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Résumé. Nous montrons que la diffusion est anormale en toute dimension dans les milieux aléatoires ou les
forces présentent des corrélations a longue portée. Ce résultat est obtenu a la fois par des arguments physiques
et par une analyse de groupe de renormalisation. Les comportements obtenus sont en général surdiffusifs sauf
lorsque la force aléatoire dérive d’un potentiel. Dans cette situation on obtient un comportement sous-
diffusif. Dans le cas critique supérieur (D = 2 pour des corrélations a courte portée), celui-ci est caractérisé par
un exposant dépendant continiment du désordre. La raison en est I’annulation de la fonction B qui est
démontrée a tous les ordres de la théorie des perturbations. Dans le cas général, des arguments simples

N N

suggerent qu’une force potentielle conduit & des diffusions logarithmiques (c’est-a-dire a du bruit en

1/1).

Abstract. — We show, through physical arguments and a renormalization group analysié, that in the presence
of long-range correlated random forces, diffusions is anomalous in any dimension. We obtain in general
surdiffusive behaviours, except when the random force is the gradient of a potential. In this last situation, with
either short or long-range correlations, a subdiffusive behaviour with a disorder dependent exponent is found
in the upper critical case (D = 2 for short-range correlations). This is because the B-function vanishes, which is
explicitly proven at all orders of the perturbation theory. Apart from this case, a potential force is expected to
lead to logarithmic diffusion (1/f noise), as suggested by simple arguments.

In its one-dimensional version, the model is by
now well understood [3-7] and exhibits quite a rich
variety of behaviours. Imagine a particle on a line,
submitted to a Langevin thermal noise and to a
quenched random force independently chosen at
each point. If this force is of zero mean it has been
shown (*) that the particle diffuses extremely slowly :
its mean squared position increases logarithmically
in time instead of linearly. This can be understood
through an Arrhenius argument : in one dimension,
a force is always the gradient of a potential, which in
our case increases typically like the square root of
the distance (as it is the sum of independent random

1. Introduction.

Random walks in random media (RWRM) are
idealized models of a considerable number of physi-
cal situations. Examples are provided by the hopping
conductivity of disordered materials [1], the diffusion
of a test particle in a porous medium [2] or in
turbulent flows. More abstractly, perhaps also more
loosely, they could capture the essential features of
the time evolution of a disordered system in its
complicated configuration space, for example a spin-
glass.

(*) Laboratoire associé au Centre National de la
Recherche Scientifique.

(**) Laboratoire Propre du Centre National de la
Recherche Scientifique, associé a I’Ecole Normale supé-
rieure et a ’Université de Paris Sud.

() This result is due to Sinai [5] in the case of a walk on
a lattice. Explicit results for the continuous case mentioned
here can be found in [7].
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variables). Thus the typical time needed to travel a
distance x is given by ¢ ~ exp (\/ x), which leads to

%2 ~In%t. If the mean of the force is non-zero,
one obtains a large variety of behaviours, like for
example X ~t*, where u is an exponent directly
related to the value of the mean force.

It was soon realized that such a logarithmic
diffusion was tantamount to a 1/f spectrum of the
fluctuations and thus that if logarithmic diffusion
could occur in higher dimensions, this mechanism
would be a general and rather convincing source for
the ubiquitous 1/ f noise [8]. Unfortunately, it has
been shown [9, 10] that if the random force is chosen
independently from site to site, the diffusion is
normal (i.e. ¥~ t) for any dimension larger than
two. The same remark holds when the force is
divergence free (hydrodynamical flow, magnetic
field) or is the gradient of a potential (Hamiltonian
motion) [2, 11, 12], provided correlations remain
short-ranged (see however the last paragraph of this
paper). Renormalization group (RG) analysis can be
performed (as first shown in [10, 13]) to obtain the
dynamical behaviours in dimension D =2 — &.

This paper has two purposes. The first one is to
emphasize that RWRM can display anomalous dif-
fusion laws in any dimension provided the disorder
has long-range correlations, and to present the
results of a RG analysis of this case. We shall point
out, in the next section, the physical relevance of
such correlations, which are essential to the argu-
ments of reference [8] but have not been analysed so
far through RG techniques (except, as a byproduct
of the study of the « TSAW », in the special case of
an unconstrained force [13]). The second purpose
concerns the case where the random force is the
gradient of a potential, with either short or long-
range correlations. It has been remarked [11, 12]
that in this case the RG fails (up to two loops) to
predict the dynamical behaviour. We will make a
step towards the complete solution of this problem
by an all-orders analysis of perturbation theory. We
are motivated in particular by the recent mathemati-
cal results of Durrett [14] who finds logarithmic
diffusions in a long-range correlated potential case.
We will show that, contrarily to his claim, this result
can very well be understood through a RG argument.

2. The relevance of disorder.

We consider a particle submitted to a thermal noise
n(t) and to a quenched random force V(x). Its
motion is described by a viscous limit of the Langevin
equation (such that the velocity is instantaneously
adjusted to the local force) :

x=V(x)+m() )

with

n; ) m; () =2D8(t—1') 8,
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(V@) =V, (Vi) V;0)) . = Gijx—y).

2

The constraints on V (x) determine the (ij) structure
of G;;; this is more easily expressed in Fourier
transform by defining :

Gij(k) = GT(kZ)(aij —k; kj/kz) +
+ GL(K*) k; ki/k* - (3)

conn

we will mainly consider three models :

(model I) unconstrained force : G| = Gy
(model IT) divergenceless flow : G| = 0
(model IIT) potential case V = — grad (H) : G; = 0.

We define an exponent a characterizing the spatial
decay of the correlations :

GL(b(x_y))b-.oob_aGL(x_y) 9

GrlbG )T b~ Grx—y). )

Power law correlations can be of great physical
relevance, for example to the diffusion of a test
particle in a steady flow accross a porous medium
(model IT). Indeed, the flow can be highly in-
homogeneous and nevertheless display preferential
paths along which correlations remain strong.
Another interesting application lies in spin-glass
dynamics (to which model III could be relevant). In
this context, one has the intuitive idea that energy
barriers between two configurations should be an
increasing function of their distance. In the Sherring-
ton-Kirkpatrick [15] infinite-range model for
example, a simpler quantity, such that the corre-
lation ((H({S;})— H({S;}))*) is easily shown to
be an increasing linear function of the « distance »
between the two configurations {S;} and {S;},ina
wide range of distances. This corresponds to a
correlation between forces with @ < 2. We wish to
emphasize that, physically, (4) needs not hold on
very large scales (x —y) when diffusion is ultra-
slow, but only in the restricted region of space that
the diffusing particle can probe within a given time.
In the case of a logarithmic diffusion for example
this defines a frequency cut-off exponentially small
in the length and in temperature : f.~ exp(— L/T)
down to which 1/f noise will be observed. Let us
mention finally that explicit construction of fractal
energy landscapes can be given [16], for which
(H(x)H(y)) = |x —y|>~* at all scales, with
a—2 = 2(D — Dg) <0, Dgbeing the fractal dimen-
sion of the landscape.

We now show that the region in the plane
(a, D) where disorder is relevant (in the sense that it
leads to an anormal diffusion law and not only
changes the diffusion coefficient) can be inferred by
a simple argument. Suppose first that there are no
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correlations. In the pure case (V=0) one has
x2(t) ~ 2" with v, = 1/2. The number of sites
which are visited by the walker in a time ¢ is thus
inf (¢, ¢ Py equal to ¢ if Dvy>1, that is for

D = 2. Reasoning perturbatively, it means that
when a small amount of disorder is present in
D = 2, the walker essentially probes of the order of ¢
different values of V, which according to the central
limit theorem, results in an apparent mean value of
the velocity given by :

iv,.=7. )

The extra displacement due to the disorder is thus
given by :

Ax=V t=/ot
leading to

X?=D%% + ot ,

which implies that, for an ordinary random walk in
D =2, short-range correlated disorder simply
changes the value of the diffusion coefficient (%)
(8 D~ o). Below this dimensionality, the walker is
extremely sensitive to local fluctuations of the force
V, since in the pure case it visits infinitely often a
given site. This can lead either to subdiffusive
behaviours (if trapping regions dominate) or to
surdiffusion (if locally ballistic motion is preserved,
like in model II, see [11]).

One can discuss along the same lines the case
where there are long range correlations of type (4).
(4) means that %t a distance R from a point O one

roughly finds J rP-1 dr/r sites carrying the same

value of V as O. For large R, this integral behaves as
a constant if a > D and as R? ~%if a < D. In a sphere
of size RP, one can thus organize sites in sets of
size RP~? inside which V takes roughly the same
value. The number of independent values of the
disorder is therefore RP/RP-%=R"% In other
words, the long range correlations have reduced the
dimensionality of space to an « effective » one, a, to
which the above argument on residual average
velocity can be applied. Thus, for a > 2, the disorder
simply modifies the diffusion coefficient, while for
a < 2 one expects anomalous diffusions independent-
ly of the dimension D : the resulting domain in the
(a, D) plane where disorder is relevant is shown in
figure 1. For model III, the analysis has to be slightly
modified, and leads to the conclusion that disorder is
only relevant if a < 2, independently of D, i.e. in the
case where correlations of the potential increase with

(® Note that this also means that for Levy flights
(vo > 1/2), Gaussian disorder is irrelevant in D > 1/v,,.
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Fig. 1. — The region of the plane (a, D) where disorder
is relevant is shown by hatches. In the potential case, only
the (dotted) line @ = 2 remains. Previous studies of the
short range correlated case span the (dashed-dotted) line
a=D.
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the distance. The power-counting analysis developed
below will confirm these conclusions rigorously : in
the field-theoretical framework, our qualitative argu-
ment can be seen as a « Harris criterion » (whose
modification in long-range correlated cases has been
studied in [17]).

3. Renormalization group analysis.

The field-theoretical analysis starts from the Fokker-
Planck equation for the probability density P (x, t)
associated with (1). The average of P over the
random force (taken to be Gaussianly distributed
according to (2)) can be expressed, using the replica
trick, as the 2-point function of a field theory

involving 2 N scalars fields ¢°%, ¢

(P(x, ©)) = lim %<¢“(O) ). ©
N0

where a Laplace transform in time has been taken.
The action S reads :

S = Jde{DO 3;0°0,0°—2V)*0,;0" +

+ 0P’} +2i JdedDy d°(x) 9;6°(x) x

x Gij(x—y) ¢°(») 3;°() . (7)

In the static limit (0 = 0), this field theory has a
critical point at V =0. This is related to long-
distance singularities arising when (V) — 0 in the
weak-disorder expansion of lattice hopping models
with asymmetric hopping rates. Indeed, it can be
shown [10] that (7) reproduces the dominant
I . R singularities of a large class of hopping models
(see, however, last paragraph of this paper). In one
dimension, which is the lower critical one for model
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(7), the critical point at V° = 0 is replaced by a whole
domain of V' where the velocity x(7)/¢ vanishes at
t —» oo (critical phase) [6].

The exponent v characterizing the long-time be-
haviour of x?(;) can in fact be related to the
exponent n of model (7) in the purely static limit
o = 0. Indeed, probability conservation implies that
the susceptibility exponent 7 is exactly equal to 1
(since wP(q=0,w)=1). The sca21ing relation

y = v(2 — ) thus leads to x2(s) ~ ¢ >~ " where 7 is
the usually defined exponent characterizing the
algebraic decay of the 2-point function at criticality
in the static theory (0 =0, V° = 0).

The superficial I . R degree of convergence of a
diagram with E/2 ¢ (and E/2 ¢) — external legs at
the order n of perturbation theory is easily shown to
be :

w; g=D+E(Q-D)/2+n(D-4+wy) (8

wy is the momentum dependence of the vertex,
arising from the derivative couplings and from the
momentum dependence of the non-local interaction.
Owing to (4), we see that GT,L(kz) behaves (when
k> 5 0) as a constant, orp, if a=D and as
o1, (k)P -9/2 if g < D. This leads to: wy =
2ifa>Dand wy =2 +a— D ifa<D. We deduce
from (8) that the upper critical « dimension » is
D =2ifa>Danda = 2if a < D : this confirms the
analysis of the preceeding section, summarized in
figure 1. Renormalizability is likely [10] in the upper
critical case (for w = 0), despite the non-local
character of the model and the fact that an infinite
number of dimensionnally admissible counterterms
a priori exists. This is due to global symmetries
(U(N), ¢*— ¢°+ Cst.) and to the fact that non-
locality arises only from the « non-canonical » kinetic
term of the force V;, seen as an auxiliary field. A
non zero o could nevertheless spoil these renor-
malizability properties.

The one-loop RG analysis can be performed along
the lines of reference [18] by working in the
framework of the renormalized theory. Defining
dimensionless coupling constants g and g; through :
oL =g, 2 %and o = g; n?"° at the tree level,
we obtain at one loop order :

d 1
ﬁT:f"mgT=_£gT+4\CD<1_B> X
x gr(2 g1 — go)

d 1
BL:M’&;’QL="‘€9L+4CD(1_E) gL 9r

d D 1
=pu —In—=—=-4C i |
K F'd/.a. nD0 D[(D )x

1
X gT"’BgL] )]
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where ¢ denotes

2-D, Cp=1R
21—D

r(z)

Models I, II and III thus appear as remarkable cases
whose structure is preserved by renormalization. If
one starts with a bare G;; which is neither of type II
nor of type III, the one-loop RG flow goes to the
fixed point gff = gi* = ¢/4Cp(1 —1/D): thus a
« generic » RWRM (without constraints II or III) is
in the universality class of model I. Starting from
model II leads to the fixed point g =
e/8Cp(1-1/D), gi* =0 (for which g; =0 is an
attractive direction, but which is repulsive other-
wise). For these two cases, the long time behaviour
of x%(¢) resulting of this one loop-analysis is given in
table I for both short-range and long-range cor-
relations. (In the upper critical cases, a direct
integration of the one loop RG equations has been
performed). In the short range case, we recover the
results of reference [2, 9-12] (a two-loop computation
of m is then necessary for model I.) The behaviour
V = (V¢ of the renormalized velocity as a function
of V' is also given. The exponent is related to the
RG function vyy associated with insertions of the

operator ¢°9;¢° through ¢ = 1/(1 — vyy). vy is
related to vertex-type corrections of the 4-point
function, and reads at one-loop order :

and e=2-a, Cp=

1
y=4Co(1-% ) or. (10)

Table 1.
MODEL I II

Short range correlated case : (¢ = 2 — D)

4
t<1 + m)

D=2 Xt

t/Int

D <2 X1 t1=e t 4
V=% e=1+¢ (p=1+§

Long range correlated case : (¢ = 2 — a)

a=2 XX t(lnt)ﬁ t/Int

a<?2 xXt) t1+£:—f§ e
V= p=1+c¢e (p=1+§

MODEL III

a>2 x¥t)~t

a=2 Xx¥t)~tlco°

_4
a<2 x¥t)~(nt)?e
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The fact that model II always leads to surdiffusion
can be understood (as noticed in [11]) from the
existence of closed lines of force along which ballistic
motion is preserved. On the other hand, introducing
long-range correlations in model I turns the subdiffu-
sive behaviour into a surdiffusive one.

Model III is extremely peculiar from the RG point
of view, since no contribution to the B function (and
thus no fixed point) is found at one-loop order.
Explicit calculations in the short range case [11]
reveal that this property is maintained at two loops.
The rest of this paper is devoted to a discussion of
this model.

4. The potential case (Model III).

We will first show that for this model one has
B = &g, without corrections at any order of pertur-
bation theory. Arguments in favour of this point in
the short range case have been given in [11]. Setting
V = — grad (H), we choose not to perform explicitly
the, Gaussian average leading to (7) and to keep
instead H as an auxiliary field. In the short range
case, where Gy (k?) is a constant, the action § is thus
replaced by a local field theory whose Lagrangian
reads: (o »io)

£=- 8_10'- (6H) + D° 3,6° 0,0+ 9,H d* 3;0° .
(11)

We recognize a non-linear o-model [19] for the
2N +1 fields (¢ ¢° H). Computing the Ricci
and curvature tensor leads to R,, occ — Ng,, and
Rabea € (Gac Gba — Gad gbc)’ with det (gab) =1. Sur-
prisingly enough, we discover that the model has a
hidden non-linear O(N + 1, N + 1) non-compact
symmetry. (We have found in explicit form the
transformation on the fields which allows to express
(11) in the standard form ofa O(N + 1, N + 1) field
theory.) When the N — 0 limit of the replica trick is
performed, one is thus left with a free theory for
which B, = — &g, at all orders. In the long range
correlated case, the o-model becomes non local in
space, but the same conclusion holds (since it comes
only from an « internal symmetry » property).

In the upper critical case (short or long-ranged,
e = 0), the function B, is zero ; the running coupling
constant g (A ) thus remains equal to the bare one at
any scale A. This leads to a continuous dependence
of the exponents on the variance of the disorder (in
this case, the results of Tab. I are valid to all orders).

When ¢ = 0, g (A) is driven to infinity in the infra-
red limit A — 0: g(A) ~ go A ~°. This means that it
is the strong disorder regime which controls the
physics, regardless of the value of g,. In this limit,
particles are trapped for extremely long times in the
bottom of the potential wells, where we expect the
probability distribution P (x,t) to be well approxi-
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mated by its equilibrium value which is the
Boltzmann weight exp(— H(x)). This distribution
behaves typically as exp(— gm) at large g, and
inserting g(A ) ~ A ~° this leads to a long distance
behaviour exp (— x°/2). This suggests (requiring that
tP (x) should be of order 1) a logarithmic diffusion
(see Tab. I).

This result is the one that can be guessed from an
Arrhenius argument similar to the one given in the
introduction. In D =1, this argument is certainly
correct, since there is only one path going from one
point to another. In higher dimensions, diffusion
between a point O and any point A at a distance R
will be dominated by the smallest energy barrier
encountered by paths going from O to A and
restricted to a volume RP. As we are interested in
most efficient paths, they can of course be taken as
self-avoiding. Now, on any path of internal length N,
the typical energy barrier one encounters scales like

N (we deal here with short-range correlations
such that a = D) ; nevertheless the minimal energy
barrier between p independent paths is obviously
\/ N /p. In a sphere of radius R, one has roughly
RP/N independent paths of size N, and as the paths
are self-avoiding one also has R = N ¥, Therefore,
we predict that the minimal energy barrier scales in
this system as R B2 »saw =1 Biffusion is thus logarith-
mic if vgaw<32D, ie. if D=a<2, as
vsaw (D = 2) = 3/4. Inserting the Flory value (exact
in D=1,2,4), one obtains ¢ = ¢, exp(R(z‘D)/z),
and thus R = (Int/t,)*/®~2) which is, quite sur-
prisingly, exactly the result obtained through the RG
argument presented above. In D =2, the great
number of paths always allow the walker to go
around «hills ». In the general case of long-range
correlations, the condition a <2 means that the
potential grows at large distances like H(bx) =
b?-9/2 H(x) and the Arrhenius argument allows to
recover the behaviour of table I. Lastly, we would
like to point out that our model is a continuous limit
of the discrete one for which Durrett [14] has proven
that this logarithmic diffusion takes place in any
dimension. Indeed, if one identifies

—VH(x) = lim } (Wy — W )(x" —x)

x-x' x

where W, is the hopping rate from site x to site
x', one gets exactly with Durret’s definition :
V = —grad (H), with H(bx) = b® H(x), his ex-
ponent a being (2 —a)/2.

Let us finally mention that not all RWRM fall in
the universality classes of table I. For example,
random walks among traps with a broad distribution
of release time 7 of the type p(7)~ 7~ ¢ (with
a < 2) reveals subdiffusive behaviour in all dimen-

=1 for D=2 20].

sions with an exponent v =

We believe that the example recently constructed in
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[21] falls in this universality class rather than in those
studied in this paper : the potential constructed in
[21] has short-range correlations with a local distri-
bution of potential depths p (H) ~ e~ “#. Upon res-
caling of space, this induces traps with a release time
given by Arrhenius law 7 ~ exp(BH). Its distri-

(1.8
bution is thus given by 7 B ), leading us to

JOURNAL DE PHYSIQUE
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conjecture that the diffusion law for this model is
X2 ~1/B, for D> 2.
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