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Résumé. 2014 Nous présentons une étude théorique de la rétrodiffusion cohérente de la lumière par un milieu
désordonné dans diverses situations incluant les effets dépendant du temps, les milieux absorbants et les effets
liés à la modulation d’amplitude de la lumière. Nous discutons tout particulièrement le cas de la diffusion
anisotrope et les effets de la polarisation afin d’expliquer quantitativement les résultats expérimentaux. Nous
donnons un calcul microscopique de l’albedo cohérent afin de justifier la relation heuristique précédemment
établie. Nous prédisons aussi la forme de l’albedo cohérent d’un milieu fractal. Enfin, la validité des différentes
approximations utilisées est discutée et quelques développements ultérieurs sont évoqués.

Abstract. 2014 A theoretical study of the coherent backscattering effect of light from disordered semi-infinite
media is presented for various situations including time-dependent effects as well as absorption and amplitude
modulation. Particular attention is devoted to the case of anisotropic scattering and to polarization in order to
explain quantitatively experimental results. A microscopic derivation of the coherent albedo is given which
strongly supports the heuristic formula previously established. In addition the coherent albedo of a fractal
system is predicted. The validity of the different approximations used are discussed and some further
theoretical developments are presented.
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1. Introduction.

The scattering of light by an inhomogeneous
medium is an old problem which appeared at the
turning of the century in the context of the study of
propagation of light in the high atmosphere. This
problem is very important in many fields of investiga-
tions like the scattering of electromagnetic waves
from fluctuations in plasmas and more generally,
turbulent media, meteorology, astrophysics and in-
deed condensed matter physics.
When considering the problem of propagation of

waves in strongly heterogeneous media it is useful to
recall briefly the different regimes for wave prop-
agation. Three characteristic lengths are important
in this problem : the wavelength A, the scattering
mean free path or extinction length f and the

transport mean free path f*. These mean free paths
are well defined for a dilute medium of scatterers
where only the single scattering is taken into ac-

count : they depend only on the cross section and the
scatterers concentration. When the scattering is

isotropic f is equal to f *. Otherwise, for example for
scatterers of size comparable to À, f* can he larger
than f. For distances less than f the phase of the
wave is correlated and the propagation of the light is
described by a wave equation in an average medium
as long as A is shorter than f. Between f and Q * the
transport of intensity obeys an equation of the

Boltzmann-type while for distances larger than f*
the effective transition probability for scattering
becomes isotropic and the diffusion approximation is
valid. This was the basis of the radiative transfer

theory initiated by Schuster [1] in 1906. In this kind
of description the correlation between the phases is
neglected beyond f and the « random walk » of the
light is described classically.
The effect of interferences over scales larger than

f in the multiple scattering processes was first
discussed by de Wolf [2] in the context of radar

scattering from ionized and neutral gases. The basic
interference effect in the backscattering direction
was clearly demonstrated in 1984 by Kuga and
Ishimaru [3] who observed an enhancement near the
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retroreflection direction of the light scattered by a
suspension of latex spheres. However, possibly due
to a limited experimental resolution, the enhance-
ment was only 15 % for the largest concentration i.e.
for the broadest cone, in contrast to latter experi-
ments to be described below. In following publi-
cations Tsang and Ishimaru [4, 5] explained this
observation by considering the constructive interfer-
ence in the backward direction due to double [4]
scattering and then multiple scattering [5]. This
interference property has been called the coherent

backscattering or sometimes the coherent albedo.
Simultaneously solid-state physicists dealt with simi-
lar problems in the domain of electronic transport
properties of impure metals. The coherent backscat-
tering phenomenon previously evocated affects the
transport cross section in the so-called « weak

localization » regime. By increasing the probability
of backscattering of electrons it decreases the electri-
cal conductivity at low temperatures [6]. Modifi-
cation of these interferences by applying a magnetic
field provided spectacular oscillations of the mag-
neto-resistance [7] with period of the flux quantum.

In an important paper Golubentsev [8] analysed
the coherent backscattering of light within the multi-
ple scattering situation as well as the suppression of
the effect by the motion of scatterers.
A cone of coherent backscattering in two and

three dimensions was predicted by Akkermans and
Maynard [9] followed by a new generation of

experiments by Wolf and Maret [10] and Van
Albada and Lagendijk [11]. These observations of
the coherent backscattering were also performed on
highly concentrated suspensions of polystyrene parti-
cles in water. They revealed additional features

which stimulate deepenings of the theoretical

analysis : the observation of peak heights close to 2,
the sharp (almost triangular) lineshape of the peak,
the polarization effects and the dependence on the
size of the scatterers. An analysis of this lineshape
has been given by Akkermans, Wolf and Maynard
[12] within the diffusion approximation for the

transport equation, as well as a first approach of the
partial suppression of the coherent albedo for cros-
sed orientation of incident and detected

polarizations. The effects of the polarization and the
transverse nature of light on coherent backscattering
have been calculated in detail by Stephen and

Cwillich [13] within the diffusion approximation for
point-like scatterers.
An anisotropy of the cone of backscattering for

small particles has been observed by van Albada,
van der Mark and Lagendijk [14]. It originates from
the low-order Rayleigh multiple scattering. By com-
paring the albedo of slabs of different thickness they
were also able to determine the contributions of the

different orders of scattering to the lineshape. All
these features in the retroreflection of light have

been observed and analysed for ensemble averaged
systems where the sampling time is larger than the
characteristic correlation time of the scattered light.
On the other hand, the time autocorrelation

function of the light intensity multiply scattered by
the suspensions has been determined by Maret and
Wolf [15] inside and outside the backscattering cone.
Strong fluctuations of the intensity (speckle) were
observed on solid samples. After numerical ensem-
ble averaging of tens of scans a peak is built up in the
backscattering direction as found by Etemad,
Thompson and Andrejco [16]. Another, more per-
formant way of ensemble average by rotating the
samples has been reported by Kaveh, Rosenbluh,
Edrei and Freund [17] with a determination of the
statistical distribution of the scattered intensity. This
short (and partly incomplete) review may demon-
strate the rapidly growing recent interest in the field
of weak localization of light.
The purpose of the present article is to give a

critical discussion of theoretical foundations of the

coherent backscattering and to propose new ex-

pressions of the albedo for more general situations
than treated previously. The paper is organized as
follows : in section 2, a heuristic expression of the
averaged albedo of a disordered medium is devel-
oped for both the time dependent and the stationary
regimes. Then the corrections due to modulation or
absorption are established. For a comparison with
the experiments it is essential to carefully discuss the
effect of the anisotropy of scattering arising from
large sizes of the scatterers (compared to the

wavelength). In this situation, the transport mean
free path f* differs significantly from f : this calls for
a generalization of the diffusion equation which is
discussed. In section 3, we justify the heuristic

expression of the albdedo by a microscopic treatment
of the perturbation expansion in terms of multiple
scattering.

Particularly the basic interference factor

cos [(ko + k)(ri - rN )I where ko and k are respect-
ively the incident and emergent wavevectors and

rl 1 and rN the initial and terminal points of a

sequence of N scatterings, is shown to arise from the
classification of the diagrams in « ladder » and
« crossed » related by time reversal symmetry.
An expansion into the orders of multiple scattering

is proposed in section 5. Up to this point all develop-
ments are made for scalar waves. In section 6 the
vectorial nature of the electromagnetic waves is

taken into account. The depolarization ratio and

polarization dependence of the coherence between
time reversed paths are obtained as a function of the
order of multiple scattering for Rayleigh scattering.
This allows us to give a physical interpretation of the
recent results of Stephen and Cwillich [13] about the
lineshape and to discuss them critically.

In section 7, the albedo of a fractal structure is
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analysed and a simple expression involving the
characteristic dimensions of the fractal structure is

obtained. Finally, the main results of this paper are
summarized in section 8 and some comments added.
The basic phenomenon which underlies the en-

hanced backscattering is the constructive interfer-
ence effect in the backscattering direction. This
fundamental effect can be discussed in a simple way
before entering the detailed developments of the
theory. For the sake of simplicity let us consider the
propagation of scalar fields. In a medium of scatter-
ers we define A (Ri, t ; Rj, t’ ) as the complex ampli-
tude of the field at (Rj, t’ ) from an impulse point
source at (Ri, t ). For the geometry of the albedo,
the sources as well as the terminal points of the
scattering sequences are located near the interface
between the scattering medium and the non scat-
tering medium (air, vacuum, ...). The incident and
emergent wavevectors are respectively ko and
k. The reflected intensity a from the medium is

obtained from the product of A and A *, weighted by
the external phase factors of the incoming and
outcoming waves summed over the coordinates of
the initial and final points of the scattering se-

quences :

Three contributions are included in (1). They are
labelled by i for the incoherent multiple scattering
(Fig. la) ; c for the coherent multiple scattering
(Fig.1b) and s for « speckle » or fluctuating contri-
bution. These contributions can be written as :

where we have used the time reversal symmetry
property :

Suppose first that the scatterers are immobile. The
last term provides a contribution leading to a

« speckle » pattern of the intensity fluctuating over
characteristic scale 6 0 of the reflection angle 0 (such
that k + ko [ = 2ksin 0/2), 50 oc A/DwhereDis
the width of the beam of light (D  f ). Suppose
now that the scatterers are in a random motion and
that the scattered intensity is averaged over a time
large compared to the coherence time of scattered

Fig. 1. - (a) Incoherent multiple scattering contribution
to the total albedo ; (b) Coherent multiple scattering
contribution to the total albedo.

light. This condition defines an averaged medium
from which the interferences of the « speckle » are
washed out. Hence as vanishes while the two other
contributions ai and ac subsist in average. They
involve now the averaged propagator for the inten-
sity Q (Ri, t ; Rj, t’ ) defined by :

where the bar indicates that the ensemble average
has been performed. The incoherent contribution
a; i for the albedo is therefore obtained from this

averaged propagator of the intensity Q without
reference to the phases of the field amplitudes, i.e.
from the radiative transfer theory describing the
transport of the intensity from Ri at t to Rj at

t’. For large number of scatterings this transport
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process can be described by a diffusion process of
the intensity. The coherent contribution involves a
phase factor (ko + k). (Ri - Rj) which survives the
ensemble average. It originates from the particular
situation described in figure lb, i.e. from the inter-
ference between the wave travelling along any
sequence and the conjugated wave travelling in

reversed order along the same sequence.
Indeed time reversal symmetry relates the two

paths represented in figure lb. By gathering together
both contributions, one obtains :

where the interference effect is now taken into

account in the term accounted for by the cosine
term. The averaged albedo of disordered substances
can then be calculated once the averaged propagator
Q (Ri, t ; Ri ; t’) for the intensity transport is known.
This will be carried out in the next part in different
situations.

2. A heuristic expression of the albedo.

We consider in this part how the coherent backscat-

tering effect explained in the introduction affects the
angular dependence of the average reflected inten-
sity of a scalar wave multiply-scattered by a semi-
infinite disordered medium (Fig. 2). To this end, we
shall first give a phenomenological derivation of the
basic expression for the albedo, which will be

confirmed on a microscopic basis in section 3.
Let us first study the time-dependent case in which

an energy pulse is incident on the medium. The

incident energy flux is Fo 6 (t ) where Fo is the pulse

Fig. 2. - Geometry used for the calculation of the cohe-
rent albedo, showing two interfering light paths.

energy per unit surface. After the wave experiences
its first collision, the total energy released per unit
time in the elementary volume d2p dz is given by :

The transport of the light intensity in the medium is
described by the Green function P (r, r’ ; t ) defined
by the response in r’ at time t to a pulse in r at time
t = 0. For a large number of scatterings (or in the
long time limit), this function is well approximated
by the solution of a time-dependent diffusion

equation. The incoherent energy emerging from the
medium per unit time in the solid angle dfi around
the emergent direction s is given by

where c is the light velocity.
Due to the translational invariance in the x-y

plane, P depends on the projection p = (r - r’ )1 on
the interface plane and the emerging energy can be
therefore given per unit surface. Finally, the total
time-dependent albedo is defined as the ratio of the
emergent energy per unit surface, unit time and unit
solid angle dO to the incident energy flux along the
direction go :

In this expression, /-t and go are respectively the
projections of 9 and go on the z-axis. The factor

{1 + cos [kef + so ) . (r - r’)]} accounts for the in-

terference effects for the ensemble averaged albedo
as discussed in the introduction. The exponential
factors e - Z / /}Lf and e - Z / }Lo f account for the damping
of the incident and emergent waves. They come
from the fact that the intensity which propagates in
the medium is not issued directly from the incident
source pulse but comes from reduced intensity
sources (following the terminology of Ref. [18]). At
this point, let us also note that the distance travelled
by the waves before the first and after the last

scattering events differs for a given sequence and its
time reverse counterpart as noted by Tsang and
Ishimaru [5]. It gives instead of equation (7) :
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This expression still gives the factor two right in the
backscattering direction. Although important, we
will neglect in the remaining calculations of this

article the difference between equations (7) and (8)
since we are interested by the small angle regime
where and go are of order one. Finally, the single
scattering contribution in equation (7) has been

omitted since it is not justiciable of any interference
effect.
The expression (7) has been obtained for a

dynamical experiment where an energy pulse is

incident on the medium. Defining P (p , z, z’ ) as the
time-integral of P (p, z, z’ ; t ), we can obtain the
stationary counterpart of equation (7) as :

which was established in reference [12]. Except for
the interference effect, the calculation of the statio-
nary albedo a (so, s ) reduces to that of the function
P (p , z, z’ ) describing the classical transport inten-
sity.

This problem is well-known as the Schwarzschild-
-Milne [19] problem first considered to study the flow
of light in a stellar atmosphere.

It follows from the radiative transport theory or
from more microscopic approaches (see Sect. 3) that
P (p, z, z’ ) obeys the integral equation :

The insertion of the solution of equation (10) for
the half-space problem in equation (9) yields the
total stationary albedo. The resulting formula is

identical to those derived by Tsang and Ishimaru [5]
and Van der Mark et al. [22] except for the small
difference in the exponential factors between the
coherent and incoherent contributions already dis-
cussed. To compare the different formulas quantita-
tively let us note that our function P is related to

their ladder intensity F by P = Q 2 F. The statio-y y we

nary expression of the albedo represents an improve-
ment compared to its dynamical counterpart. The
integral equation determining time-dependent func-
tion P is more complicated and the usual method
consists in solving it in the diffusion approximation
and to deduce P within the same limit. But equation
(10) is exact and moreover it must be noted that it
can also be solved in the diffusion approximation in
an equivalent way.

As shown by the numerical calculations of Van
der Mark et al. [22] the expansion of the resulting a
in successive orders of scattering is, except for the
very first orders identical to that found by using the
solution of the diffusion equation to be discussed
below. This is therefore a justification for using this
approximation, which we shall do hereafter in the
remaining part of this paper.

Before considering in detail this approximation,
let us discuss some problems related to the boundary
conditions in connection with equation (10). From
it, we can obtain the corresponding integral equation
for the so-called mean-density of energy U(z) (which
has the dimension of an inverse volume) :

where

This relation known as the Milne-equation is

actually a direct consequence of the conservation of
energy. For sources located at the infinity within the
medium, the second term of equation (11) is absent
and one is dealing with the true Milne problem
which has the advantage to be solved exactly for
point-like scatterers and no incident flux onto the
outer surface z = 0 by mean of the Wiener-Hopf
method [20]. It gives an energy density profile
U(z) which cancels on the plane z = - zo where
zo/f = 0.7104... This exact solution will be of great
help for the diffusion approximation we consider
now.

The important term in equation (6) is the Green’s
function P (r, r’, t ) which obeys a transport equation
in the most general situation. Far enough from the
interface, it can be shown that this transport equation
can be approximated by a diffusion equation :

It means that for long time and long distance
(compared respectively to T and f), the local light
intensity has a diffusive motion in the disordered
medium. P (r, r’, t ) is therefore the probability
distribution to go from r to r’ in a time t for a
random walk which never crosses the interface. This
last condition would be taken into account by
cancelling the probability P on the surface at

z = 0. Nevertheless we know from the exact solution
of the Milne problem that P cancels on the plane
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z = - zo with zo = 0.7104... e. On the other hand
within the stationary diffusion approximation, the
boundary condition consists in cancelling the energy
flux flowing towards the disordered medium at

z = 0. Then the probability P vanishes on the plane
z = - zo where zo = 2/3 f. In the following, we will
adopt zo = 2/3 f which applies as well to the more
general situation of time dependent experiments.
Within this approximation, one obtains :

In this relation, the translational invariance of the
average medium along the x and y directions imposes
that P depends only on p = 1 (r - r’)_L I, while the
bracketed terms express the fact that the diffusion

paths do not cross the interface plane. The diffusion
constant is D = 1/3 Qc where the renormalization
due to weak localization effects is neglected. In
three-dimensional systems, it is justified for small
enough k/f.

2.1 THE TIME-DEPENDENT ALBEDO. - The time-

dependent albedo a (0, t) as defined by equation (7)
can be calculated at the same level of approximation
[23]. It is the response to an impulsion at time

t = 0 in a direction defined by the angle 0 to the
backscattering direction. In this dynamical exper-
iment, different time scales occur describing different
physical phenomena. We restrict here the discussion
to the case of aqueous suspension of latex micros-
pheres studied in reference [10].
The shortest time scale is given by the transport

elastic scattering time T which is of order of

10- 13 s.
Another characteristic time scale is provided by

the time TB associated with Brownian motion of the
scatterers. More precisely, it is defined through
TB = k 2IDB where DB is the diffusion constant of
the Brownian particles. TB is of order 10-3 s. For
time scales smaller than TB, the scatterers can be

considered immobile and one single spatial config-
uration of the scatterers is explored for which strong
intensity fluctuations (speckle) are expected. Aver-
aged quantities must be obtained practically by the
usual averaging over measurements. For time scales
larger than TB, the Brownian motion of the scatterers
could provide coarse-grained self-averaging quan-
tities.
A third time scale arises from the breaking of time

reversal invariance due to the Brownian motion of
the scatterers. This situation has been carefully
analysed by Golubentsev [8]. Let us consider a

multiple scattering sequence of length L = NQ . The
travel time of light through this sequence is t = N T .
If during the time t, the scatterers moved over a total
length larger than k, then the phase-coherence
between the two time-reversed paths breaks down
and the interference effect disappears.
During a time t, each scatterer moves by diffusion

over a distance J tJ.r2 == DB t. Then, the N scatter-
ers move over a total distance such that L 2 =
N Ar 2 = NDB t. To observe the interference effect
between time-reversed sequences, we must have
L  A. The coherent backscattering phenomenon
will therefore be observable for times t  À 2 INDBI
or t - J T T B. This is the third characteristic time

scale associated with the breaking of time reversal
invariance. Let us now compute the annular
lineshape of the coherent albedo for t  --.,/ T T B. For
convenience in the calculations, let us consider the
case of normal incidence (,u 0 = 1) and quasi-normal
emergence (A == 1). We can therefore write the
coherent part of the albedo as :

where k = k (s + s ) and k - 2 7T 0. The angularL 0 1 L = A

dependence of a,(O, t) arises only from the last

Gaussian integral and the remaining z-integrals act
only as weighting factors. In the long time limit

J Dt  f one has :

or

These expressions show that :

a) at a given time t, the reflected echo is enhanced

by a factor (1 + e- Dtkl) within a cone of angular
width Oc = A /2 7r BlDt. It is a consequence of the

fact that the typical size of diffusion paths is

JDt,
b) the amplitude ainc(t) of the incoherent part of

the echo is proportional to the probability for a
random walk to cross the plane z = - zo after a time
t and decreases like t - 3/2 . This result is actually valid
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at any space dimensionality and especially in
2 dimensions where the last part of (15) must be

changed into which leaves the

time dependence of (16) unchanged,
c) for a fixed value of the angle 00, the coherent

albedo decreases as (Tlt )312 for times t  t c ( (0)
where while for times t

it is exponentially damped as expected ac(OO, t ) oc

Let us now summarize the time-dependent effects
as shown in figure 3. At a given angle 80, we observe
the average intensity reflected by the disordered
medium. Suppose that 00 is large enough such that

(which is of order of 3 x 10- 3 £j ) . Then at times t2 7r

between T and tc( (0) the reflected intensity is
enhanced by nearly a factor of two, and decreases in
the same way as the incoherent part of the echo like

(T It )3/2. It converges to the incoherent value as an

exponential around tc(Oo), due to the lack of coher-
ence between time-reversed paths of length larger
than 3 À 2/4 7T 2 ° ð f .

Fig. 3. - Time-dependent albedo.

Suppose now that 00 is smaller than

Then at times t

between T and T T B I we observe the coherent
backscattering echo in the same way as previously,
while it converges to the incoherent values around

J TTB due now to the breaking of time-reversal
invariance by the Brownian motion of the scatterers.
Let us discuss now the possibility of observation of

the coherent dynamical echo.
First of all, for aqueous suspension of latex

microspheres, the characteristic values of T and

TB given above imply that -.,/ TTB =z 10-8 s. There-
fore, the resolution time of a dynamical experiment
should be at least of the order of the nanosecond.
Such a resolution has been achieved recently [29] in
order to measure the transmission coefficient of

disordered systems. For such a nanosecond resol-
ution, the coherent echo will be observed only if

tc( (0)  1 ns, i.e. 00 -- 3 x10-3 A /1 for suspensions
considered above. According to the experimental
results of reference [10], where A /2 7Tf =.-.z 3 x
10- 3 rd, we need an angular resolution better than
10 tJbrd. Until now the best angular resolution has
been obtained by Kaveh et al. [17] and is - 50 Rrd.
Then, the measure of the dynamical albedo requires
another system in which the transport mean free
time T is decreased such as in random distribution of
submicron titania crystals recently considered by
Genack [26].

2.2 STATIONARY ALBEDO. - We now evaluate the
albedo for a stationary incident flux, which corres-
ponds to the experimental situation described in
reference [10]. According to the general equation
(7) we have to integrate over time the expression
(15) in order to obtain the coherent part of the

stationary albedo. This is easily done using a Fourier
transform of P (r, t ). Then the expression of

a,(O) is

Within the small angle limit (ii = J.Lo) and for
normal incidence /i = tLo = 1, we have :

This expression exhibits two interesting features :

the angular width inside which the coherent effect is
observable is of order A /2 7rf as expected and near
the exact backscattering direction, the albedo varies
linearly with angle 0:
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Hence the lineshape of the coherent backscattering
peak is triangular. Such a singularity originates from
the fact that, at 0 = 0, the coherent contribution of
all diffusion paths produces an infinite sum of
Gaussian terms. Although each term is parabolic
near 0 = 0, their sum gives rise to a triangular
singularity. Alternatively, the coherent contribution
to the albedo can also be considered [12] as a

« structure factor » of the stationary transport term

The variable 0 probes the size of

the diffusion paths in the medium. The smaller the
angle 0, the larger the maximal size of the loops,
which means that, at a given angle 0, only the paths
of length L smaller than À 2/£ (J 2 contribute to the
coherent albedo. Hence, the quantity A2/De2 is

analogous to the phase coherence time T, first
introduced by Larkin and Khmelnitskii [21]. For
electronic systems, T I&#x3E; is identified with the tem-

perature-dependent inelastic scattering time T¡ oc

T-p (where p is some positive exponent). Then, the
contribution of diffusion paths at 0 = 0 corresponds
to the ideal situation where the temperature would
be exactly zero in electronic systems and the phase
coherence time infinite. Actually, in real systems the
absorption of light represents a mechanism which
prevents the observation of this coherence close to
0 = 0 as developed in the following part.

2.3 EFFECTS OF ABSORPTION AND FREQUENCY. -

Consider an incident light whose intensity is mod-

ulated at frequency Q. If the incident intensity is of
the form I (t) = Io e’ot, the modulated part of the
signal at frequency f2 is proportional to [23] :

where P (r, r’ ; ,f2 ) is obtained from equation (14)
by a time Fourier transform. Let us note at this stage
that the interference factor cos (k 1.. p) is purely
geometrical and therefore is not affected by the
Fourier transform. This calculation leads to an

expression of a (0, n ) deduced from a (0, f2 = 0)
by the formal replacement kl H k2 - i "ID = k 2 -
i  - 2 so that

The new characteristic length § = J D / n is the

diffusion length at the frequency Q. In the asympto-
tic limit k, ::,.&#x3E; 1, the modulated coherent response
is identical to its stationary counterpart, i.e.

a, (k,, ) =..: a c (k,). But in the limit k, 6 .: 1, the

modulus of the coherent albedo reduces to :

Therefore, a, (0, f2 ) is smaller than a, (0, 0 ) by a
quantity of order f / ç. The physical meaning of this
reduction is as follows : the modulation of the
incident light is washed out for loops of length
L c/f2, i.e. of transverse extension larger than
ç. Nevertheless, it must be noted that we still obtain
the enhancement factor 2, i.e. a,(O, f2 ) =
a;p (o, a). At this point, a comparison with the
effect of thermal motion of the scatterers and with
the electronic case appears to be useful. In these

cases, the ratio between a c and. a inc is smaller than
one. For weakly localized electronic systems, the
role of the inelastic scattering is to break the time
reversal invariance between diffusion paths of exten-
sion larger than J Ti/ T leaving unchanged the

incoherent contribution to the classical transport
coefficient. Then, T; for electrons has exactly the
same effect as TB for the light. But, in contrast, for
the case of light, the role of the frequency (or
absorption as we shall see) is to decrease in the same
way both the coherent and incoherent contributions
to the albedo. This leaves unchanged the factor of
two in the backscattering direction.

Let us now consider the effect of absorption [23].
The presence of absorption in the disordered
medium can be described by a characteristic time
Ta = Qa/c where Qa is the absorption length. The
total albedo can now be obtained by the simple
relation :

where a (t ) is the time-dependent albedo. Within
the diffusion approximation, aabs(O, Ta) can be

obtained in the same way as for the frequency
dependent albedo, from the stationary non-absorb-
ing case by mean of the formal replacement of

where

usual. In the backscattering direction we obtain :

The validity of this relation has been recently
demonstrated experimentally [10]. As mentioned

above, the absorption acts only to decrease equally
both coherent and incoherent contributions to the
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albedo. The transformation of the linear regime at
small angles, 0  A /2 7r $$a, into a parabolic one
can therefore be simply understood as the elimi-
nation of all the scattering sequences of lengths
larger than the absorption length fa.

2.4 THE ALBEDO FROM TRANSPORT THEORY : THE

PROBLEM OF ANISOTROPIC SCATTERING. - Up to
now, we have only considered the case of isotropic
scattering. However, for finite size scatterers, it is

not isotropic. The diffusion constant D is then given
by D = cf * /3, where f * is the transport mean free
path defined by :

where n is the density of the uncorrelated scatterers
and a (w ) the differential cross-section. For scatter-
ers of large size compared to the wavelength, the
scattering is mainly in the forward direction and the
ratio between f* and f can easily be ten in practical
cases [10]. As f * and not f enters the diffusion

constant D, it can be expected that at least at small
angles, the lineshape should involve f * rather than
f. The aim of this part is to give a short derivation of
this fact. Equation (7) is of little help because it is

not clear where f should be replaced by f * in the
e- z/,."f

damping factors  l . It is thus simpler to use

transport theory. For the sake of concision we shall
use the same notation and follow the derivation of

the diffusion equation of chapter 7 of reference [18].
Let us define Ud(r) as the local diffuse energy

density at point r. By assuming a smooth variation of
Ud (r) on the length scale of f, it can be shown that
Ud (r) obeys a diffusion equation which is written in
the particular case of an interface illuminated by a
point source FO(p) = Fo 52(P) :

with the following boundary condition at the inter-
face :

where zo has the value 2/3 f *.
This relation must be satisfied at any point p of the

interface ; it expresses the property that the flux of
diffuse intensity towards the medium vanishes at the
interface. 61 (0) represents the effect of anisotropy
of the scattering pattern and vanishes for isotropic
scatterers. It depends on the transport mean free
path $ * by the relation :

We recall that the boundary condition (29) is only
approximate. By comparing this relation to the exact
boundary condition for the special case of isotropic
scatterers, the value of zo changes weakly from
2/3 f * to 0,7104 f * but we will neglect this difference
here. In the problem of the albedo, we are interested
in the energy density Ua (p, 0 ) at the interface
z = 0. This solution of equations (28) and (29) can
be obtained by a Bessel transform which gives :

where Jo (A p ) is the zero order Bessel function and /3
the correction of anisotropy for the mean free path :

The emerging flux at

Hence, from Ud (p, z = 0 ), we calculate the total

albedo (coherent part) by the two-dimensional
Fourier transform of Ud(p, 0) :

where the integral is on the interface plane. It finally
gives :

which in the small angle regime (k, f -- 1) reduces
to :

We note that the value of a inc = a c (0) does not
depend on the ratio f * / f. This is implied by the
definition of the boundary condition for the diffusion
approximation. But a inc differs from that found by
the image method. This is not surprising since this
value depends on the weight of small paths, which
are differently described in the two approaches.

In contrast, the absolute slope given by
equation (35) is identical to that obtained for isot-

ropic scatterers by the image method (cf. Eq. (21)
with zo = 2 f) if one replaces everywhere the elastic3
mean free path by the transport mean free path
f *. This is physically appealing since one expects the
absolute slope of the coherent albedo to depend only
on the contribution of long light paths and not on the
detailed exponential factors near the interface

(e-z/f and e-z’/f) for the incident and emergent
waves. Ultimately it comes from the diffusion theory
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and hence depends only on D = 1/3 f 
* 

c. This result

can be seen as a justification of the formal replace-
ment of f by f * in equation (21). On the other hand,
this expression of a,(O) given by the transport
theory becomes incorrect for kl f * large enough
since then the total albedo becomes negative. This
unphysical result is the consequence of the well-
known fact that the diffusion approximation (cf.
Eq. (28)) is only valid on length scales larger than
f *. It is not critical in the isotropic regime, since in
this caste 13 = 0 and the albedo never becomes

negative.

3. Microscopic derivation for the expression of the
albedo.

In the previous section, we have established a

heuristic expression of the albedo a ( 9 ) based on
two basic ingredients. First, the coherent effect due
to time reversal symmetry provides the phase factor ;
i.e. the angular variation of the albedo. Secondly,
the intensity transport in the bulk was obtained in
the asymptotic limit of long-times as the solution of a
diffusion equation whose boundary conditions for
the semi-infinite geometry are accounted for by the
image method.
Our aim now is to recover these results starting

from the elementary collisions experienced by an
incident plane wave. This program will be carried
out in two distinct steps. The first one consists to
establish the existence and the form of the interfer-
ence term appearing in equation (4) in its full

generality from microscopic arguments. We shall see
that this form in equation (4) where Q represents the
incoherent contribution to the intensity transport is
actually valid in a bulk. The second step is devoted
to the study of the expression of the albedo of a
semi-infinite medium. In such a medium, the cohe-
rent term remains in force, but it appears under a

slightly modified form as shown by Tsang and
Ishimaru [5]. It must be noted here that this modifi-
cation as well as the final expression of a (s, so) are
based on various approximations which give to this
derivation less generality than the argument devel-
oped in the first step.

Let us now specify these points. For the sake of
simplicity, we will consider here the scalar case for
which the electromagnetic field has only one com-
ponent.
The retarded Green function for the wave ampli-

tude A (r) is defined as the solution of the equation :

where k o = - with k 0 the wavelength in free
0

space, while n(r) represents the fluctuating part of
the refractive index giving rise to the multiple

scattering. Finally, w is the frequency of the incident
wave such that w = ck (c being the light velocity in
the medium).
The Green function G is related to the amplitude

A (r) of the wave in a point r by

where S (r’ ) is the source function.
In free space, i.e. without scattering centres

(n (r ) = 0 ), the solution of equation (36) is given
by :

When n (r) is different from zero, the wave is
scattered many times and this scattering can be
described by the S-matrix or equivalently the mass
operator M through the Dyson equation for the

average propagator

or in an operator form :

The mass operator M renormalizes the free prop-
agator Go. It can be calculated by standard diagram-
matic expansion (see Appendix A) and one obtains :

where keff = k - M (k )/2 k. The elastic mean free
path or extinction length f (co ) is therefore defined
by f - 1 (w ) = - Im M (k)lk. This expression gives
for example the well-known Rayleigh expression in
the limit of low density of point-like scatterers and
low frequency. It must be noted here that

equation (39) (or (40)) is by no way a transport
equation, and therefore f (co ) is not the transport
mean free path but the extinction length only
describing the scattering properties of the averaged
disordered medium.
Let us now turn to the intensity propagation

trough the disordered medium. In order to describe
the transport properties we need to calculate the
correlation function of the propagators defined by :

where G * is the complex conjugate of G. As before,
this correlation functions obeys an equation of

motion, the Bethe-Salpeter equation given by :
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in an operator form. The operator U which renor-
malizes G2 can also be calculated by a standard
diagrammatic expansion as shown below. The

Bethe-Salpeter equation is the equivalent (at a

microscopic level) of the Boltzmann or radiative
transfer equation used in phenomenological ap-
proaches. In this equation U represents the sum of
all the diagrams obtained from the interaction of the
wave with the scatterers. For the sake of clarity let us
describe the double scattering situation for the

propagation of incoherent intensity. It is given by :

where the function r (Sl, Sz ; S l’ sz) describes the
scattering process for the function G and G * from
the directions 91 and s2 towards the directions

sl and s2 respectively. The expression given by
equation (44) is obtained within the Fraunhofer

limit, and the propagators G and G * between two
collisions are uncorrelated. In order to simplify
equation (44), let us introduce the quantities :

and

Then we rewrite equation (44) : Fo TFO TFo. Simi-
larly the propagator G2(2) of the incoherent correla-
tion function becomes :

where the first term GlS) represents the free propaga-
tion of the intensity in the average medium. The
point-like scattering arises in the expansion through
the T’s which takes into account all the reducible

diagrams. U in equation (43) is the sum of all the

diagrams describing all possible scatterings at any
order. Two different groups of diagrams contribute
to U. The first UR is the sum of all the reducible
diagrams. They are such that if one cuts two

propagator lines, one generates two diagrams be-
longing to U. The second U; is the sum of all the

other diagrams which are irreducible. In UR, the

dominant contribution comes from the ladder diag-
rams (contributing to the order zero in A/f) rep-
resented in figure 4a. The dominant contribution in
U; is given, to first order in A/f, by the so-called
maximally crossed diagrams first introduced by
Langer and Neal [27] and shown in figure 4b. They
can be resummed exaclty (cf. Fig. 6) as the sum of a
geometric series in the Fourier space. The Fourier
transform Ui(k, k’ ; f2 ) of Ui(r, r’, t) in the bulk is
given by (cf. Appendix B) :

where

while b = ni a /4 7r where or is the scattering cross
section and ni the density of the scattering centres.
In the limit of small momentum transfer

lk+k’l I f (w ) « 1 and long time a T (úJ ) 1, we
obtain by perturbation expansion :

Fig. 4. - (a) Ladder diagram contributing to the order
zero in A/f ; (b) Crossed diagram contributing to first

order in A/f.

Fig. 5. - Identity relation for crossed diagrams in terms
of ladder diagrams.
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so that

Therefore, in the hydrodynamic regime qf « 1 and
f2 7- 1 1, Ui (q, co, f2 ) has a diffusion pole which is at
the origin of the diffusion-like motion of the intensity
in the disordered medium.

Consider now the Fourier transform of

Let us specify in G2 the incident and emergent
directions :

We then define

where G 2 (L) obeys equation (43) with the reducible
diagrams UR. Knowing that the Fourier transform A
of any given four-points function A (rl, r2 ; r’, r’)
can be related to the function A defined in the

reference frame of the centre of mass :

where and are the coordi-

nates of the centres of mass, we can write for the
function g 2 (L) :

where 6 2 (L) is related to the Fourier transform

G2 by equation (53).

Fig. 6. - Resummation of the crossed diagrams. The
simple lines --+ represent the free propagator and the

double lines ==&#x3E; the renormalized propagator.

Let us now use the time reversal invariance to

express at each order of the multiple scattering
expansion the equality represented in figure 5, be-
tween ladder and maximally crossed diagrams. We
then obtain :

and

Let q be the transfer wavevector, q = ksl, where Sl = s; + 9,. Then, we have :

Finally, for the complete function 92 (gi, 9,), we obtain :

At this stage, it must be noted that the sum of the

irreducible diagrams, i.e. the first order correction in
A /f has been completely taken into account and
reduces to an interference term, cos (q . (r - r’ )).
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From this point on, all the quantities will be calcu-
lated by the usual incoherent transport theory, involv-

ing only the expression of GZL (r, se ; r’, gi).

4. Angular dependence of the intensity reflected
from a semi-infinite disordered medium.

Up to now, all the quantities we defined are in an
infinite medium. Let us consider the case of a semi-
infinite medium as represented in figure 2. The
albedo of such a medium has been previously
defined as the reflected intensity in the direction of
observation 9, (per unit solid angle), divided by the
incident flux Fo and the sample area S. It is thus
related to the intensity I (R) at the point of observa-
tion R in the far field region by a (sc) =
R 21 (R)/Fo S. I (R) is obtained from the average
over all possible scattering diagrams with the scat-
tering centres in a half space. This gives [5] :

where G (rí, R) is the mean propagator from

rl (inside the medium) to R (outside the medium),
o/inc (rl) is the normalized - mean incident field at
rl (inside the medium) and U(rl, r’, r2, r’) is the

sum of all scattering diagrams with ends stripped.
Because the scatterers are in half space, Ù differs
from U obtained in the bulk. However, we still have
the relation between crossed and ladder diagrams,
namely

which by Fourier transform gives a relation identical
to that found for g2 in the bulk (Eq. (56)). Using

(with the notation of Sect. 2).
We obtain

Thus, as g2 in a bulk system, a can be expressed in
terms of the reducible diagrams only (at least to the
leading order in A/f). Although F differs from F in
the bulk (given in Appendix A), both quantities
obey the same integral equation [5]. Comparison of
this equation with equation (9) shows that

where P has been defined

in section 2. Thus, the final expression for the

stationary albedo is identical to that derived in our
phenomenological approach. Furthermore the pre-
sent derivation will also allow us to study the

coherent albedo as a function of the order of

scattering without needing the introduction of time t
as was necessary in section 2.

5. Expansion of the albedo as a function of the order
of scattering.

The Fourier transform of the vertex function

U; has a diffusion pole which is the result of the

summation of a geometric series whose generic term
of order n represents the average value over all the
scattering sequences of order (n + 2). It is therefore
possible to study the contribution to the coherent
backscattering cone associated with the order n of
scattering. Let us start from the expression (63) of
the albedo with the approximation z = z’ = f jus-
tified by the presence of the exponential terms. We
rewrite the coherent contribution ac(O) in the

stationary regime (n = 0) :

The denominator l2 q 2 is the sum

within the convergence radius

It must be noted that the cut-off qf  1 associated

with the convergence of the series cancels all the

contributions to a c (0 ) for which kl  1 If , i. e. for

the angles 0 &#x3E;. k /2 7r f . Since the series converge

uniformly, we can write :

where the represents a restriction to the
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qz values such that Finally,

where

where a = 2 (f + zo ) and jn (x ) is the spherical Bessel
function of first kind. In equation (68), the coherent
albedo appears as a superposition of the contribu-
tions I n ( ø ), which represent the average over the
diffusion paths with (n + 2) scatterings. Figure (7)
shows how the lineshape of ac(O) is obtained from
the sum of all the 1 n’s. It is also possible to obtain the
lineshape of In (0 ) for each value of n. It can be

shown from the asymptotic expansion of the function
jn that the characteristic angle On = A /2 7T f J n (for
large n) measures the angular width in which the
coherent contribution for the diffusion paths of
order n is maximal. We therefore expect the paths of
greater extent to contribute mainly to the small

angle values of ac(O). It would be therefore poss-
ible, within the limit of a perfect instrumental

profile, to know the greatest coherent path by
measuring directly the height of a c (0 ).

Fig. 7. - Contribution of the different orders of scat-

tering to the coherent backscattering cone.

6. The polarization effects.

Until now, we have considered the case of scalar

waves. The experimental results [10, 11] however
indicate that the polarization effects associated with
the vectorial nature of the electromagnetic field are
important. Polarization modifies the albedo in two
ways :

i) it affects the time reversal invariance and
therefore the interference effect ;

ii) it modifies the relative weight of diffusion

paths both for the incoherent and coherent con-
tributions.

Different approaches [8, 13] can be chosen in

order to treat polarization effects. One of them
consists in studying the solutions of Dyson and
Bethe-Salpeter equations in a multiple scattering
expansion for the amplitude of the wave and for its
intensity. In this method the polarization effects are
introduced by the relation.

where Ei and E, are components of the electric field
(i, j = x, y, z ), Go (r - r’) is the scalar Green func-
tion and k is a unit vector along the emergent
direction after the collision i.e. along r - r’. A

multiple scattering expansion based on equation (69)
leads to the study of a complicated tensor for which
results can be obtained only within the diffusion

approximation.
The main drawback, in our opinion, of this

approach which was followed by Stephen and Cwil-
lich [13] is that it is restricted to the case of pure
Rayleigh scattering, i.e. to point-like scatterers. We
shall use here a different approach which develops
our former results [12, 23]. Although less rigorous, it
allows the two different effects of polarization (i)
and (ii) to be separated and can, therefore, be
extended to finite size scatterers.

Let us first study the dominant effect (i), which is
how the polarization affects the coherence. In a first
step, we consider the case of pure Rayleigh scat-
tering, for which the polarization vector P’ after a
simple scattering event is :

where k’ is the scattered wavevector and P the
incident polarization. This expression (70) leads di-
rectly to (69). Equation (70) is conveniently written
in a matricial form, P’ = M (k’ ) P, where M is the
3 x 3 symmetric matrix :

Consider now the polarization state after a standard
multiple scattering sequence of the type
ko --+ k, --+ - - - -+ kn = - ko, i.e. right in the backscat-
tering direction. According to equation (71), the

final polarization P(+ ) after the sequence is :

where we used IVO Po = Po and where 4 (n) is the

matrix relating P(+ ) and Po.
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The polarization state P(- ) of the time-reversed
n

sequence is given by the matrix fl Ajio For pure
i=O

Rayleigh scattering the M’s are symmetrical so that :

where A(") ’ is the transpose of A(’).
We assume that Po is along the z-axis and the

incident wavevector ko is along the x-axis, then we
have :

Therefore, for the parallel configuration where the
emergent light is analysed along Po, we have

P nz = P nz and the coherence in the backscattering
direction is fully maintained for any n-step loop. As
in the scalar case, the prefactor between the vector P
and the real field remains invariant by time reversal.
It means that the expected enhancement between
coherent and incoherent contribution is exactly two
as for the scalar case.
This property remains valid for Rayleigh-Gans scat-
tering by scatterers of arbitrary shape, or for

Rayleigh scattering by particles of anisotropic
polarisability. Indeed, in the first case, we have

P’ = M (k’) S (k’ - k ) P where the scalar form factor
S(k’ - k) is time reversal invariant. In the second
one, P’ = M (k’) a (i ) P where « (i ) is the symmetri-
cal polarisability tensor of the (i-th) scatterer and the
above demonstration can be straightforwardly exten-
ded.

In the more general case of Mie scattering, this
simple demonstration cannot be applied as such

because P’ depends on k, k’ and P. However, at
least for spherical scatterers, the above property
remains valid, i.e. P (- ) = A(n)+ Po.
To show this, we note that, for a given scattering

event, the components of polarization parallel and
perpendicular to the scattering plane are multiplied
by factors which depend both on k and k’ only
through cos (k, k’). These factors are thus unaf-

fected by reversing the way of propagation. Hence,
we have:

where N, i is a diagonal matrix for the i-th Mie

scattering event (ki - I - ki ) and Ri , 1 the matrix

representing the rotation around ki mapping the
(ki - l’ ki) plane onto the (ki, ki , 1 ) plane (with
R, (resp. R;; 11) the rotation mapping the (yz ) plane
onto the (kl, ko) plane (resp. (kn _ 1, ko) plane) and
similarly :

so that the full coherence is preserved in the parallel
configuration.

Finally we note that, for all cases discussed here,
we used a far field expression for the scattered fields.
This requires the distance between scatterers to be
much larger than the wavelength. In the opposite
case, the above arguments cannot be used except for

pure Rayleigh scattering. In this situation the out-
coming polarization P, 1 after a single scattering
event remains given at any distance, by a linear

symmetric operator acting on the incoming polariza-
tion Po, which is the basis of coherence in the

parallel configuration.
This full coherence does not generally occur in the

case of perpendicular polarizers where the emergent
light is analysed along the y-direction since in

general the matrix .1 (n) is not symmetric. An excep-
tion is when the scattering sequence is in a plane. In
this case, which includes the double scattering situa-
tion in the backscattering direction, the matrix

.1 (n) is symmetric so that there is full coherence

between a sequence and its time reverse counterpart.
Apart from this particular case, there is no obvious
relation between .1&#x26;n) and g$ )g&#x3E; so that the problem of
perpendicular polarizers is complicated. However,
for pure Rayleigh scattering, quantitative results can
be obtained in the limit of large scattering sequences
as we shall show now.

For perpendicular polarization we define the aver-

age coherence ratio : between

a pair of time reversed sequences in the perpendicu-
lar configuration over all the n-th (n : 2 ) order
sequences. P n (’ ) and P n (- ) are calculated by the two
recursion relations obtained from equations (72) and
(73) :

For Rayleigh scattering in a bulk medium, the sucessive wavectors are independent random variables, so
that the averages over kn and Ai)n) can be separated. In our situation of a semi-infinite medium, with point-
like scatterers, this separation of averages should remain valid for long enough paths. In this case, the
constraints due to the interface (no crossing condition, last scatterer within a mean free path from the
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interface) are expected of little importance and C (n ) calculated in the bulk can be extended to the semi-
infinite medium. Under these assumptions, we have :

Similarly, from equations (72) and (73)

with initial conditions for n = 1 (single scattering), Ayz = 0 and Ajj = Ayy = 0, the solution of this linear
system gives :

To calculate the correlation ratio C (n), we need an expression for (P§ ) which is given by the solution of
the recursion relations :

Solution of this linear system with initial conditions

P2 II = 1, P f.L = 0 and Axz = 0 is :

Equations (80) and (82) give :

Also equation (82) gives the depolarization ratios,
which measure the transfer of intensity from the
incident light polarized along Po to the perpendicular
component. They are defined by :

As expected they converge to the same limit 1/2 for n
going to infinity.
The correlation ratio C (n) varies from 1 for

n = 2 where P l1 ) = P 2(i ) to zero for n going to
infinity, where C (n) - (0.7)’. This exponential
damping has an effect on the lineshape analogous to
that of the absorption effect. But the quantitative
result (Eq. (83)) is by no mean universal. It has only
been derived for point-like scatterers for which the
successive scatterings are statistically independent.
The knowledge of C (n ) tells us that the enhance-

ment in the backscattering direction is less than two.

In order to predict its value we also need to know
how the polarization affects the weight of light paths
[point (ii)]. Equations (84) show that dn.L increases
only slowly to 1/2 (for n = 10, for instance it is still

0.47). It indicates that the transfer of intensity from
the incident polarization towards the crossed one is a
rather slow process which must be therefore taken
into account. I (n, 9 ) representing the contribution
of paths of length L = nP * to the total incoherent
intensity (for both polarization directions), we thus
write for the ratio of the coherent to the incoherent
albedo in the perpendicular polarization state :

where we made the approximation that dn.L is

unaffected by the interface (which is right for large
enough value of n). A further assumption is to use
for I (n, 0 ) the result of the scalar diffusion approxi-
mation (Eq. (15)). In this case, for the smallest
scatterers studied experimentally (diameter
d = 0.11 Rm) the above expression gives

in good agreement with the ex-

periments.

The above expressions allow us to discuss the

lineshape of the coherent backscattering peaks. We
have :
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Where we separated in I (n, 0 ) the incoherent
contribution I (n) oc n - 3/2 and the angular dependent
part exp I obtained for scalar

waves within the diffusion approximation. These
relations for the coherent albedo in the parallel and
in the perpendicular configurations can be compared
with those obtained by Stephen and Cwillich [13].
To do that, let us write :

and

Then ex  ii 
appears as the sum of two contributions :

where a c (sca I )(0 ) is the contribution already found for
scalar waves (cf. Eq. (18)) while the second broader
contribution comes from the fact that for short

paths, the intensity contained in the parallel compo-
nent is larger than that corresponding to full de-

polarization.
In a similar way, we find that a;- is the difference

of a « scalar » broad contribution and another posi-
tive contribution again due to the transfer of intensity
from the parallel to the perpendicular component.
Although it is less systematic, our approach is

interesting because it shows the origin of the second
component found by Stephen and Cwillich [13]. It is
due to the transfer of intensity between different
polarizations. For the case of large scatterers where
this transfer is completed over a distance of the
order ot the transport mean free path l10J, it should
be absent.

Let us stress again that our approach gives only
qualitative results in the sense that for short paths
the expressions of dn II , C (n ) and I (n, 8 ) are not
accurate. But for the same reasons the treatment
based on a multiple scattering expansion within the
diffusion approximation cannot give better results.
Furthermore, unlike what is implicitly assumed in
equations (85) and (87), the weight of short paths is
an anisotropic function of the distance r between the
first and last scatterers. This is obvious for double

scattering where the emergent polarization is zero

when r is parallel to the incident polarization but not
for other directions r. This anisotropy implies an

anisotropy of the parallel backscattering cone as was
demonstrated experimentally and analysed by Van
Albada et al. [14].

Therefore, any discussion of the lineshape at large
angles should start from an exact calculation of the
low order contributions of the Rayleigh scattering
rather than from a treatment within the diffusion

approximation. This should be contrasted with the
behaviour at small angles. For scatterers of any size,
dn II tends to 1/2 for large n, so that the parallel
lineshape has exactly the same triangular singularity
as in the scalar case, while the perpendicular
lineshape is rounded by the term C (n), in a way
similar to the one caused by absorption.

7. Albedo of a fractal system.

Let us consider a fractal system such that the light
propagates in a fractal structure. For instance, one
could imagine, a percolation system built up by
metallic and transparent balls of relative concentra-
tion p, randomly mixed in a container. Let us

assume that the light is not absorbed within the

transparent clusters while it cannot propagate
through the metallic particles. Moreover, the con-
centration p is adjusted to the threshold value

Pc in order to spread out the fractal structure over
the whole sample. At p,, the percolating cluster and
finite size clusters coexist. The light is therefore

scattered by these two types of clusters which both
contribute to the lineshape of the albedo. Never-
theless, the multiple scattering within the finite size
clusters is of low order (small diffusion paths) and
therefore contributes to the large angle values of the
albedo. On the opposite the multiple scattering
inside the percolating cluster will probe the fractal
structure at any order and represents the main
contribution to the lineshape of the coherent albedo.
It is this situation that we analyse now.

It is known that the diffusion on a fractal structure

is anomalous and can be characterized by the

spectral dimension J in addition to the fractal (or
Haussdorf) dimension d of the structure. More

precisely, the probability for a particle to diffuse
over a distance r from the source at time t is believed

to obey a homogeneous function due to scaling
invariance

where At is the anomalous diffusion length for time

How is it possible to handle the escape of light
through the interface ? First there is a purely geomet-
ric aspect : the fractal structure of the interface of a
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given fractal can be quite different from the bulk
structure. A regular fractal object such as the

Sierpinski systems can be cut by a plane in different
ways. The distribution of the transparent particles
can be characterized generally by a fractal dimension
of the surface ds:5 d. In addition to this new fractal
dimension ds, the coherence length t of the fractal
structure can be strongly reduced within the plane
cut, as in the case of percolation where only finite
clusters exist at the threshold Pc of three-dimension-
al sample. Finally, an important and delicate prob-
lem occurs when the effect of the escape through the
interface is taken into account. The image trajec-
tories must be supported by the image structure
mirrored by the interface plane. For the case of a
symmetry plane in regular fractals (the bisector

plane of the Sierpinski tetraedron network for

instance) the image structure coincides with the

network and the probability law given by
equation (89) can be applied for both the terminal
point of the random walk and its image. For random
fractals like the infinite percolative cluster, this

property is only true on average. By neglecting the
possible departure from this average property, we
will use subsequently the image method for the
transfer probability from p at time t :

and for large t :

It is now straightforward to calculate the stationary
transfer function [23 J

where 1

The convergence of the integral in (92) is ensured

when q &#x3E;- 0 and since v  1/2 one finds that

,q -- d. The final step consists in calculating the
simplified expression of the albedo a (q ) by the
Fourier transform in the fractal subspace of dimen-

sion ds of the stationary transfer function Q (p ) :

As far as =- q - d, &#x3E; 0, a (q ) is finite and propor-
tional to

For Euclidean space one finds again the triangular

shape of the peak since d = d, ds = d -1, v = 1/2
and § = 1. Since 17 is bounded by ds and d, one finds
that 0   d - ils, the last bound d - ds =1 for
Euclidian space. The limiting case of = 0 leads to
an unphysical logarithmic divergence of the albedo.
Its origin lies in the fact that the stationary regime
cannot be defined as in the case of the two-dimen-
sional diffusion constant in the Anderson localization

problem. A more detailed analysis of this regime will
be published elsewhere. In the general case ( =A 0 )
the shape of the backscattering peak of a fractal
analysed by the previous expressions is sharper than
the linear peak (cf. Fig. 8). Its measure would

produce a determination of § and therefore d if
d and ds are known otherwise. This short analysis
emphasizes the interest of the albedo experiment to
characterize heterogeneous materials with a possible
fractal structure.

Fig. 8. - Comparison of the slope of the coherent back-
scattering cone for a fractal structure and a Euclidian

space. For the latter case A = 25/6 (cf. Eq. (35)).

8. Conclusion.

Let us summarize the main results of this article. We
have developed a detailed analysis of the coherent
backscattering contribution to the reflection coeffi-
cient of a semi-infinite disordered medium (albedo).
Within the framework of the weak localization

approximation, valid for weakly scattering systems,
we have established an analytical expression of the
albedo for various situations including time-depen-
dent effects, absorption, intensity modulation,
anisotropic scattering, polarization and propagation
in fractal structures.

In section 2, we have discussed a heuristic ex-

pression for the time-dependent albedo. Its statio-

nary limit corresponds to the expression established
by Tsang and Ishimaru [5]. We have analysed in
detail the different characteristic time-scales of the

problem : the elastic mean free time r, the time

Tg for the Brownian motion of the scatterers over a

wavelength and the relaxation time of the phase



95

We have explained the rounding effects observed
on the coherent albedo in presence of absorption or
for the case of amplitude modulation of the incident
wave.

We have then presented a generalization of the
albedo to the more realistic case of anisotropic
scatterers. It is based on a treatment of the classical

transport equation within the diffusion approxi-
mation. The previous expression is unchanged except
for the replacement of the elastic mean free path f
by the transport mean free path f *.
A microscopic derivation of the coherent albedo is

given in sections 3 and 4. It is based on the Bethe-

Salpeter equation for the intensity. It represents
another way to justify the heuristic expression as
well as a demonstration of the existence of the
interference factor cos (ki + k,) - (rl - rN ) between
time-reversed paths. It is actually established rigor-
ously for scalar waves and point-like scatterers to
first order in À / f. The series expansion of the

coherent albedo in terms of the order of scattering
has also been obtained, which shows directly how
the Gaussian contributions add together to build up
the triangular singularity in the backscattering direc-
tion.

Polarization effects associated with the vectorial
nature of the light are treated in detail in section 6.
Two main effects have been considered : how the

polarization affects the coherent effect, and how it
modifies the weight of diffusion paths for both
coherent and incoherent contributions. A general
method is presented but calculations are performed
for the case of Rayleigh scattering only. We recover
previous results. Moreover, our method which de-
couples the polarization effects and transport
phenomena allows us to discuss the case of finite size
scatterers.

Finally the problem of the albedo of a fractal
structure has been considered in section 7. A new

expression has been obtained for the coherent

albedo using the simplified boundary condition

given by the image method. Near the backscattering
direction, the lineshape varies with the angle () as a
power law involving a new exponent related to the
fractal dimensions (surface and volume) and the
spectral dimension.
The present work as well as other recent theoreti-

cal and experimental studies suggest that the cohe-
rent backscattering phenomenon of light is well

understood. Nevertheless, some points remain un-
clear. First, experiments show an enhancement

factor in the backscattering direction between 1.8
and 1.9 instead of 2 after various corrections are
taken into account. Second, the behaviour at large
angles corresponding to small paths is not correctly
described by our heuristic formula. Let us try to
classify the different situations according to their

difficulty.

i) Scalar waves and point-like scatterers : This is

the simplest situation. In this regime, the diffusion
approximation is justified at small angles, but at

large angles the diffusion paths involved are short so
that it becomes invalid as well as the « image »
boundary conditions.

ii) Polarized light and point-like scatterers : The
approximate expression of the albedo works at small
angles as previously but, in addition to i), the strong
correlation between wavevectors after each scat-

tering for small values of the scattering order and the
correct boundary condition for vectorial waves at the
interface are new reasons for the standard formula
to be invalid at large angles (qf :::. 1 ).

iii) Scalar waves and non point-like scatterers :

The generalization of the expression in section 2.d
explains correctly the change of the slope of the
albedo at small angles from f to f *. But even with a
boundary condition more realistic than the usual

image method the behaviour at large angles is

unphysical. However, it still relies on the diffusion

approximation.

iv) Polarized light and non point-like scatterers :
We described this regime by the replacement of f by
f* keeping the previous expressions unchanged.
Surprisingly, despite the various approximations
used (image method near the interface, neglect of
the correlation between scattering angles, aniso-

tropic scattering, etc.) our expressions are in good
agreement with the experiments [10].

Some additional problems have not been taken
into account. First, the factor 2, i.e. the height of the
backscattering peak, is measured relatively to the
large angle value. However, this assymptotic value
may differ from the incoherent intensity since it
includes the coherent contribution of multiple scat-
tering sequences along closed loops which do not
depend on the angle. Moreover, along the same
direction, we do not know whether, in media with
strong dielectric contrast, the scattering processes
near the interface are not only due to the scatterers
but also to the interface which at very small distances

(smaller than f) may behave like a mirror.
For dense media, additional problems like spatial

correlations of the scatterers have not been taken
into account. They have been recently considered in
the simplest approximation [24]. The corrections to
the averaged propagator G to higher order in
A If are also important. Such corrections are due to
repeated scattering of the wave on nearest

neighbour scatterers which become relevant in dense
media. The latter corrections can be at the origine of
a maximum value smaller than 2. Beyond the weak
localization regime one enters the critical regime of
Anderson’s localization. Important predictions have
been formulated [25] for the scaling invariance of the
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optical properties of the medium such as the trans-
mission coefficient. Despite a recent attempt in this
way [26], there is no experimental confirmation so
far. In this critical regime all transport coefficients
are affected by the strong localization phenomenon :
they must be reformulated as scaling functions of
length or time over renormalized diffusion length.
The boundary condition at the interface must also be
treated carefully. Both these remarks indicate that
the coherent albedo is probably a relevant property
in the critical regime. Special treatment will be

necessary to derive the expression of the albedo for
this regime, which will be reported elsewhere.

Appendix A.

EXPRESSION OF THE AVERAGED PROPAGATOR G IN
A DISORDERED MEDIUM. - In a disordered
medium where the refractive index is a fluctuating
variable the propagator G ( w , r, ro) is solution of the
equation

which is the equation (36) given in the text. An
iterative solution of equation (A.1) can be obtained
by an expansion as a function of the potential
V(r) = k2n (r). If G (w, p ) is the Fourier transform
of G (co, r, ro ), we have :

Equation (A.2) can be conveniently represented by
the diagrammatic expansion of figure 9. The differ-
ence between this expansion and the usual one

impurity expansion is that the potential is now a
random variable due to the random position of

Fig. 9. - Diagrammatic expansion of the propagator G
in a disordered medium.

scattering centres within the medium. Let us rewrite
the potential V (r) as

where n (r - ri ) is the refractive index of one scat-

tering centre. The Fourier transform becomes

V(q)=k’n(q)Pq where the random variable

pq is defined by pq = E eiq * xi . To obtain the aver-
i

aged propagator O(w, p) we have to average

equation (A.1). There appears expressions like :

where N is the number of scattering centres. It gives
for 0(,w, p) the expansion :

which is represented by the diagrammatic expansion
of figure 10. It is now convenient to introduce the

Dyson equation. Let us recall, it consists to classify
the different diagrams appearing in figure 10 in

reducible and irreducible diagrams. The sum of
irreducible diagrams gives the averaged self-energy
I (p, w ). Equation (A.3) can be rewritten as :

The problem of calculating G(w, p) reduces to the
calculation of l(w, p). A perturbation expansion of
,E(w, p) as a function of the impurity concentration
ni is given in figure 11. One of the main motivations

Fig. 10. - Diagrammatic expansion of the averaged
propagator G.

Fig. 11. - Diagrammatic expansion of the averaged self-

energy T as a function of the impurity concentration n.
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of this appendix is now to describe exactly the

assumptions underlying the usual calculation of

!(w, p) leading to the equation (41) given in the
text.

We usually keep only the terms proportional to
the impurity concentration eliminating the contribu-
tions of higher orders. A standard calculation gives
after summation of the series :

where T(p, p) is the scattering T-matrix element
associated with scattering on only one-impurity. The
optical theorem tells us that the cross-section or is
given by o- = - Im T (p, p ) such that we obtain an
averaged propagator G attenuated on an elastic

mean-free path given by This approxi-

mation in .9 is therefore equivalent to consider

scattering on only one effective impurity. It is

important to note here what is the contribution of
the diagrams we have neglected like those pictured
in figure 11. The first one, proportional to n? is given
by :

and corresponds to repeated scattering between two
impurities. This correlation restricts the angular
integration over q2 to values such that

where f is the elastic

mean free path defined above. After some lengthy
but straightforward calculations we find that the
contribution of this diagram to the imaginary part of

where A is some numerical con-

stant. The relative value between the first order and

this contribution is given by An I V 12 . It is

therefore negligible for very dilute systems since the
ratio A/f is very small. Nevertheless, we have to
keep in mind that it exists if we want to calculate

higher-order corrections to the diffusion constant or
of other transport coefficients. It also becomes very
important if one considers time-dependent scattering
and resonances and how it affects the coherent

backscattering phenomenon.

Appendix B.

SUMMATION OF THE MAXIMALLY CROSSED DIAG-
RAMS IN THE STATIONARY REGIME. - Since the

pioneering work of Langer and Neal [27] on the
singularity of the expansion of transport coefficients
as a function of impurity concentration, many deriva-

tions have been given for the resummation of the
maximally crossed diagrams for electronic systems
(see e.g. Ref. [6]). For the case of the propagation of
phonons in disordered systems, it has also been

derived [28] in the hydrodynamic limit qf (w ) .c 1
and {J T (úJ ) 1 where q and f2 represent respect-
ively the transfer of momentum and of energy
between the two-interfering propagators.

In this appendix, we would like to give the sum of
maximally crossed diagrams in a stationary regime
but for any value of the momentum q, i.e. outside
the diffusion approximation. As shown in re-

ference [28] the sum of the geometric series as-

sociated with irreducible maximally crossed diagrams
is given by :

where in the stationary regime fl = 0. Moreover,

and

where q = k + k’ is the transfer momentum. The
Parceval theorem gives :

The averaged propagator G is given by equation (41)
in the text :

such that

or

The sum of maximally crossed diagrams is then given
by :

In the hydrodynamic limit qf « 1 we then recover
the usual result :

which corresponds to the diffusion approximation
used in the text.
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