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Résumé. - Nous étudions la dynamique exacte d’une particule libre quantique amortie par son interaction
avec un bain harmonique, dans le cas où le couplage effectif se comporte comme 03C903B4 à basse fréquence. Nous
trouvons divers régimes selon les valeurs de 03B4 et de la température. Aux grands temps, l’écart quadratique
moyen du déplacement ou bien diverge comme tv, l’exposant v étant inférieur ou égal à 2 ou bien tend vers une
valeur finie, ce qui est la caractéristique d’un confinement au sens large. De surcroît, pour 03B4 &#x3E; 1, une
oscillation (absente dans le système non couplé) apparaît dans la dynamique : à cause de la friction sur les
modes de basse fréquence dominants et des effets de mémoire, la particule est contrainte à relaxer en moyenne
vers sa position initiale, l’effet dynamique global du bain étant analogue à celui d’un potentiel appliqué. Dans
la limite 03B4 ~ 0, la particule est bloquée.

Abstract. - We investigate the exact quantum dynamics of a free particle damped through its interaction with
an harmonic bath, when the effective coupling strength behaves as 03C903B4 at low frequency. We find that various
regimes can occur depending on the value of 03B4 and of the temperature. At large times, the mean square
displacement is shown either to diverge as tv, the exponent v being never greater than 2 or to tend towards a
finite value, indicating a confinement in the broad sense. In addition, for 03B4  1, an oscillation (absent in the
uncoupled system) is found : due to the friction on the dominant low-frequency modes and to the existence of
retardation effects, the particle is forced to relax in the mean towards its initial location, the net dynamical
effect of the bath being similar to that of an applied potential. In the limit 03B4 ~ 0, the particle is frozen.
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1. Introduction.

We here give an account of some results about the
motion of a free particle of bare mass m subjected to
friction as a consequence of its interaction with an
infinite number of harmonic modes (bath). As

proposed by Caldeira and Leggett [1], one can set up
the friction through a coupling which is bilinear with
respect to both the coordinate of the particle and the
coordinates of the oscillators. Otherwise stated, the
friction is realized by attaching masses and springs to
the particle [2]. As contrasted to more complex
situations resulting from the effect of an external
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non-linear static force, the free particle [2, 3] shares
with the harmonic oscillator [5-9], for this kind of
coupling, the property of being an exactly solvable
model. Furthermore, the solutions can be found in a
standard and elementary way ; however the

dynamics of the harmonic oscillator is in a way less
rich, due to the existence of a finite frequency in the
problem.
The central ingredient in such a model is the

product of the density of modes of the bath times the
squared coupling strength which, in the continuum
limit, produces a smooth function of the frequency,
A(w) [1]. As far as long-time behaviours are concer-
ned, and except maybe for pathological cases, it is

enough to know the behaviour of A (w ) at low

frequencies, it being understood that, for physical
reasons, A(ú» -+ 0 when ú&#x3E; -+ + oo as pictured by
some cut-off function /c’

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphys:0198700480110187100

http://www.edpsciences.org
http://dx.doi.org/10.1051/jphys:0198700480110187100


1872

For SQUID’s problems, it has been argued [1]
that A - m for co , 0 (ohmic model) but this is

clearly a very particular situation. Generally speak-
ing and depending of the dimensionality of the
surrounding medium, one rather expects A - úJ 8
where 5 is a small integer ; one can even conceive
the case where 5 is not an integer, for example in
disordered media [10]. Anyway, it is important for
the dissipation to occur, that modes of arbitrarily
small frequency be present.

In a recent paper [11], we studied the Brownian
motion of an ohmic particle in a periodic potential.
It was shown that, when 2nd-order perturbation
treatment is valid, the influence of the potential can
be described by a modification of the noise and of
the friction. Actually, when the friction is high
enough, the particle behaves like an equivalent non-
ohmic free particle, the exponent 8 being simply
related to the dimensionless coupling constant with
the bath and taking any value between 0 and 1. In
that case, a trend towards localization was observed
and this motivated our study of the free damped
non-ohmic particle per se. 

It can be anticipated, on purely physical grounds,
that the dynamics will be strongly dependent on 8.

For 5 small, the low-frequency modes are dominant
and act as a quasi-static disorder on the particle ; the
coupling with such soft modes tends to slow down
the motion. Indeed, for 5  1, the particle goes back
in the average to its initial location, whereas for
1 - S  2, its motion at large times follows a

t s -1 law, displaying a slowing down as compared to
a free undamped particle. Moreover, it turns out
that the proper relaxation time at T = 0 does indeed

go to infinity when 6 - 0. In that limit, the final
mean square displacement of the particle vanishes,
indicating a localization in the broad sense. On the
contrary, when 5 is large, the low frequency modes
are strongly depressed and therefore the dynamics
can become dependent upon the high frequency part
of the spectrum.
Thus, it is worthy to study the dynamics when 8 is

any given real positive number and this is done in the
following in a straightforward manner, by a direct
calculation of the correlation functions of interest.
Grabert et al. have recently treated this problem [12]
by an alternative approach using the Feynman-Ver-
non formalism, a method which, although powerful,
is not always necessary and leads more often to
tedious calculations. Among other things, it is shown
by these authors that, at zero temperature, anomal-
ous diffusion occurs and confinement of the particle
is obtained for 5  1. In addition, they find, at finite
T and for 8 &#x3E; 2, that the dynamics is governed at
large times by a kinematical term involving a renor-
malized mass and depending on the initial velocity of
the particle. In other words, for 5 &#x3E; 2, the system is
not ergodic in the sense that the initial conditions are

relevant at any time. Our results are in agreement
with those of these authors.

2. General remarks and basic equations

In obvious notations, the translationally-invariant
Hamiltonian of the Caldeira-Leggett model reads :

where the last counterterm insures the translational

symmetry [2]. As shown in this latter work, the
Hamiltonian can be rewritten as :

displaying the fact that the friction is obtained by
attaching masses and springs to the particle. The
correspondance between the parameters is the fol-

lowing :

From this Hamiltonian, the equations of motion
for all the degrees of freedom can be readily written
down and, after the elimination of the bath variables,
the Heisenberg representation of the particle coordi-
nate is seen to obey the exact following dynamical
equation (see [3] for further details and [4]) :

I

where a(t) is a random force per unit mass and

k (t ) a retarded memory kernel related to a (t ) by a
fluctuation-dissipation relation. These quantities
have the explicit expressions :

to denotes the time at which the interaction between
the particle and the bath is switched on. The

dynamics is completely determined by equation (4),
implemented by the data of an initial state ; although
this is by no means necessary, we will assume that, at
t = to, the total density operator is factorized and is
of the form P part (8) P balh, with P bath = Z-’ e- batti - PH It is
clear that any other initial state can be treated in the

same framework.

The A(w) function quoted in the introduction is
the continuum limit Of I" I A , 12 5 (W - co ) and is
assumed to behave as w a at low frequencies ; the
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ohmic case is recovered by setting ð = 1. The

precise form of k(t ) can now be written as :

In this latter equation, @(t) is the unit step
function, vanishing for t  0 ; T is a time to be
identified later on (which coincides with the time
TR in [3] when 8 =1) and y denotes the width of the
cut-off function fc. In other words, this

phenomenological model depends upon three par-
ameters : y, T and 5 (or equivalently g = y T, T and
5) which could be calculated from first principles for
a given physical situation ; we will come back on this
point later on.
The cut-off function need not being fully precised

(at least for 5 not too large as compared to unity)
and is only assumed to be an even, meromorphic
function, devoid of any singularity on the real axis

/*+ 00

and having finite moments MIL = Jo dz ZIL fc(z)
0

for any real g &#x3E; 2013 1 ; this freedom is due to the fact
that for long-time properties, only the low-frequency
behaviour is relevant. It is interesting to note that
the frequently used exponential cut-off e- I z must
be treated with some care since this function does
have a singularity at z = 0.

In equation (7), one sees that, in order to have a
well-defined physical model, 6 is a priori only
required to be strictly positive ; this insures that

k(t) is finite at all positive times including t = 0+ .
In the most commonly discussed problems, 5 is an

odd integer so that exponential decay of the memory
is expected (see the Appendix A for details). This is
for instance the case for the ohmic (5=1) free
damped particle studied in [3]. However, this turns
out to be a rather special situation ; it may be said
that the final occurrence of long-tails in the memory
is in fact an ubiquitous phenomenon.
The above equations are exact and thus contain no

approximation ; they allow to explicitly analyse the
dynamics at any time, including transient effects

resulting from any given initial non-equilibrium
state, and to display the approach to the final

permanent regime.
It is interesting to precise how the undamped limit

can be recovered. For 8 &#x3E; 2, the effective coupling
constant is G = g6-2/sin (7r5/2) (see Eqs. (A.2)
and (A.4)) ; so the weak coupling limit (G  1) is
equivalent to ð &#x3E; 81 (g) = (2/7T) sin-1 g6 - 2. This
means that, for any given finite g greater than 1, the
weak coupling limit can never be reached when

ð -+ 0 ; this can be understood by the fact that when
5 is very small, the number of modes of low

frequency is relatively large, thus always yielding a

strong effective coupling. For any fixed 5  2, the
free undamped particle is recovered by setting
g = + oo. On the contrary, for 6 &#x3E; 2, the weak

coupling condition is simply g -, 1 and the undamped
case is reached by taking g = 0. In what follows, we
shall derive results valid for any coupling unless
otherwise stated. Note that in a given physical
situation, the three relevant parameters y, g and T
may be interdependent, in which case the above

analysis should be refined.

3. Averaged trajectory.

We first investigate the averaged trajectory of the
particle when, at t = 0 (i.e. taking to as the origin in
time), it is injected into the bath with a velocity
vo ; vo is thus the quantum expectation value of the
operator (p/m ) = v in the given initial state. Using
capital letters for the Laplace transforms (F L (s) =

+ oo

o e- St f(t)), equation (4) gives for the velocity
operator :

where W(s) = [s+KL(s)]-l is a c-number. From

equation (8), one can write :

where ([* g)(t) denotes the usual convolution
t

integral t dt’ f(t - t’)g(t’); x and p are the
0

Schrodinger operators. Now, by averaging this ex-
pression on all the variables for the given initial state
and defining the origin in space as the initial mean
position of the particle, we obtain the non-equilib-
rium expected value of the velocity of the particle
as :

The Laplace inversion introduces three kinds of 
contributions : exponentially decreasing terms corre-
sponding to the residues, power-law terms - t v

arising from the integral on both sides of the cut (for
8 different from an odd-integer) and a constant
describing the asymptotic dynamics coming out from
a small circle around the origin. This latter constant
vanishes for 8  2 and is equal to p -1 vo for

8 &#x3E; 2, where p is given by :

Note that p m is the sum of the mass of the

particle and of all the bath oscillators, which is
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finite for 8 &#x3E; 2 and infinite otherwise. The above
final regime can be viewed as the result of an
inelastic sticking collision between the particle and
the bath, giving the final velocity v p - 1 Vo to the
particle. Due to the conservation of total momen-
tum, this last result shows that, in the final regime,
the whole system moves at the mean constant

velocity voo. For 8  2, v. always vanishes at infinite
time, implying that the initial condition is in fact
irrelevant as regards to the equilibrium state. On the
contrary, for 6 &#x3E; 2, the initial velocity is never

forgotten and the particle, for t - oo, follows a

kinematical motion.
Once realized these rather unexpected features of

the dynamics, further details of the motion are best
studied by a definite choice of the cut-off function
fc. For instance, for 8  2, one may take fc(x) =
(1 + X2)-1 since this insures that all quantities of
interest are well-defined. Then KL(S) is given by :

where 0 = 7T 8 /2. The poles of W (s ) arise as pairs of
complex conjugate numbers and the one having a
positive imaginary part is shown in figure 1 for
various values of the parameter g (the arrows

correspond to 8 increasing). It is seen that, when
8 -+ 0, both the oscillation frequency (imaginary
part of the pole) and the lifetime (inverse of the
modulus of the real part) diverge ; this displays the
fact that when the low frequency modes are the
dominant ones, the particle is more and more

strongly bounded by a kind of dynamical potential
which develops in the surrounding medium. In the
limit 8 = 0 + , the particle becomes frozen. For
8 =1, the poles are either real (for g &#x3E; 4) or have a
constant real part equal to - y /2 and a finite

g-dependent imaginary part (for g  4) ; in this
latter case, which corresponds to a strong coupling,
the interaction with the bath introduces a finite

frequency, reminiscent of a new dressed particle
having an internal eigenmode. For 8 -+ 2, all the
branches (for various g’s) converge towards a single
point.

It is important to note that only those poles having
a modulus much smaller than y can be said a priori
to be independent of fc. This is the case when
8  1 and when G &#x3E; 1 ; in this case, an approximate
expression for the poles so in the following :

where cp = 7T / (2 - ð ).

In any case 8  2, ð =F 1, the asymptotics of

(x (t ) ) is dominated by a power law (T is the Euler
function) :

Fig. 1. - Pole (in units of y) above the real axis for the
response function WL(s) as defined by equation (8) when
a Lorentzian cut-off function is used, yielding the ex-
pression (12) for KL (s). Each curve is labelled by the value
of the parameter g = y T. The bold dots correspond to the
ohmic case (8 = 1), whereas the arrows indicate the flow
when 6 increases. All the curves converge towards a single
point when ð -+ 2.

This latter equation displays the fact that when
6  1, x (t )&#x3E; tends to zero, i.e. that the particle in
the mean relaxes towards its initial location, follo-
wing at intermediate times a damped oscillatory
motion. For 6 &#x3E; 1, the particle goes to infinity,
whereas its velocity tends towards zero, showing that
the net effect of the friction is to slow down the
motion as compared to the free one. For 6=1,
(x(t) can be readily (and exactly) written at any
time as : 

where :

Only in this case, the particle travels a finite
distance equal to vo T, as in the standard Brownian
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motion ; moreover, in the limit of an infinite band-
width (’Y -+ oo, i. e. strictly ohmic model), one readily
recovers the standard result :

For 5 &#x3E; 2, one has :

The results for the final value of the average
coordinate can be summed up as follows :

4. Fluctuations around the mean trajectory.

The autocorrelation of the velocity fluctuations
around the mean trajectory is given by :

and has the expression :

where :

is the autocorrelation of the fluctuating force when
the uncoupled bath is at equilibrium. Remember
that all the averages are taken with the given initial
state.

Two kinds of terms can be distinguished. Some of
them convey explicit information about the initial
state of the particle ; since the convolution

(w* k)(t) always tends to zero when t -+ + oo,
whereas w(t) tends towards a constant (vanishing if
5  2), only the term implying the variance of the
momentum åp2ae (p2) - (P)2 survives at large
times in the case 5 &#x3E; 2 ; due to quantum uncertainty,
this term cannot be cancelled by a proper choice of

Ppart because then (x2) would be infinite. On the
contrary, for 6 : 2, all the information about the
initial state for the particle is lost at sufficiently large
times. The last term in equation (20) only involves
bath operators via the autocorrelation function

Caa(tl - t2) and, when both times t’ and t" are very
large, becomes an even function of the time differ-
ence t’ - t ", as can be seen by replacing each

function in the integral by its Laplace transform. In
such a limit, this latter contribution can be analysed
by a direct Fourier transformation of the equation of
motion (4). Summing up, the long-time expression
for Cvv(t’, t") can be written as :

C * (t’ - t") represents the random fluctuation about
the mean trajectory, which is diffuse because of the
Heisenberg inequalities in the initial state, never

forgotten when 8 &#x3E; 2. For 5 2, Cw(t’, t") does
coincide with C * (t’ - t") in the asymptotic regime,
once the transient effects have died away.

Since the system in intrinsically linear, C * (t) can
be exactly expressed in terms of the response
function X (w ) defined as :

where K (w ) is the Fourier transform of k (t ), the
properties of which are given in the Appendix A.
For instance, C * (t) can be written as :

where TT is the temperature time defined as

TT = 1t/2 kB T. By using equations (24) and (A.6), it
is seen that in the classical limit kB Tilt’)’ -+ + 00,
C vv * (0) is equal to kB T/m, independently of the
weak coupling assumption, in accordance with the
equipartition of energy. Moreover, by using the
Mittag-Leffler expansion of the cotanh function in
equation (24), one can easily check that, for any

temperature, C w * (0) tends towards kB TIM in the
limit of weak coupling, as it must be.

The stationary mean square displacement
AX2(t", t") is defined as :
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and, in the limit where t’ and t" are large, can be
expressed as :

where dx2*(t) is obtained from CW (t ) by a double
time-integration :

The unit step function in equation (26) is a

reminder of the fact that the kinematical term is

present only for 5 &#x3E; 2. Note that Llx2(t’, t") is not
the variance of the position and, as such, is inade-
quate for describing quantum localization. In all

what follows, we focus the analysis on the starred
functions Llx2* and C.*.

4.1 ZERO-TEMPERATURE CASE. - By looking at

equations (A.2), (A.5) and (24), one sees that the
behaviour of C * (t) will be quite different according
to the location of 5 as regards to 2 which is the
« order » of the integro-differential equation (4).
This comes out from the competition at low fre-
quency between the noise spectrum and the response
of the bare particle. For clarity we will separately
investigate the two cases. Although the cases 5 =
integer can always be obtained by taking the approp-
riate limits, they are more simply analysed by a
separate treatment.

4.1.1 5  2. - In this case, the starred and unstar-
red functions coincide. A simple contour integration
shows that two contributions occur in C vv (t). The
first one originates from the cut and provides a long
time tail, the other one (exponential) comes out
from the residues. Only the poles having an imagi-
nary part « y yield exponentials (actually oscillating)
surviving beyond times - y -1, thus being universal
and independent of the cut-off function. When

g  1, no such pole exists and C vv (t) essentially
follows a power law. On the contrary, for g &#x3E; 1, and
if 6  1, a unique pole zo, noted ’)’-1(lJres + iTR 1),
is obtained satisfying this requirement ; provided
that 6 &#x3E; 81= (2/Trg2)  1, one can write :

These equations, valid as long as yTR and

a res/y are small, show that when 5 decreases

from 1, the relaxation becomes slower and slower.
When 6 - 0, the surrounding medium becomes so
gluey and the memory effects so long-lived that the
particle is completely frozen. On the other hand, for
5 --+ 1, TR approaches T, a res goes to zero and the

oscillating exponential contribution identically van-
ishes ; this means that, in the ohmic limit, at zero
temperature, C vv (t) only displays a negative long
time-tail - - t - 2 in accordance with [3]. Generally,
for t &#x3E; y -1, one can thus write, for 5 1  8  1 :

For 1  8  2, no exponential relaxation can be
seen beyond times &#x3E; y - l, and the only left time-
scale governing the dynamics is given by the time T a
priori introduced in equation (7). In any case,

C vv (t) goes to zero at infinite times, a result which
implies that âx2(t) cannot diverge as t2 or faster ;
more precisely, we find :

The mean square displacement Ax’(t) is now

obtained from C vv (t) by a double time-integration ;
the final value åx2( + oo ) is easily seen to be infinite
for S &#x3E; 1 and finite for 6  1. In this last case, we

find :

where F(6, g ) is the integral :

This integral can be analysed in several limits and
yields :

Furthermore, in the limit g -+ + oo, which for

8  2 implies a weak coupling (see Eq. (7)), one has
the exact formula :

These equations display the fact that the mean
squared displacement of the particle is bounded,
which, in a classical picture, is characteristic of a

spatial confinement. This result by itself does not
imply a true quantum localization since, as already
quoted, iU2 as defined by equation (25) does not
represent the mean square dispersion (variance) of
the coordinate. This last quantity has been analysed
in [12] where it is shown that a true quantum
localization occurs for 0  5  1.
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It is worthwhile to observe that the main contri-
bution to the final value comes out from the pole in
the integrand of equation (33) ; this corresponds to
the resonance l2res in X, the quality factor of which
increases as 5 decreases. This resonance has a width
- TR 1 and is clearly related to memory effects, since
in the case of an instantaneous dynamical equation
(for instance for 6=1 and y = + oo) one should
simply have :

which does not display any resonance for w finite. Its
existence implies that the modes having a frequency
"’ n res are in fact much more coupled to the particle

than all the others and indeed, an effective X (w )
could be here written, near the resonance, as

It may be said that some dynamical potential devel-
ops in the surrounding medium which pulls the

particle back towards its initial location, as if the
latter had left some hole behind it.
The dynamics of relaxation towards âx2( + 00 ) is

found by integrating the asymptotic regime of

Cvv(t); thus, âx2(t) displays the same features as
C vv (t), namely an oscillating exponential regime
implemented by a long-time tail. In the limit of very
large time :

Equation (38) shows the approach towards locali-
zation in the broad sense (Ax2( + 00 ) _ + C)o ),
whereas equation (39) displays the so-called subdif-
fusive regime since Ox2(t ) diverges at infinite time
more slowly than in a purely diffusive regime. When
S -+ 1, the relaxation dynamics becomes slower and
slower and eventually provides a In (t/ T ) for
6 = 1, in accordance with [3, 12].
This confinement is reminiscent of the tendency

already found for a particle in a periodic potential
(see [11] and references therein). Similarly, for a
damped non-ohmic particle in a symmetric double-
well potential, localization is found for 8  1 [lb,
13].
The case 8 = 2 deserves a separate study ; in that

case, J 8 (z) can be written as - In z + regular
function at z = 0 ; this implies that :

in accordance with [12].

4.1.2 ð:&#x3E; 2. - In this case, the expression for X
near z = 0 is the following :

where p is defined in equation (11). Equation (41)
shows that one effect of the bath is to produce a mass
renormalization mren = pm.
The precise variation of this mass correction as a

function of 8 depends on the value of the coupling
constant g and of the chosen cut-off function. With
an exponential cut-off, the behaviour at large 5 is
dominated by the moment M Ii - 3 = F (B - 2) which
goes to infinity when 6 - + oo ; on the contrary, for
a sharp cut-off, fc(x) = 8(1 - x ), the renormalized
mass goes to zero in that limit and one then recovers
the free particle [12b]. As anticipated in the introduc-
tion, one here explicitely observes the qualitative
effect of the cut-off function for large 8, which goes
beyond a simple numerical factor of order unity.
The dynamics at large times can be found by the

same techniques as in the preceding section. We
successively find :

Note that for 5 = 4, 6, 8, ..., the amplitude of the
tail vanishes and one has to go one step further in the

asymptotic series ; this gives Cw (t ) - t- s and so on.
As already observed in the symmetric double-well
potential [13], the dominant exponent can have

jumps. For 8 = 2 (resp. 3), AX2*(t ) behaves like

(t/T)[In (tlT )1-2 (resp. In (tlT)).
The constant AX2*(+ oo ) is approximately given

by : 
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When 6 - 3 from above, å,x2*(+ oo ) diverges as
(ð - 3 )- 1 because of the M 6 - 4 moment. The

p 2 factor can be viewed as originating first from the
mass renormalization and secondly from a rescaling
of the time T introduced at the beginning.

Exactly as for the case 5  2, a new time scale
arises ; more precisely, when one analyses X, it is
seen that a new pole arises every time that 5 crosses
an odd integer value ; the largest of all these times is
still called TR and is given by :

TR tends to y -1 1 when 5 -+ 3 and diverges when 5
goes to infinity, showing that the dynamics slows
down when 5 increases beyond 3.

Equations (31), (40) and (43) show that C*vv (t) has

a negative long-time tail for 1  5  3. Generally
speaking, this is to be related with some « cage
effect » which occurs here when the particle is in a
subdiffusive regime.

4.2 FINITE TEMPERATURE CASE. - The dynamics
at finite temperature is nearly the same as at

T = 0 for all times much smaller that TT. This

implies that only the final step (t &#x3E; TT) of the

dynamics is changed due to the presence of cotanh
(Q hyz /2 ) and is independent of the ratio kB Tlhy.
This final regime involves the small neighbourhood
z - 0 where the cotanh z can be replaced by
1/z. On the other hand, the possible finite limit of
A2* (t), which integrates the whole dynamics, will
be dependent of the ratio kB T/hy. Thus we find :

As emphasized before, when the coefficient of the above long time-tails vanishes, one has to go one step
further in the asymptotic series (however, for 8 = 1 only a final exponential tail appears [3], as it is the case
for 6=3). Equations-(48) and (49) display the fact that C*vv(t) always goes to zero at infinite times, implying
that AX2*(t) can never grow as t2 or faster. For the same reasons as in the zero-temperature case, the
exponents have jumps occurring now for 8 = 5, 7,... For 0 : 8 : 4, LU2*(t) is found diverging at large times
more slowly than t2, namely :

In the marginal cases 8 = 2 and 6=4, one

respectively has å,x2*(t) - t2/ [In (t / T)] and
- In (t/T ). The diffusive regime occurs only for
8 = 1 and 3.

For 8 &#x3E; 4, å,x2*(t) does have a finite value at
t = + oo. When the kB T is much smaller than

+ 00

hy, by expanding cotanh z as 1 + 2 V e-2nz we find
n=0

for 8 &#x3E; 3 :

where, (x) denotes the Riemann function. Due to
the presence of this function, the temperature correc-
tion is thus divergent for 3  8  4, in agreement
with the fact that, at T = 0, åx2* is indeed finite at
infinite time. On the other hand, for kB T/hy &#x3E; 1,
cotanh z - 1/ z in the whole relevant integration
interval and one has :

Thus, although AX 2 * has a finite limit, its final
value is very large at high temperature where
classical effects are dominant. Note that formula

(53) is in fact independent of h and we thus find a
classical anomalous diffusion, while the equipartition
is satisfied since C*vv (t = 0 ) = kB T/m.
The approach to equilibrium is independent of

kB T IIl’Y and, for 5 &#x3E; 4, is given by :

Finally, one can remark that in the range 0
6  1, where confinement disappears at finite T,
one obtains subdiffusive regimes ; this is also display-
ed by the negative long-time tails in Cw (t ), again
related to cage effects. On the other hand, for

1  8  3, âx2* follows a superdiffusive law.

5. Summary and conclusions.

We have shown that the quantum dynamics of a
damped free particle is extremely sensitive to the
behaviour at low frequency of the effective coupling
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strength with the bath, assumed to be of the form
CJ) 8, and to memory effects.
We first determined the averaged trajectory of the

particle, resulting from an external percussion. For
5  2, this initial velocity fluctuation always dies out
at infinite times. In addition, for 5  1, the particle
relaxes in the mean towards its initial location due to
the friction with the low-frequency modes and to
very long-lived memory effects. In this case, the

surrounding medium develops a kind of dynamical
potential pulling back the particle ; in the limit

S --+ 0, the particle is completely frozen. For 1 
8  2, the particle goes to infinity, the net effect of
the bath being to slow down of the motion, governed
at large times by a sub-diffusive regime characterized
by (x(t) - t8-1. When 8 =1 (ohmic case), the
particle travels a finite distance before stopping, as
in ordinary Brownian motion and the dynamics
exactly follows an exponential law at all times. For
5 &#x3E; 2, the system is not ergodic in the sense that the
initial velocity is never forgotten and the particle
recovers in the mean, at large times, a pure kinemati-
cal motion with a renormalized mass. The final
motion of the system is the same as that of two
massive particles which have aggregated through a
sticking inelastic collision.
We subsequently analysed the long-time correla-

tions starting from a non-equilibrium factorized
state. At T = 0 and for 5  1, the mean square
displacement of the coordinate, å,x2, is bounded at
infinite times, indicating that, in the mean, the

particle does not go to infinity (confinement) ; this
results from the friction with the dominant low-

frequency modes and reminds what is observed in a
symmetric double well potential [lb 13]. The ap-
proach to the final value follows a law of the form
t- (1 - 03B4). On the contrary, for 1  5  2, å,x2 is found
to diverge as t 11 where the exponent v is always
smaller than 1. In the marginal case 8 = 2, å,x2-
t/(ln t )2. For 5 greater than 2, the dominant effect is
the kinematical term arising as well as for the one-
time average values ; the next subdominant term is
- t - (8 - 3).
At finite temperature, the confinement effect

found above for 5  1 is lost ; for 5  2, Ax2
diverges always slower than t2, namely å,x2 - t8. For
8 &#x3E;2, å,x2 - t2.
A few final comments may be made concerning

the kinematical arising effect for 5 &#x3E; 2. It is seen

that two kinds of supplementary effects can occur,
either an additional divergent spreading (2  5  3

and T = 0 or 2  5  4 and T =1= 0) or a bounded
spreading in all other cases. For a classical particle,
one can always choose the initial state so as to

suppress the kinematical term. Then, for 8 &#x3E; 3 and

T = 0 or 5 &#x3E; 4 and T =1= 0, the effect of the bath is a
confinement of the particle in a region of space,
albeit possibly large at high temperature.
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Appendix A.

We here analyse in some details mathematical and
general properties of the various quantities defined
in the main text. The Fourier transform of k (t ) is

+00 

K(w) = dt k(t) eiwt (in the following, capital
letters are used for Fourier transforms : F(w) -+
f(t)). Clearly, for w a real number, one must have
K(- w ) = K(w )* since k(t) is a real function ; this
implies that Kl (w ) == Re K (w) is even, whereas

K2 ( w ) = Im K (w) is odd. Furthermore, by just
looking at equation (7), one sees that K1(z ) _
’Y 9 ð - 2 Z ð - 1 f c (z) for z = w / ’Y real positive ; thus,
for any z real :

This equation has interesting consequences ; it

shows that, except for the odd-integer values of 5,
Kl (z) has a singularity at z = 0 which is clearly a
branching point. The imaginary part of K (z ) can be
obtained by the Cauchy theorem (leading to disper-
sion relations) using the fact that k(t) vanishes

. identically for t  0 ; we thus find the following final
form for K (z) for any real z :

with :

where P denotes the Cauchy principal value. It is

readily seen that : .

J8(0) = - (w /2) cotang (1TS/2) (B 2) - (A . 4)

For 5 = 2, 4, 6, ..., a logarithm is to occur in

K2, whereas for 5 real and non-integer the multiform
function z a - is present. This implies that the long-
time behaviour of k(t) is exponential (and domi-
nated by the smallest pole) only for the very special
values 8=1, 3, 5, ... ; in all other cases, k (t)
displays a long-time tail which identically vanishes
when 8 recovers an odd-integer value.
From equations (A.2) and (A.3), the leading

behaviour of K2 for z real and I z [ « I is found to
be :
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Note that, for an harmonic oscillator with the

frequency coo, the only change in equation (23) is to
replace lù 2 by Co 2 lùð; so, when w K (co ) is finite
when w - 0, X ( w ) has then a finite limit (the same
is to be expected for any confined particle). So, the
spectacular effects found for the free particle are in
this case hidden by the built-in confining potential.
Moreover, when one is interested in transport
properties, the simplest and most exemplifying case
is clearly that of the free particle.
From the analytical properties of X (z), it is readily

seen that the following sum rule holds :

For this relation to be true, it is required that
K(z) is an analytic function devoid of any singularity
in the open upper half-plane, the modulus of which
being strictly bounded by I z I at infinity ; this is
insured here by the presence of the smooth cut-off
function. (A.6) in turn is equivalent to the conserva-
tion of the canonical relations ; as an example, it can
be readily checked that [x, p ] = i h is satisfied at any
time, as it must be in an Hamiltonian model.
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