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Résumé. - On discute de la compression des fluctuations et de la violation de l’inégalité de Cauchy-Schwarz
pour le champ de fluorescence dans le processus de double résonance collective.

Abstract. - The squeezing and violation of the Cauchy-Schwarz inequality in the fluorescent field of collective
double resonant process are discussed.
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1. Introduction.

In many nonlinear systems involving the interaction
between light and medium, some non-classical ef-
fects are observed. The reviews of such nonclassical
effects in optics are given in papers by Loudon [1],
Paul [2] and Walls [3]. The most well-known example
of these effects is the photon antibunching which was
observed in the experimental works by Kimble et al.
[4-5].
Another example of non-classical effects is the

violation of the Cauchy-Schwarz (C-S) inequality
which was observed in the work by Clauser [6]. The
violation of the C-S inequality was also predicted in
the two-photon laser [7] and parametric amplifier
[8].

In recent years a large number of theoretical and
experimental works are concentrated on the problem
of squeezed states of light [9-18, 31-32], which were

Fig. 1. - Three-level system of atoms interacting with two
monochromatic applied fields and with emitted field.

(*) Permanent address : National Institute for Atomic
Energy, 67 Nguyen Du, Hanoi, Viet-Nam.

observed in the experimental works by Slusher et al.
[20], Shelby et al. [21] and Kimble et al. [22]. ,

In this paper we present the violation of the C-S

inequality and the squeezing in the fluorescence
from a system of three-level atoms (Fig. 1) interact-
ing with two driving monochromatic resonant fields
and with an emitted field in the context of double

optical resonance [23-25].

2. Master equation.

The N three-level atoms are assumed to be concen-
trated in a region small compared to the wavelength
of all the relevant radiation modes. In treating the
external fields as C-numbers, the master equation
for the atomic system alone p with the Markovian
and rotating wave approximation is [27].

where 2 yzl and 2 y32 are radiative spontaneous
transition probabilities per unit time for a single
atom to change from the level 2 ) to 1 ) and from
13) to 12), respectively ; G = (G 1 2 + G 2 2)1’2 and

tg « = G2/ G1 where G1 - and G2 are the Rabi fre-
quencies for the atomic transitions from level

12) to 1 ) and from 13 . to 12 . respectively ; and
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are the collective angular momenta of the atoms.
They satisfy the commutation relation

As in references [19, 25, 28], we introduce the
Schwinger representation for angular momentum

where the operators C obey the boson commutation
relation 

.

Furthermore, we investigate only the case of intense
external fields so that

After performing the canonical transformation

one can find that the Liouville operator L appearing
in equation (1) splits into two components Lo and
L1. The component Lo is slowly varying in time
whereas L1 contains rapidly oscillating terms at

frequencies nG (n = 1, 2, 3, 4). For the case when
relation (2) is fulfilled, we make the secular approxi-
mation, i. e. , retain only a slowly varying part [25,
30]. Correction of the results obtained in this fashion
will be on the order of ( y21 N/G )2 or (Y32 NIG )2.
Making the secular approximation, one can find

the stationary solution of the master equation

where p = Up U+, here U is the unitary operator
representing the canonical transformation (3)

The state M, R&#x3E; is an eigenstate of the operators
Rll, R = R11 + R33 and N = Rll + R22 + R33 where

The operators Qi satisfy the boson commutation
relation

so that

By using solution (4) the characteristic function can
be defined similarly to Louisell [29]

.

where Y = X ei’ and (B) s indicates the expectation
value of an operator B in the steady state (4).
Once the characteristic function is known, it is

easy to calculate the statistical moments

3. Squeezing in the fluorescent light.

In this section we discuss the squeezing in the

fluorescence light in the collective double resonance
process.
The variance of the fluctuations in the fluorescent

field may be derived by using the following relations
between the radiation field and the atomic operator
in the far-field limit [16]

where t = t’ - r/c,

the values of .p12 and .p23 are assumed to be real, d
and X are the dipole vector of the atoms and the
observation point vector, respectively ; r = I X I ;
E1+ ) and E1+ ) are the positive-frequency parts of the
fluorescent fields corresponding to the lower and
upper atomic transitions 12&#x3E; to 11&#x3E; and 13&#x3E; to

12&#x3E; , respectively.
From the canonical transformation (3), one can

write the collective angular moments J12 and Jn in
the form
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where D3 = R33 - Rll.
Following the works [29, 16] we can consider the

operators - - cos aR13(t), - 1 sin aR23(t),
1 cos aD t), - 1 sin aR t and 1 cos aR t-cos aD3(t), - J2sin aR21(t) and 1/2cos aR31(t)2 
COS aD3 

V2 
sin aR21 (t) 2 

COS aR31 (t)

as the amplitude-operators for the source of the
spectrum components at the frequencies f2l - 2 G,
l2l - G, l2l, f2l+G and f2i + 2 G ; and for sim-
plicity we denote these operators by S_ 2, S-1,
So, S, and S2, respectively. 

1
Analogously, the o erators -1 sin aR 1 t ),g Y p 2 3(

Cos aRl2(t), 1 sin aD3 (t), 1 cos aR32(t) and
V2 

1/2 sin aR31 (t) can be considered as the amplitude
operators for the sources of the spectrum compo-
nents at the frequencies l2z - 2 G, d22 - G, l2z,
f22 + G and 122 + 2 G and for simplicity we denote
these operators by T 2, T-l’ To, T-l and T2,
respectively.
Applying the relations (9)-(12) and steady-state

solution (4), one can show that the squeezing is

absent for the separate fields Ei+ and E4+). The
squeezing is also absent for all separate spectral
components Si and Ti (i =0, ±1, ±2). The follo-
wing calculations show that the squeezing exists only
in the mixtures of two spectrum components
S, and T_ 1 or S_ 1 and T1 ; moreover, the degrees of
squeezing in the mixture of Sl and T_ 1 and in the
mixture of S_ 1 and T1 are equal. Further, we discuss
only the squeezing in the mixture of two spectrum
components S_ 1 and T + l’ After substituting the
operator J12 in the relation (9) by the operator
S-l = - h sin a R 23 and the operator J23 in relationV2
(10) by the operator Tl = 1/2 cos aR32 and using theV2
steady-state solution (4) one finds the normally
ordered variance of fluctuations for the Hermitian

amplitude operators of the mixture of two spectrum
components S_ 1 and T, in the form

where

the operators E1± and fl- ) are derived from

E)* ) and EJ:t) by the replacement in relations (9)
and (10) of the operators J12 and J23 by the operators
S - 1 and T + 1, respectively.
The statistical moments (R32 R23) sand

(7?23 R32) s can be written in the form

here (R) sand (R2) s can be found in relation (8). 
We speak of squeezing in the mixture of two

spectrum components S-1 and Tl if the normally
ordered variance of the operators al or a2 is less than
zero [16-18]

It is easy to see that in the case of X = 1, we have

R23 R32) S = (R32 R23&#x3E; s and the relation (13) re-

duces to

thus, the squeezing is absent in this case. It is also
easy to see from the relation (13) that the squeezing
is absent in the case ctg a -+ 0 or ctg a - oo.
The detailed behaviour of (: (âa1)2: &#x3E; (in the

relative unity 102 ) as a function of the parameter4 12

Ctg2 a in the case y32 = y21 and .p 12 = 423 &#x3E; 0 is

plotted in figure 2 for various numbers of atoms. As
shown in figure 2, a substantial squeezing occurs for
the mixture of two spectrum components S-1 and
Tl and the optimum of squeezing appears in the
region of the parameter ctg 2 a  1. As it has been

already mentioned above the squeezing is absent for
all separate spectral components Si and Ti (i = 0,
±1, ± 2) and for the fields E}+) and E1+) taken
separately.

Analogously to the work [17], we can define the
, factor of squeezing for the atomic operators

where
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Fig. 2. - (a-b) Normally ordered variance (: (Aal )2 : )
(in the relative unity 1 qf 2) as a function of ctg2 a for the4 12

case of y32 = 1’21 and 41,2 = lk23 &#x3E;- 0-

’ in the form

The behaviour of the factor of squeezing F, as a
function of ctg2 a in the case y32 = y21, 

t/J 12 = qi 23 &#x3E; 0 is plotted in figure 3. As is shown in
figure 3 the factors of squeezing for atomic operator
A1 are independent of the number of atoms and can
tend to the value F1 = - 0.5 (i.e. the 50 % of

squeezing) in a region around the point ctg2 a = 1.
One can show that [AI, A2] = 0 when ctg2 a = 1.
Thus in this case, even if Fi = - 0.5, the concept of

Fig. 3. - Factor of squeezing Fl as a function of par-
ameter ctg2 a for the case of y32 = y21 and 4112 = t/J 23 &#x3E; 0.

squeezing for the commutating operators A 1 and
A2 loses sense.
We note that though

as a result of the influence of the free parts of the
fluorescent fields E,(--: ) e and E2 free (see relations (9)-
(10)) the factors of squeezing Fl, F2 for the atomic
operators At, A2 are not coincident with the factors
of squeezing for the field operators a, and a2.

4. Violation of the Cauchy-Schwarz (C-S) inequality.

Analogously to [7], we define a degree of second-
order coherence between the spectrum components
Si and Si in the form

In a general case the operators Si and Sj+,, do not
commute and we have G.(2):#= G (2)J,J J,J 1.

The photon antibunching is exhibited for the

spectrum component Si (i = 0, - 1, - 2 ) which satis-
fy the inequality

i. e. the degree of second-order coherence is less than
unity. Such properties occurring for the four

sidebands Si (i = :t 1, :t 2) in the case of one or
several atoms are investigated in the work [19].

Further, we shall discuss another non-classical

effect : the violation of the C-S inequality in the
stationary fluorescent field.
We speak about the violation of the C-S inequality

for the correlation between two spectrum compo-
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nents Si and Sj (i, j = 0, ± 1, ± 2) if the following
condition is satisfied [33] :

The factor Ki, j describes the degree of violation of
the C-S inequality for the correlation between two
spectrum components Si and Sj by using the commu-
tation relations (5)-(6) and the stationary solution
(4), one can find :

where

Further calculations show that the other factors are
more than unity for any number of atoms :

It means that the classical C-S inequality occurs in
these cases.
The behaviour of the functions K2,-2, KO,2,

Ko, l, K2, -1 and K-1,2 against, the parameter X is
shown in figure 4 (a-e) for various numbers of

atoms. It is easy to see from figure 4 (a-e) that the
strong violation of the C-S inequality exists for a
large number of atoms. It means that in contrast

with the effect of photon antibunching, the violation
of the C-S inequality is a macroscopic quantum
effect.
To conclude, we note that the investigation of the

violation of the C-S inequality for the correlations
between the spectra components corresponding to
the upper atomic transition 13&#x3E; - 12&#x3E; and between
spectra of the upper and lower atomic transitions can
be carried out by using an analogous approach.
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Fig. 4. - (a-e) Factors Ki, j as functions of parameter X.
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