projective
space Pn (C ). The 2 S + 1 dimension Hilbert space
can be endowed with a line bundle structure : the set
of rays is the base space of the bundle. The one-
dimensional vector space of all state vectors belong-
ing to a given ray 1 ç Z) = ç Z) constitutes a fiber
of the bundle.

Since Pn (C ) is by definition the set of lines

through the origin of Cn + 1, this line bundle is

sometimes called the « tautological » line bundle
over Pn (C ). Another term which is often used is the
Hopf bundle.

Calling for a moment 1 t/J) = I ç Z) = ç 1 Z) an

(2 ) The mathematical interpretation of the Berry phase
in terms of the holonomy of a U (1 ) bundle connection is
due to B. Simon [2].
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element of the fiber bundle, let us split its variation
d 11/1 &#x3E; into two parts :

The vertical variation dy I t/J) is along the fiber, i.e.
proportional to I Z) . So we can write dy I t/J) as :

where to (1) is a 1-differential form.
The horizontal variation is orthogonal to the fiber,

i.e. :

Writting dH I t/1) as :

we obtained the 1-form co (1) from the orthogonality
condition  «/J I dH I «/J&#x3E; = (Z I dH I «/J&#x3E; = 0 :

with

The vanishing of the one-form w (1) i.e. of the

vertical component dy I t/J &#x3E; defines the parallel trans-
port of I t/J &#x3E; . Let us consider the trivial fiber bundle
associated with R3, the base space being the plane
xy, and the fiber the lines parallel to the z axis. The
above definition coincides with the displacement
parallel to the xy plane, base of the bundle. The
metric of the bundle being defined as

k =  t/J I t/J &#x3E; = 1 ç 12  z I Z&#x3E;, one verifies that the

bundle connection associated with the one-form
W (1) is compatible with the metric in the sense that
dk = 0 when the vector is parallel transported [4]

Let us first consider the simple case of a spin 1/2.
We take, as a ray representative ( Z) , the following
state-vector :

R (0, cp ) is the rotation R (1, cp ) . R (y, 0 ), where 0
and cp are the polar coordinates of the polarization
vector p :

The components Zl, Z2 of I Z) upon the eigen-
states of Sz read :

Then:

When the ray (or equivalently the polarization p)
describes a closed loop, let us parallel transport the
vector I g Z) in the bundle. The variation of the

coordinate $ in the bundle is given by :

or :

The norm of I ç Z) is conserved in the parallel
transport and since (Z I Z) = 1, we have

[ § ( T) [ = [ § (0 ) [ . We write : ç(T) = expicpç(O).
Remembering that Z) has been defined in such a
way that its phase remains unchanged when the tip
of p describes a close curve (C) on the unit sphere
we have

where f2 (C) is the solid angle defined by (C) on the
unit sphere. In this simple example, we see that

exp (i {3 ) is the holonomy 1 x 1 matrix for the vector
in the fiber associated with a closed loop in the base
space E (p ).

After these preliminaries, we turn to the spin-1
case. The ray space is now the complex projective 2
dimensional space P2 (C) which is also a real 4
dimensional Riemannian manifold. As it was shown
in references [6] and [7] it constitutes a solution of
Einstein equations with a cosmological term A in an
Euclidian curved space. The total action being finite
P2(C) can be considered as a gravitational instanton
in close analogy with the Yang-Mills instantons. It is
quite remarkable that such a mathematical structure
turns out to be relevant to describe the physics of a
system as simple as a spin-1 particle at rest.

In order to construct a ray representative I Z)
whose parameters are closely related to the physical
observables, on may directly use the result of the
previous section. However, as we have already
pointed out, the whole construction breaks down
when p = 0.

To construct Z) it is convenient to introduce the
set of state vectors I x), I y ) , z ) defined as :

(We shall also use the notation lxl) = x ) ,
Ixz) = lyl ’ IX3) = I z).)
We write :
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Under a rotation R, the Ai transform like the

components of a complex 3-vector A. It is useful to
write A as the sum of two real vectors :

Under the gauge transformation

the real vectors a, b transform as :

By a suitable gauge transformation the vectors a, b
can be taken as orthogonal as b = 0. Taking into
account the normalization condition (ZI Z) =
A * . A = a2 + b2 =1, we can write A in terms of two
arbitrary real orthogonal vectors of unit length :

A depends upon the angle q and the three Euler
angles necessary to specify the unit vectors triad u, v,
w = u A v. In order to get a parametrization of A
which is the closest possible one to that of the

physical observables, we have to compute the polari-
zation vector p and the alignment tensor in terms of
A. The basic tools are the formulas giving the action
of Si on a vector IXj) :

The simplest way to derive the above equations is to
represent the spin-1 operator by the orbital momen-
tum operator acting on the space of f = 1 wave
functions xi f (r).
On immediately gets for the polarization vector p,

The calculation of Aij is a bit longer but straightfor-
ward :

By comparing with the equations (9) and (10) in 1
giving p and Aij we are led to the parametrization :

We recall that ei (t) were obtained from the unit
vectors xi by applying the rotation R (t ) given by
equation (8). The role of the phase factor eia is to

guarantee that A(T) = A (o ), when the density
p (t ) is varied along a closed circuit in the time

interval 0 * t -- T, according to equation (11).
The I-form úJ (1) associated with parallel transport

is given in terms of A (t ) by :

To compute the differential dA it is convenient to
write A (t ) as R (t ) . Ao (t ) exp (i a ) with

The scalar product A * . dA reads as follows :

One verifies immediately that Ao* . dAo = 0. Using
the results of the appendix for R -1 (t ) dR one gets :

The connection I-form ú) (1) reads :

The change of § when the vector I g Z) is parallel
transported is :

The norm of I g Z) remains unchanged in the

transport so that the phase shift is given by :

One recovers the formula (16) obtained in section 1
using an operator formalism.
To complete this section we would like to relate

the parametrization used above to the discussion in
[7]. The main point is that in both this paper and in
reference [7] Euler angles are used but these corre-
spond to 2 entirely different actions of two distinct
subgroups of SU(3). In this paper we used the real
SO(3) subgroup of SU(3) with respect to which A is
a complex 3-vector. In [7] use was made of the SU(2)
subgroup of SU(3) which acts only on the states

11 ) and 1 - 1 ) for example but leaves the state
10) invariant. With respect to this SU(2) subgroup
the quantities ,1 = C(I)/C(O), ,2 = C (_ 1)IC (0)
behave as a spinor of SU(2). For physical purposes,
regarding P2(C) as a spin-1 system, it is the diagonal
SO(3) action which is important. In both cases the
orbits of the group action on P2 (C ) are generically 3-
dimensional so we can parametrize points in P2 (C)
by 3 Euler angles, one further quantity labelling the
orbits. In [7] the coordinate is r, in this paper it is y
(or equivalently 8).

Since topologically PZ (c ) is not a product of
SU(2) or SO(3) with a line on a circle, the parametri-
zation must break down somewhere. It does so when
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the orbits collapse either to points (called « NUT’s »
in [7]) or 2-spheres (called « Bolts » in [7]).

It should be emphasized that these are merely
coordinate singularities. In the case of the parametri-
zation used in this paper the points y = 0 and

X = 7T/2 are both bolts. As mentioned above

X = 0, i.e. 5 = 7T /2 corresponds to the case when
the alignment ellipsoid is axially symmetric so to
specify it we need give only the direction of the
polarization vector p which is its principal axis. The
angle a then ceases to have any significance. The
states for which y = 7r/2,5 = 0 are those for which
the polarization vector p vanishes or equivalently
those for which the real 3-vectors a and b are

parallel. By a suitable choice of phase b may be set
to zero and given the normalization conditions we
see that the set of such states is in 1-1 correspondence
with points on a unit sphere. In the coordinates used
in [7] we have a NUT at (1 == (2 = 0, corresponding
to the single state 10 ) and a bolt at (1 1 = C 1= oo
corresponding to the 2-spheres associated with states
having C(0) = 0.

It is of some interest to compute the Fubini-Study
metric on P2 (C ) using the parametrization defined
in section 1. Using the decomposition d I "’) ==
dH I "’) + dv [ Q ) introduced before, we can write :

(If 11/1) is normalized, ds 2 can be considered as the
metric of a S5 sphere). The first term represents the
metric associated with a displacement along the fiber
while the second one is the Fubini-Study metric on
the base space. If the ray representative is nor-

malized  Z I Z) = 1 and if we limit ourselves to

U(1) fiber bundle 6 = eiCP, we have :

As we have seen before the vanishing of the 1-form
ú) (1) defines the parallel transport of the vector

[ Q ) in the fiber.

The Fubini-Study metric on P2(C) is given by :

We have shown previously that a convenient ray
representative involving the parameter introduced in
section 1, is the complex 3-vector :

with

The quantity  Z I d I Z) has been already computed :

The computation of (d (Z I ) d I Z) = dA * . dA
relies upon simple rotation group properties and
uses the results given in the appendix. The result
reads as follows :

Combining the above results as in equation (35) we
get :

where k = oi dt are the left invariant 1-forms on
SO(3) defined in the appendix. This expression
should be contrasted with the result obtained in
reference [7] :

where Q1, (J" 2’ cr3 are left invariant 1-forms on

SU(2). The metric given by equation (36) is of

general triaxial Bianchi IX form. It is remarkable

that the physically motivated SO(3) parametrization
leads to such a simple expression for the metric
components. This is especially so because the general
triaxial Bianchi IX Einstein metric is not known and

those special cases that are known can usually only
be expressed in terms of elliptic functions.

3. Construction of the Hamiltonian which generates
the parallel transport in the fiber bundle over

P2«C).

An arbitrary state time-dependent states I t/J (t)) can
be written as I t/J (t) &#x3E; = I ç (t) Z (t) &#x3E; = ç (t) I Z (t) &#x3E; .
Let us first show that the I-form  t/J (t) I d I t/J (t) &#x3E; is

proportional to the connection 1-form (ù (1) intro-

duced in 2 :

For the physical situation where the time evolution
of is governed by a Hamiltonian, I t/J (t» and

I Z (t)) have constant norms so that w (’) = 0 and
 t/J (t) I d I t/J (t» = 0 are equivalent statements.
In order to allow for an experimental verification

of the theoretical ideas developed in this paper, it is
necessary to construct a time-dependent Hamil-
tonian Hp (t ) which satisfies the two following con-
ditions :
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i) for a given density matrix p (t ) which goes
around a closed circuit in the manifold E(p ),
HII (t ) must satisfy the quantum Liouville equation :

ii) the time evolution governed by HII (t ) corres-
ponds to a parallel transport :

or in terms of the density matrix :

As a first step we shall solve (37) considered as an
equation for H(t ). As we shall see, there exists an
infinite set of solutions, which can be related by
transformations which bear a close resemblance with
non-Abelian gauge transformations.

Let us perform upon the system described by
p (t ) a time-dependent unitary transformation

where

is the unitary operator introduced in section 1.
The transformed density matrix po, such that

p (t ) = X (t ) p 0 X- 1 (t) is nothing but :

The evolution of the state I -Ao(t)) = X-1(t) 11/1 (t ))
is governed by the Hamiltonian Ho (t ) which is
related to H(t ) by the equation :

By definition of Ho we have

since Po == 11 1)  111 ] is time-independent. It fol-

lows that Ho(t) can be represented by the most
general Hermitian 3 x 3 matrix which commutes
with p o. It is easily seen that Ho has to be of the
following form :

where ho (t ) is an arbitrary 2 x 2 Hermitian matrix.
To get an explicit expression for H(t) as given by

(41) and (43), we have to evaluate iIL¥(t) X-1(t) :

The first term iIíU(R (t)) . U-’(R(t)) is computed
in the appendix and found to be :

where the component of fl ?long the x, y, z axes are
given explicitly.
The Hermitian operator ihV(X(t)). V-1(x(t))

is readily obtained from equation (13) :

Using the transformation law :

we obtain :

where ei(t)=R(t)Xi and Ho is given by (43). In
order to get HII (t ) we have to impose the condition
Tr (p (t) Hil ) = 0.
The first term in the r.h.s. of (47) can be easily

shown to give no contribution to the trace by going
to the rotated frame where

is given by :

The other two contributions are readily obtained
and the parallel transport condition reads :

In the appendix we show that 11 = R (t ) 00. Remem-
bering that p = R (t ) i, we have :

The parallel transport condition determines the real
parameter coo(t) :

but leaves the 2 x 2 matrix ho (t ) undetermined. If
we exclude, for Ho, a form proportional to the unit
operator, the simplest choice for Ho(t), compatible
with the parallel transport condition, turns out to
be :

The quantity X(t) Ho X-l(t) is readily evaluated
by noting that Ho commutes with V (x (t)) and by
using the transformation law (46). We arrive in this
way to the following expression for Hp (t ) :
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It is of some interest to rewrite HII (t ) in terms of
the derivative of fi(t) = e3(t). We have :

Using the identity :

we obtain an alternative form for HII (t) :

If we limit ourselves to the quantum cycles which
can be generated by Hamiltonians linear in S, the
length of p remain constant so that the term pro-
portional to X is absent. By making the further
assumption that I p I = 1, the third term can also be
ignored : the state I qi (t)) being of the form

U(R (t)) 11 1 ) , we have :

When I p I =1, the parallel transport Hamiltonian
then reduces to :

One recovers an expression identical to the one
obtained in the spin-1/2 case [5].
We would like now to show that the Hamiltonians

H(t) corresponding to different choices of FIo(t)
having the form specified by equation (43) are

connected by transformations having a close re-

semblance with non-Abelian gauge transformations.
For a given p (t), we construct the set of unitary
transformations W(t) which leave p (t ) invariant. As
before we write :

The unitary transformations

which leave po invariant, i.e. such that

[p o, Wo (t ) ] = 0, are easily seen to be of the form :

where wo is a 2 x 2 unitary matrix. The transforma-
tions which leave p (t ) invariant are then given in
terms of Wo by :

The evolution of the transformed state

is governed by the Hamiltonian H’ (t ) given by

Since p’(t) = W(t) p (t) W- l(t) = p (t), H’(t) is
another solution of the Liouville equation for a given
p (t). One can verify that H’ (t) can also be obtained
from equation (41) by replacing Ho (t ) by :

When Wo (t ) is given by equation (52), Ho (t ) can be
written in a form similar to the right hand side of
equation (43).
The Hamiltonian H(t) is an element of the

SU3 Lie algebra. The transformation H(t) -+ H’(t)
given by equation (53) is that of the time component
of a U(3) gauge field, but with gauge matrices

belonging to a subgroup U(I) Q U(2) of U(3).
The parallel transport Hamiltonian given by (49)

appears as the result of a particular choice of gauge.
As a final remark, let us point out that the fact the

unitary transformations W(t) which leave p (t ) in-
variant belong to a subgroup U(I) Q U(2) of U(3),
constitutes an illustration of the isomorphy property
of P2(C) with respect to the group quotient
U(3)/ (U(l) Q U(2)

4. Conclusion.

In conclusion, we would like to add a few remarks

concerning the possibility of measuring the non-
integrable phase f3 associated with a quantum cycle
in the time interval 0 -- t ==== T. In the case of the

Berry phases one deals with cycles in the external
parameter space. The density matrix for t = T does
not coincide with the initial one if the system is

initially a coherent mixture of states with different
energies. By performing a measurement of the

system at time T, one can get the differences of

Berry phases relative to the eigenstates involved in
the mixture, and consequently some information on
the history of the system during the time interval
0 -- t -- T is obtained [5, 8, 9, 10]. In contrast, in the
case of the A.A. phase, one considers cycles in

density matrix space, which means that

p (0) = p (T). For an isolated system, all the measu-
rable physical information is contained in the density
matrix, so that complete sets of measurements

performed at t = 0 and t = T will give identical

results and nothing can be learnt about the history of
the system during the quantum cycle by performing
measurement at the end of the cycle. In other words,
the A.A. phase cannot be measured on an isolated
system.
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We are going to discuss briefly two types of
methods which may lead to an empirical determina-
tion of the A.A. phase (3. Instead of describing the
methods in general terms, we shall illustrate the
basic ideas by specific examples.

i) In the first class of methods one assumes that
the density matrix p (t), which undergoes a quantum
closed circuit, describes only part of the physical
degrees of freedom of the system. Writing p (t ) =
4, (t»  t/! (t )I, , the state vector of the system
41 (t)) is of the form :

As a concrete example, one may take a non relativis-
tic neutral particle of spin S, 10 (t)) and ItfJ (t ) &#x3E;
being respectively associated with the orbital and
spin degrees of freedom. An initial beam is split into
two, one of the beams travels freely - as far as the
spin degrees of freedom are concerned - while the
second beam is subjected to the action of a spin-
dependent interaction H(t ) in such a way that

I qf (t)) is parallel transported along a closed circuit
during the time interval 0 , t =$ T. By measuring the
interference of the two beams for t . T one can get
the A.A. phase, in the same way as the Berry phase
has been recently measured by a neutron inter-

ferometry experiment [11]. Cooled beams of neutral
atoms are becoming available ; it is conceivable that
interferometry experiments involving light neutral
atoms could be performed in a not too distant

future, offering an opportunity of measuring the
A.A. phase for S -- 1.

ii) In the second type of methods, the Hilbert
space JC of the physical states is written as a direct
sum of two subspaces Jeo and JC, : R = Ro ae Jel.
As a typical example of JC, one may consider the
space built from the hyperfine states ] FM) of the
ground state of atomic hydrogen [5]. Jeo and JC1,
correspond to the states with F = 0 and F =1,
respectively. Introducing the projectors Po and

P1 I onto the subspaces Jeo and JCi the total density
matrix p (t ) can be decomposed as follows :

with

One assumes that the subdensity matrix p 11 (t )
(which in the present example describes a spin-1
system) is parallel transported along a closed path
while p 00 (t ) remains unchanged during the time
interval 0 ==== t , T. In practice, for the particular
class of closed circuits discussed in the end of

section 3, this can be achieved by applying a mag-
netic field of the form given by equation (51) and
having an intensity low enough for its effect on the
state F = 0 to be neglected.

After the cycle the coherence matrix p 10 (t ) will be
multiplied by the extra phase factor e"O. A phase
sensitive detection of this coherence will lead to an

empirical determination of 3. In the case of ground
state hydrogen, the coherence P 10 (t) gives rise to an
oscillating magnetic dipole. By measuring the beat
of the field radiated by this dipole with that of a
reference hydrogen maser, the A.A. phase could be
obtained.

Similar procedures can be used in nuclear mag-
netic resonance experiments as suggested by D.
Suter et al. [12]. According to A. Pines [13], exper-
imental results obtained by this group could already
be interpreted as a manifestation of the A.A. phase.

Appendix

Let us define the rotation R ( cp, 0, a ) by :

with

where R (n, a ) is the rotation matrix associated with
a space rotation of angle a around the axis defined
by the unitary vector n. The purpose of this appendix
is to compute the infinitesimal rotation matrix

R -1 ( cp , 8 , a ) . dR where dR is the variation of the
matrix R ( cp , 0, a ) associated with infinitesimal vari-
ation of the angles cp , 0, a, the axes remaining
fixed. To first order in dcp, dO, da we have :

When the rotation R(n, a ) is subjected to an

infinitesimal variation of the angle a, we have :

R’ being an arbitrary rotation, the following identity
holds :

Here we shall need it for an infinitesimal rotation.
The proof is straightforward in this case and goes as
follows :

Using the above result, we can write R-1 dR as :
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We calculate next the components of the rotated
axes :

We are now in a position to write down the final
formula for R-1 dR. Considering q, 9, a, as time-
dependent functions, the action of R ( cp , 8 , a ) dR
upon an arbitrary vector x reads :

with

We also need the infinitesimal rotation

dR (t ) R -1 (t ), which can be obtained readily from
the above result. We first note that a differentiation
of R (t ). R-1 (t ) gives an equivalent expression :

with

As before we write the action of dR (t ) . R - 1 (t )
upon an arbitrary vector x as :

Noting the simple relation between R’ (t ) and
R (t ) = R (cp , 0, a ), fl (t) is obtained from ro (t) by
performing the following set of transformations :

Using them one gets the components of n from
those of w :

Finally we would like to prove the relation

fl (t ) = R (t ) w (t ) which is not apparent in the

above derivation. To do that we write dR x in two
different ways :

The sought-for relation is obtained by simple inspec-
tion.
The quantities A i = co i dt, pI i = f2 i dt are left

(respectively right) invariant one-forms on the group
SO(3), sometimes called Maurer-Cartan forms.

Their exterior derivatives satisfy the following
relations :

The above results allow an explicit evaluation of the
Hermitian operators ihU-’(R(t)) O(R(t)) and

i h &#x26; (R (t )) U-1 (R (t ) ), in terms of the spin operator
S and the vectors 00, q. One first writes

Noting that

and using the standard relation between infinitesimal
rotation and angular momentum operator, one gets
the sought for relation :

Following a similar procedure, one arrives easily
at the second relation :

Note added in proof : In a recent work of D.
Suter, K. Muller and A. Pines [13], the A-A phase
was measured in three-level N.M.R. interferometry
experiment, which corresponds to a particular
example of the methods of type (ii) described above.
This work contains an explicit experimental proof of
the topological invariance of the A-A phase. We
thank Prof. A. Pines for communicating his results
before publication.



199

References

[1] BERRY, M. V., Proc. R. Soc. London, Ser A392

(1984) 45.
[2] SIMON, B., Phys. Rev. Lett. 51 (1983) 2167.
[3] AHARONOV, Y. and ANANDAN, J., Phys. Rev. Lett.

56 (1987) 1593.
[4] For an introduction for physicists, to the concept of

line bundle and its physical applications, see also
B. Zumino : Lawrence Berkeley Laboratory
preprint March 1987 LBL-23056 UCB/PTH-
87/13.

[5] BOUCHIAT, C., J. Phys. 48 (1987) 1627.
[6] EGUCHI, T. and FREUND, P. G. O., Phys. Rev. Lett.

37 (1977) 1251.

[7] GIBBONS, G. W. and POPE, C. N., Commun. Math.
Phys. 61 (1978) 239.

[8] MOODY, J. et al., Phys. Rev. Lett. 56 (1986) 893.
[9] TYCKO, R., Phys. Rev. Lett. 58 (1987) 2281.

[10] SUTER, D. et al., Molecular Phys. 61 (1987) 1327.
[11] BITTER, T. and DUBLERS, D., Phys. Rev. Lett. 59

(1987) 251.
[12] SUTER, D. et al., Phys. Rev. Lett. 57 (1986) 242.
[13] SUTER, D. et al., University of California preprint,

Nov. 1987, to be published.


