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Résumé. 2014 Les propriétés à grande distance d’un modèle de membranes fluides présentant un ordre hexatique
d’orientation sont étudiées. Il est montré que la raideur hexatique KA n’est pas renormalisée par les

fluctuations thermiques tant que les défauts d’orientation (disinclinaisons) peuvent être négligés. Pour des
grandes valeurs de KA, les trajectoires du groupe de renormalisation pour le module de rigidité 03BA sont attirées
vers un point fixe infrarouge non trivial. Dans cette situation, lorsque la tension de surface s’annule, une
membrane hexatique est un objet fractal caractérisé par une dimension fractale dF &#x3E; 2 et une dimension
d’étalement ds  2, qui varient continûment avec KA.

Abstract. 2014 The long distance behaviour of a model of fluid membranes with orientational (hexatic) order and
small surface tension is investigated. It is shown that, if orientational defects (disclinations) are neglected, the
hexatic stiffness KA is not renormalized by thermal fluctuations. The renormalization flow of the rigidity
modulus 03BA goes, at large KA, to a nontrivial infrared stable fixed point. In this situation, hexatic membranes
with vanishing effective surface tension are smooth critical objects with a finite fractal dimension

dF &#x3E; 2 and a spreading dimension ds  2 which depend continuously on KA, in contrast with the case of fluid
membranes.

J. Physique 48 (1987) 2059-2066 DTCEMBRE 1987,

Classification

Physics Abstracts
05.20 - 68.10 - 87.20

1. Introduction.

Models of fluid two-dimensional membranes with
small surface tension have recently been the object
of extensive research. They are of interest both as
idealizations of amphiphilic layers and of interfaces
in microemulsions [1] and as toy models of strings in
quantum field theory [2]. In a fluid membrane,
molecules can flow freely to adapt themselves to any
particular shape of the surface. Hence the elastic
free energy depends only on the membrane shape :
i.e. it cannot depend on the particular coordinate
system chosen to represent the surface. If the surface
tension is small the dominant contribution to the
free energy is the bending elasticity, which depends
on the extrinsic (mean) curvature of the membrane.
Large transverse fluctuations (undulations) take

place, which make the effective rigidity decrease at
large distances [2-6]. Normals to the membrane are

thus expected to be correlated only up to a persist-
ence length ). This can be explicitly checked in the
limit where the dimension D of bulk space in which
the membrane is embedded goes to infinity [7-10].
At distances larger than 6 the membrane is crumpled,
i.e. bending rigidity is ineffective. It is then reason-
able to expect that at such distances the effective
action describing its behaviour coincides with

Polyakov’s string model [2].
This picture changes drastically if correlations

among the positions of the molecules forming the
membrane exist [11]. The molecules may exhibit in
plane crystalline order, and form a kind of two
dimensional solid. The stretching elasticity as-

sociated with this order conspires with the bending
elasticity to make the membrane rigid and flat at
long distances [11]. One may thus observe a crumpl-
ing transition [4], separating a rigid phase from a
crumpled phase. Such a suggestion has been corrobo-
rated by numerical simulations [12]. On the other
hand, the molecules may exibit a weaker order in
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which the orientations (but not the lengths) of bonds
connecting neighbouring particles are correlated at
long distances [13]. This hexatic phase is analogous
to a two-dimensional nematic liquid crystal. A field
theoretical model describing a hexatic membrane

susceptible to undulations was introduced in re-

ference [11]. A first order calculation showed that
the associated hexatic stiffness tends to increase the
effective rigidity at long distances [11], and to coun-
teract the effect of undulations. One can thus expect
that the combined effects of bending elasticity and
hexatic stiffness may lead to a novel behaviour.
These effects are analysed by field theoretical techni-
ques in the present paper. We find that the long
distance behaviour of hexatic membranes is deter-

mined by a nontrivial infrared stable fixed point at
least in the limit of large hexatic stiffness. We
identify and study the new phase corresponding to
this fixed point. This phase is reminiscent of the low
temperature phase of the two dimensional XY

model, being characterized by nontrivial exponents
which depend continuously on the hexatic stiffness.
The model is described and discussed in section 2,

and its renormalization is derived in section 3.

Section 4 is dedicated to the analysis of the critical
exponents characterizing the new phase. Conclusions
and perspectives of further study are contained in
section 5.

2. The model for hexatic membrane.

2.1 THE ACTION. - We first recall the covariant
formulation of membrane models. Defining locally a
system of coordinate g = (ui ; i = 1, 2) on the

membrane and denoting by X (g: ) the position of the
point g in bulk D-dimensional Euclidean space, the
metric tensor gij (g:) induced by the embedding is

The extrinsic curvature tensor Kij is

where Di are covariant derivatives with respects to
the metric gij. The element of area reads

The action is then

K0 and ro are respectively the microscopic rigidity
modulus and the microscopic surface tension.
We now want to describe in a reparametrization

invariant way a membrane with orientational order.

This means that to each point on the membrane is
associated a prefered direction within the tangent
plane of the membrane. (In an hexatic phase this
direction will correspond to the bonds orientation at
that point.) Let us associate to each point with
coordinate or an order parameter n (q ) which is a D-
dimensional unit vector tangent to the membrane.

It writes in the basis of the tangent plane given by
the t’s (2.1) :

with the constraint

If n is the order parameter corresponding to an
hexatic phase, the action must be invariant under
global rotations of n by ± 7r /3. This symmetry is the
remnant of the rotational symmetry of the triangular
crystalline phase in the hexatic phase [13]. As we
shall see in next subsection, the only dimensionless
action for n which respects this Z6 symmetry is the
one proposed in [11]

The dimensionless coupling constant KA is the
hexatic stiffness. It may be rewritten in terms of an

angle variable 0 by introducing at each point
g two orthonormal vectors va ( q) (a = 1, 2) tangent
to the membrane. This is equivalent to introduce a 2-
bein e’(g) compatible with the induced metric

gij(Q’)

if we write

In this basis, the order parameter n is written

The angle () ( Q") is then defined locally by

We introduce the spin connection [14]

Since it is a 2 x 2 antisymmetric matrix with respect
to a and b, it may be written as
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( Eb is the rank 2 antisymmetric tensor). We have also

In term of the angle variable 0 (g7), F2 finally reads :

This form of the action is invariant under local
transformations 0 (g) -&#x3E; ø (Q") + A( Q"), !1i (Q") -
!1i(Q") - diA(Q"). This gauge invariance has no

physical meaning and corresponds to a local rotation
of the reference frame (va ).

Let us note that the scalar curvature R is :

Thus, the action F2 corresponds to a XY model on
the membrane. Indeed on a flat surface, one can
impose ilj = 0, which leads to the usual XY model.
If the curvature R is not zero, ilj cannot be set to
zero and it induces a nontrivial coupling between the
order parameter and the intrinsic geometry of the
membrane. Such a coupling describes the frustration
induced by the curvature : it is not possible to find a
vector field n which is mapped on itself by parallel
transport along a closed curve.

2.2 DERIVATION OF THE HEXATIC ACTION. - We
now show that the action (2.7) is the only one
allowed by dimensional considerations, by the hexa-
tic rotational symmetry, and by reparametrization
invariance. The action must be a functional of n, of
its covariant derivatives, and of the membrane shape
via its metric and extrinsic curvature tensor. Since
the action density must have (inverse length) dimen-
sion two, at most two derivatives must appear in
each of its terms. Moreover, we will show that it is
not possible to build up terms invariant upon rota-
tions of n by 7T /3 in the tangent plane, as dictated by
hexatic symmetry, without introducing derivatives of
n. In fact imposing this symmetry is tantamount to
impose symmetry upon rotations by an arbitrary
angle. The vector field n should only appear via its
covariant derivatives :

The only scalar of dimension two which can be built
with the covariant derivatives of n, up to total

derivatives, is given by :

One can substantiate this conclusion by consider-
ing all possible scalars of dimension two which can
be build from n and the extrinsic curvature tensor

Beyond (2.18) and the bending energy density
K 2 we have :

Other terms can be reduced to these, up to total
derivatives (in particular the scalar curvature R).

It is easy to see that each term in equations (2.20)
breaks the invariance upon global rotations of n. For
example, the term (2.20a) tends to align n along the
direction of its gradient.
The physical meaning of the other terms in

equations (2.20) is especially simple in three dimen-
sions. Indeed, Kij is proportional to the normal
vector m

and along the principal axis the metric tensor

gij and the second fundamental form Kij read

rl and r2 are the two curvature radii. Then (2.20b, c,
d) respectively reduces to

Those terms tend to align the vector n along one of
the principal axes. Hence, the terms contained in
equations (2.20) are not invariant under global rota-
tions of n :

Only the kinetic term (2.18) is invariant under
such a global 0(2) symmetry group. This ensures that
the other terms will not be generated by the renor-
malization if they are set to zero in the bare action
for n.

This last requirement is satisfied because those

terms also break explicitly the discrete subgroup
Z6 of rotation by 7T /3 corresponding to the hexatic
rotational symmetry.

3. Renormalization group properties at large hexatic
stiffness KA.

In order to understand the long distance properties
of the system described by the action F1 + F2, the
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renormalization group flow for the couplings K and
KA has to be determined. Let us first show that as
long as topological excitations for 0 are neglected
(vortices in the XY language or disclinations in the
hexatic language), KA gets only a finite renormaliza-
tion at all orders in perturbation theory.

Indeed, fixing the shape X(g) of the membrane
and minimizing F2 with respect to (J ( Q: ), the classical
equation for 0 is (A = D Di is the scalar laplacian) :

Writing 0 = 6 + (Jcl and using (2.15) and (2.16) we
get

SLiouville is the celebrated Liouville action which is

known to play an important role in Polyakov’s string
model [15], and which appears here at the classical
level

If the fugacity of topological excitations for the

hexatic order parameter is very small, we may forget
the fact that 6 is defined modulo 2 7r and treat it as a
real scalar field. A fundamental result by
Polyakov [15] shows that for a one component real
scalar field 0 in a two dimensional metric gij’ the
effective action may be computed explicitly via the
conformal anomaly with the result :

(up to a renormalization of the surface tension

ro and an additional piece depending on the modular
parameters which characterize the conformal class of
the metric g ; this last piece does not play any role in
what follows). This result has two consequences.
First the integration over the fluctuations 6’ leads to
the effective action

which contains all the effect of hexatic order (if
topological excitations are neglected) and has to be
added to Fl before integrating over the position of

the membrane. Second the same effective action

(3.6) can be obtained from a N-component massless
free scalar field t» = (cp a ; a = 1, N ) coupled to the
metric of the membrane by the 0 (N ) invariant
action

provided that N = 1 - 12 7T K A . Considering now
the model given by the action F1 + F2, it is quite
obvious that fluctuations in the shape of the mem-
brane cannot renormalize N. Since the two models

F + F2 and F1 + F2 give the same effective action
(up to a change in ro) KA does not get renormalized
either. Thus as long as topological excitations are
not taken into account, KA gets only a finite
renormalization

and the f3 function associated to KA vanishes at all
orders

Once we know the renormalization properties of
KA, we may set up a systematic perturbative expan-
sion in 1/KA valid for large KA. Indeed, rescaling

the total action becomes proportional to KA and one
can study within the 1/KA expansion the renormali-
zation of Ro and ro. For that purpose it is convenient
to use the Monge form for almost planar membranes,
i.e. to project the membrane onto the reference
plane (xl, x2 ) by writing

where the transverse displacement xl has D - 2
components, and to expand around the classical
solution xl = 0. In such a coordinate system there is
no need to introduce a Faddeev-Popov determinant
in order to take into account the gauge fixing.
As long as we do not compute correlation func-

tions of the n field, it is convenient to integrate out 0
explicitly and to use the action F1 + Seff as given by
(2.4) and (3.6). Expanding Seff to leading order in
xl we get the non local interaction term



2063

is the two dimensional massless propagator and

R ( u) is the scalar curvature at first order

R ( u) = £ ab £ cd aa ð eX 1. ( U ) ð b ð dX 1. ( u) (3.14)

(3.14) agrees with the previous result of [11].
Renormalization of the bending rigidity K is most

easily studied by looking at the X 1. two point
function. One can check that at first order in

1/KA, no other contributions occur than the one
loop contributions of the ordinary membrane model
and the contribution coming from (3.12) already
computed in [11]. The effective bending rigidity
K is found to be

where A is some momentum cut-off. Introducing as
in [2] the inverse rigidity ei = 1/ K, the P function
for « reads to first order

Thus the 0 function has a non trivial zero at

which corresponds to a non trivial infrared stable
fixed point, as depicted in figure 1. As suggested in
[11], if the membrane is rigid at short distance, it will
become softer at large distance ; on the contrary, if
soft enough at short distance, it will become stiffer at
large distance.

Fig. 1. - The /3 function for the inverse rigidity a
at large hexatic stiffness.

4. Critical properties at large hexatic stiffness.

The existence of a non trivial infrared fixed point for
large hexatic stiffness KA has drastic consequences
on the large distance properties of the membrane.
At the critical value ror’t of the microscopic surface
tension ro where the effective surface tension van-
ishes in perturbation theory and where the mem-
brane becomes a critical object with infinite area,
the membrane will be in a self similar « crinkled »

phase, instead of the « crumpled » phase described
in [2, 4]. This new phase will be characterized by non
trivial critical indices.

As ro goes to ror’t the persistence length 6p (correla-
tion length for the normals to the surface) should
diverge as

and the effective surface tension should vanish as

At the critical point, the two point correlation
function C between normals to the surface should

decay only with a power law at large distance (in
bulk space) R

and the membrane will have non trivial scaling
dimensions such as its fractal dimension dF and its
spreading dimension ds.

In order to compute those indices it is convenient
to use observables invariant under the Euclidean

group of displacement in bulk D dimensional space
[16]. Indeed such observables are free from infrared
divergences [17] and allow direct calculations at the
critical point where the surface tension vanishes in
perturbation theory. For instance the area of the
membrane situated within distance R from some

point go on it is given by

Expanding (4.4) to second order in xl. by using
(3.11) and computing its expectation value with the
action (2.4) (the term (3.12) will enter only at fourth
order in xl.) gives the explicit first order term of the
1/KA expansion for A :

Since, at the fixed point a *, A (R ) should behave as
RdF the fractal dimension is
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Moreover, we expect that the Euclidean distance

[X(a) - X(g)]2 will not be renormalized, since it

defines the physical distance in bulk space. Then,
the only renormalized operator in (4.4) is the

composite operator Jig I and dF is nothing but its
scaling dimension. Since B/ I g I is the operator
conjugate to the surface tension r, whose scaling
dimension defines v-I, we have the scaling relation

v-1 = dF - (4.7)

The results (3.16), (4.6) and (4.7) are corroborated
by looking at a general Euclidean invariant observ-
able

where F is an arbitrary (regular enough) function of
the Euclidean distance between the points labelled
by a and go. Using the Monge form (3.11), we can

expand to increasing orders in 2013 the expectation
KA

value

than or of order unity). The « A » subscript indicates
that fluctuations of x 1. ( a- ) with momenta higher than
rl have been ignored. An explicit calculation of

. 1
 F) A, iiio, 1’0 to second order in KA shows that the

divergences which occur in the limit A--+ oo are

removed by the following redefinitions :

/I is the renormalization scale. The renormalized

quantities ii R, r R and FR are defined by requiring
the existence of

This condition for an arbitrary F fixes uniquely (up
to finite parts) the three renormalizations (4.10).
Since the quantity

is independent of ji , we obtain the renormalization
group equation for :F R

(4.14c) is the same as the anomalous dimension for

the surface tension in fluid membranes without

hexatic order. There is an algebraic error in the
result of [4].
The f3 a function confirms the result (3.16). From

(4.13) standard arguments lead to

dF=2+YF(a*); v-l=2-y(a*). (4.15)

Thus our explicit calculation confirms the direct

calculation (4.6) as well as the scaling relation (4.7).
We also have the standard scaling relation between v
and the critical exponent for the string tension

IL = 2 v . (4.16)

The critical exponent q is obtained in a similar way
by computing invariant correlation functions be-
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tween tangent planes to the membrane. It is found to
be

We now consider the spreading dimension ds [18].
One can obtain it by replacing in equation (4.4) the
Euclidean distance I (X (g7) - X (Q)) I between the

points g and 0 by the geodesic distance d(g, 0)
measured along the membrane. The expression of
d (g:, 0 ) is not simple, because it involves the deter-
mination of the geodesic &#x26; (s) (&#x26; (0) = 0,
r(l)=g-). For an almost flat membrane, the

geodesic can be expanded in powers of the deviation
hij of the metric from a flat one. In the Monge form
one has :

and the expansion in hij becomes an expansion in
powers of x-L* The expansion of the goedesic is then
substituted in the expression of the arc length to
yield an expansion of d ( cr, 0 ), which is then renor-
malized. It turns out that the first nontrivial term

appears only at order 1/KA and involves the term of
fourth order in xl in the expansion of d(g, 0 ). The
final result for the spreading dimension ds reads :

It is interesting to remark that it is smaller than two.
The spreading dimension d, gives the « intrinsic »

dimensionality of the membrane. Since it is different
from 2, it is not clear whether the critical theory at
the non trivial fixed point may be studied by the
techniques of two dimensional conformal field

theory. Moreover, it is not possible to define in a
natural way a 2-dimensional stress energy tensor on
the membrane, since the model does not depend on
a classical two dimensional background metric. In-
deed, the intrinsic metric on the surface is defined
only via the embedding in term of the metric

properties of bulk space, described by the bulk
metric tensor G p- v (X) :

The stress tensor in this kind of models is obtained
as the functional derivative of the action with respect
to the bulk metric tensor G,,,, and is not therefore a
local object from the membrane point of view.

Let us finally remark that the scale transformations
which define the renormalization group correspond
to dilations in bulk and not in internal space :

This is also reasonable from a physical point of view,
since renormalization corresponds to summing over

fluctuations which modify the shape of the mem-
brane at small scale, leaving its average position at
large scales unchanged.

5. Conclusion.

We have analysed the long distance behaviour of
hexatic membranes at large hexatic stiffness KA, and
we have found that it is determined by a non trivial
infrared stable fixed point, depending on KA. In this
« crinkled » phase both the fractal and spreading
dimensions of the membrane depend continuously
on KA. This behaviour is reminiscent of the low

temperature phase of the two-dimensional XY
model. One can indeed recover this model by going
to the K - oo limit at fixed KA. Let us consider the
plane (ii = KA/K, KA 1) (Fig. 3). The model appears

Fig. 2. - Phase diagram and renormalization group flow
in the (a, ro) plane for large hexatic stiffness. Above the
critical line the mean area of the membrane and the

surface tension T are finite. The phase below the critical
line cannot be described without taking into account self
avoidance effects.

Fig. 3. - The lines of fixed points in the (ii, KA 1) plane.
The form and location of the stable curve is conjectural.
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to have two lines of fixed points in this plane : one at
a = 0, is the XY line ; the other, starting at

(ii = 4 D/3, KA = 0), determining the behaviour
of crinkled membranes. A family of renormalization
group trajectories (ii = ii (p ), KA 1 = Const.) con-
nects the two lines, at least at large values of

KA. It is well known that the first line terminates at
the Kosterlitz-Thouless transition point, correspond-
ing to the unbinding of vortices (disclinations in the
original, hexatic system). We expect that disclination
unbinding also terminates the second line, but are
unable to locate this transition with respect to the

trajectory which leaves off the Kosterlitz-Thouless
transition point.

Other features of the phase diagram are worth of a
closer look. The region we have investigated corres-
ponds to KA and K both large, and of the same order
of magnitude. Actually KA cannot be very small,
since in this case hexatic order would be disrupted by
disclination unbinding, and the membrane would
behave like an ordinary, fluid one. On the other

hand, if KA is large, but K is of order one, the

intrinsic metric of the membrane will be almost flat,
since this minimizes the Liouville action. Hence the

model should be related, in this limit, to the models
of flat surfaces with bending elasticity considered by
Pisarski [19]. If these models have a different

behaviour, one may infer the existence of a further
transition line in the (ii, KA 1 ) plane.

All these issues are worth of closer investigations.
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Note added in proof: The reader should not

mistake the rescaled bending rigidity Ro introduced
in (3.10) for the Gaussian curvature rigidity K

considered for instance in [6] and which has not been
considered in this paper.
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