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Résumé. - Nous étudions les effets de la polarisation nucléaire M sur le diagramme d’équilibre liquide-gaz de
3He, dans des situations où la pression de vapeur saturante croît ou décroît en fonction de M, et où une
instabilité métamagnétique peut se produire dans le liquide. Nous donnons des prédictions numériques
obtenues dans le cadre d’un modèle phénoménologique dont les paramètres sont choisis de façon à reproduire
avec précision la pression de vapeur saturante et la susceptibilité magnétique du liquide ordinaire (non
polarisé). Pour des températures de l’ordre de 0,5 K, on trouve dans certains cas des situations où se
produisent des phénomènes intéressants, tel qu’une surpolarisation du liquide ou un plateau métamagnétique.

Abstract. - We study the effects of nuclear polarization M on the liquid-gas equilibrium phase diagram of
3He, in situations where the saturating vapour pressure increases or decreases as a function of

M, and where a metamagnetic instability may occur in the liquid phase. Numerical predictions are given within
the frame of a phenomenological model with parameters fitted to reproduce accurately the saturating vapour
pressure of the unpolarized liquid as well as its magnetic susceptibility. At temperatures of the order of 0.5 K
situations are found where interesting phenomena such as liquid overpolarization and metamagnetic plateaus
occur.
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There is currently an active interest in phase
transitions in spin-polarized 3He. Several groups [1,
2] have recently obtained interesting results on the
solid-liquid transition, using the polarization method
proposed by Castaing and Nozi6res [3]. The results
might indicate the existence of a metamagnetic
transition (or near metamagnetic transition), as

suggested by B. Castaing [4] and by K. Bedell and
C. Sanchez-Castro [5]. Such a transition could also
have an important effect on the superfluid properties
of the liquid [6].

In the present article, we study another transition
which takes place at lower pressures, the liquid-gas
transition. Gaseous 3He can be strongly polarized by
laser optical pumping [7], but also cooled down and
condensed to form liquid 3He t , which should allow
studying the effects of the nuclear polarization on
the saturating vapour pressure. These effects are
non-trivial [8] : for example, the nuclear polariz-
ations of the two phases at equilibrium can be
significantly different, because particle indisting-

uishability effects are more important in the (denser)
liquid phase than in (dilute) gas phase. Liquefaction
experiments of this type are in progress at the Ecole
Normale [9]. Experimental data would give access to
physical quantities which depend on many body
effects and are difficult to calculate, such as the
change of the binding energy of the liquid under the
effect of spin polarization. Moreover, they might
also reveal the existence of a metamagnetic transition
in the liquid phase, as we see in more detail below.
To study these problems, in the present article we

use a simplified model already employed for inves-
tigating the thermodynamical properties of asym-
metrical nuclear matter [10]. In a nucleus, the asym-
metry (difference between the number of neutrons
and protons) plays the role of spin polarization
(difference between the number of spin up and spin
down particles) in 3He system ; asymmetrical nuclear
matter occurs in several important problems in

astrophysics [11]. The model is based on the use of a
Skyrme interaction [12] in the framework of a mean-
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field approach [13, 14]. It is also employed in a

joined article [15] (hereafter referred to as BPS) on
the liquid-gas transition in unpolarized 3He.

1. General framework.

1.1 CROSS-OVER TEMPERATURE T*. - In the limit
of very low temperatures, the saturated

(unpolarized) 3He vapour is very close to an ideal
gas, and its chemical potential has the simple follow-
ing expression

where A = h (27TmkT)-l/2 is the thermal

wavelength of the 3He atoms, k the Boltzmann
constant, T the temperature and n the number

density. This chemical potential is purely entropic ;
in particular, the term in Log 2 is due to spin
entropy. On the other hand, at low temperatures,
the chemical potential 9L of the atoms in the liquid
phase is almost pure energy and equal to E, the
energy per atom (E = - 2.5 K) ; the liquid being
degenerate, there is no spin entropy. Equating both
JL’S gives the temperature dependence of the saturat-
ing vapour pressure P for ordinary (unpolarized)
3He :

where A is a constant. For fully polarized 3He, the
saturating pressure P T is given by

where E t is the (negative) energy per atom in the
polarized liquid, which is expected to be smaller (in
absolute value) than for unpolarized liquid [8]. In
(3) there is no factor 2 because a fully polarized gas
does not have any spin entropy. Therefore :

with

There are consequently two regimes, depending on
the relative values of the temperature with respect to
a cross-over temperature T* defined by :

If T -- T *, the energy effects dominate and as

discussed in [8], the saturating vapour pressure of
3He T is larger than that of 3He. But (1 ), if
T 2:: T*, nuclear spin entropy is important and the
reverse is true (P T  P ).

Actually, when T &#x3E; T*, the preceding equations
do not necessarily apply, since they are only valid in
the limit of very low temperatures. At higher
temperatures, the liquid is no longer completely
degenerate and acquires a spin entropy (which, in
the limit of high temperatures, approaches that of
the gas phase, so that the factor 1/2 in (4) comes
closer to 1). Moreover, the motional entropy of the
atoms in the liquid is no longer negligible. Neverthe-
less, the above discussion remains qualitatively valid
and, in section 3, we will find situations where a
cross-over temperature T* indeed occurs, with an
order of magnitude given by (5b).

1.2 CONSTRUCTION OF PHASE DIAGRAMS. - For

the present discussion, which is strongly inspired by
the beginning of [3], it is convenient to take as

thermodynamical variables N (total number of

particles), P (pressure), T (temperature) and finally
M (nuclear polarization) ; M is defined as a dimen-
sionless number ( -1, M , + 1 ) by

where JL n is the 3He nuclear moment and M the total
magnetic moment of the sample. This is a convenient
choice of variables for studying (metastable) equilib-
rium situations where M varies very slowly in time,
under the effect of nuclear relaxation (relaxation
times can be of the order of minutes in the liquid
phase [16], hours or even days in the gas phase [17]).
An alternative choice is to replace the variable M by
the effective (or « internal ») magnetic field :

where G is the Gibbs free energy of the system. For
what follows, it is convenient to introduce the free-

energy per atom g :

At fixed temperature and pressure, the variations

of g as a function of M have the form shown in
figure la. For the gas phase, where degeneracy
effects are negligible, the energy does not depend on
M and all the variation of g are contained in the spin
entropy term SI :

This expression replaces Log 2 in the right hand side
of equation (1) for a partially polarized gas. For the
liquid phase, in addition to spin and atom motion
entropy, degeneracy effects introduce a M depen-
dence of the energy U ; so, even at zero temperature,
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Fig. 1. - The upper curve shows the variations of the

Gibbs free energy per atom g as a function of the (relative)
magnetization M, at fixed pressure and temperature. A
simple geometrical construction gives the chemical poten-
tials A, (M, P, 7J and u_ (M, P., 7J of spin up and spin
down atoms. A partial derivation of g with respect to
M leads to the effective field Reff which is proportional to
J.L + - J.L -, and a second derivation gives the inverse

magnetic susceptibility X -1.

the curve has the convex shape in figure la. The
same figure shows the simple geometrical construc-
tion which gives tk -, (P, T) and u - (P, T), the
chemical potentials of spin up and spin down atoms
respectively (*). These two quantities are related
by [3] :

A derivation of g with respect to M (at constant P,
T) gives Beff, as shown in figure 1b, and a second
derivation gives the inverse of the magnetic suscepti-

(*) We take here the point of view where the spin up
and spin down atoms are treated as two different atomic
species, with two chemical potentials (which are separately
equal in two phases at equilibrium). It can be shown

rigorously in quantum mechanics that this point of view is
completely equivalent to that where all atoms are con-

sidered identical and where antisymmetrization acts also
on spin states.

bility per atom :

Now, if two phases coexist, one has to consider the
two corresponding curves giving g as a function of
M. When, for instance, P varies at fixed T, the curve
giving g for the gas phase moves vertically by a
larger amount than that of the liquid phase (because
the term in Pv is larger in a dilute phase). Therefore,
in some pressure range, the two curves will intersect

as shown in the upper part of figure 2. A common
tangent construction (convex envelope) shows that,
for any magnetization M between M1 and M2, the
system separates spontaneously into two different
phases, gas and liquid in equilibrium. The geometri-
cal construction of the equilibrium curves is shown in
the lower part of the figure. Coming back to the
geometrical construction of the chemical potentials
in figure 1, one sees that the effective fields in the
two phases, as well as the two chemical potentials,
are indeed equal at equilibrium, as expected ; from
now on, the common value of the two effective fields
will be noted B.

Fig. 2. - Geometrical construction of the phase equilib-
rium diagram between gas and liquid. Figure (a) shows the
variations of the two g curves 9G for the gas, 9L for the

liquid phase. The contact points of the common tangent
give respectively the two magnetizations M1 and M2 of the
liquid and gas in equilibrium. When P varies at constant
T, one obtains the equilibrium diagram in figure (b).
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1.3 ROLE OF MAGNETIC SUSCEPTIBILITIES (*).
The Gibbs-Duhem relation gives

(with obvious notation). In terms of magnetic suscep-
tibilities and effective field B, the dependence of the
pressure P on M at constant T is therefore given by :

rB A p, 

This relation shows that the crucial physical quantity
which determines the shape of the equilibrium
diagrams is the difference XL - XG as a function of
M (or B).
For an ideal non degenerate gas, the function X is

very simple :

This gives a good approximation of X G, except near
the critical point where the gas is relatively dense.
On the other hand, X (M ) is not known for the liquid
phase and one has to resort to various approxima-
tions to calculate the M dependence (see for example
the discussions in [3, 20-25]).
The pressure change for small values of M is easily

evaluated expanding equation (10b) up to terms in
B 2 One finds :

where v and X are the values at B = 0. Experimen-
tally, one finds ([27-30])

and, consequently, the curve P (B ) always has a
parabolic behaviour with a positive curvature at the
origin, as shown in the left part in figure 2b.
Equation (llb) can be further simplified when one
notices that at low temperatures VL  vG and that the
gas in equilibrium with the liquid is non degenerate
(P vG = kT). One can then write :

where we have used xG = 9 n 2IkT. Equation (lld)
predicts AP/P = 0.9 x 10 - 4 at T = 0. 5 K and

(*) See [18, 19] for similar discussion in the context of
solid-liquid equilibrium.

AP/P = 0.06 x 10- 4 at T = 1 K if a magnetic field
of 20 T is applied to the system (MG =1.5 %).
On the other hand, we know from the discussion

of section 1.1 that the equilibrium pressure
P (M = 1) may in some cases be smaller than for
M = 0. Because X L  X G at M = 0, this implies a
situation where, at fixed temperature (T &#x3E; T*), the
equilibrium pressure first increases quadratically
from Po as a function of ML (or IVIG), goes through a
maximum P = P a at some intermediate value of the
polarization M = Ma, and finally reaches a lower
value P when ML = MG =1. In other words, when
P decreases, the first contact between the two g
curves occur at M = Ma, as shown in figure 3a ;
when P = P a and M = Ma, the two g curves are
tangent, which means that the effective magnetic
fields of the two phases are equal.

Fig. 3. - If T&#x3E; T*, that is if the saturating vapour
pressure of the polarized liquid is smaller than that of the
ordinary liquid, the phase diagram has the shape shown in
figure (b) ; the pressures are increasing functions of

M at low M’s (because the magnetic susceptibility is

smaller in the liquid than in the gas phase), go through an
« azeotropic » maximum P = P a at M = Ma, and then
decrease. Figure (a) shows the tangent contact between
the two g curves when P = Pa. If P decreases from

Pa, there are two common tangent to the g curves (until
P reaches P1).

The equilibrium curve therefore has the « mous-
tache » shape shown in figure 3b, with three « azeot-
ropic » points : in addition to the usual M = 0 point,
two symmetrical azeotropic points correspond to

particular values of the magnetization (M = ± Ma )
for which, as unpolarized 3He, polarized liquid
3He boils at fixed pressure (or fixed temperature if
P is kept constant). Like around M = 0, the curvat-
ures of the two curves are in the ratio of the

magnetic susceptibilities, and the geometrical dispos-
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ition shows that, necessarily :

in contrast with (llc) (both X’s nevertheless remain
positive). This means that if, at low M, the magnetic
susceptibility of the liquid is lower than that of the
gas, it increases faster as a function of M and catches

up XG at some value M  Ma. An important feature
of these diagrams is that they imply unusual situa-
tions where the liquid nuclear polarization exceeds
that of the gas.

Finally, we note that if P t  P o implies necessari-
ly the existence of a polarized azeotropic point, the
converse is not true : such non-zero M azeotropic
points may also occur when T  T* (Fig. 4) and
even be the general case.

Fig. 4. - Another diagram with a non-zero M azeotropic
point, but where P t &#x3E; P (M = 0).

1.4 METAMAGNETISM. - We now consider a case

where the g curve of the liquid phase has the shape
shown in figure 5a : it has two inflexion points and a
concave part. For magnetizations below M = M1 or
above M = M2 (see Fig.), the system will behave as
before, but for intermediate polarizations
(Mi  M  M2), it can reduce its Gibbs free energy
by spontaneously separating into two phases of

magnetizations M1 and M2. Then, the point repre-
senting the system lies on the common tangent AB
shown in the figure (convex envelope).
Between points A and C, and between D and B,

the system may remain in a metastable state, because
it can only gain Gibbs energy by separating into two
phases of completely different M. This is not true

between C and D where a local instability occurs, so
that this part of the curve is actually unphysical.

Fig. 5. - Gibbs energy curve for a homogeneous phase
having a metamagnetic transition (Fig. (a)), corresponding
effective field (Fig. (b)), and magnetic susceptibilities
(Figs. c and d). The system remains homogeneous if
M  M1 or M &#x3E; M2, but spontaneously separates into two
phases with different M’s if M1  M  M2 ; nevertheless,
if M1  M  M’ or M2  M  M2, the system can remain
homogeneous in a metastable state. The magnetizations
M1 and M2 can be obtained by a Maxwell construction on
the curve giving the effective field B eff as a function of
M. They correspond to divergences of the magnetic
susceptibility.

Curve (5b) shows the variations of the effective
field. With this curve, a Maxwell construction gives
the magnetizations M1 and M2 of the two phases.
Curves (5c) and (5d) show X -1 (M ) and X (M).
Negative values of X are unphysical, but y can go
(positively) to infinity on metastable branches when
M --. M’ or M "7M2.

Following other authors [5, 19], we shall call

metamagnetism this divergence of X at finite Beff,
leading to spontaneous separation into two different
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phases. The construction in figure la shows that

u, and A- are constant along the metamagnetic
tangent AB. Also, whenever the system is stable (or
metastable), one can show that :

(at fixed P, T).
In the numerical model presented below, we find

metamagnetic situations for some values of the

parameters. For the moment, we only remark that,
the smaller XL and the smaller AE (Eq. (5a)), the
more likely metamagnetism is : this is because g then
starts at small M’s with a strong curvature but ends

up at a low value for M = 1, which favours the
occurrence of a convex part at intermediate values of
M.

1.5 COMBINATION OF TWO INSTABILITIES. - We

finally discuss how the two instabilities in the liquid
(vaporization when the pressure is decreased, and
metamagnetism when M changes) combine in phase
diagrams. The situation is similar to that of para-
graph 1.2 and paragraph 1.3, except that the g
diagram for the liquid now has a straight line

portion.
If we add metamagnetism to the diagram in

figure 2, when P decreases, a situation such that
shown in figure 6a will occur : at some value of

P, the common tangent to both g curves will be the
line AB which is tangent to gL in two points, A and
B. For slightly higher values of the pressure, the
contact point of the common tangent will be close to
B ; but, for slightly smaller values of P, it jumps to
A, with a different value of M. Hence, the diagram
shown in figure 6b, with a plateau A’ B’ on the
liquid curve, and a reentrant kink point E’ on the gas
curve. Metastable situations (with respect to liquid
metamagnetic separation) can occur when the con-
tact point does not jump to the other bump of the
curve. This is possible until the point reaches point C
(or D), where the g curves become unphysical. Such
metastable situations correspond to the dashed
curves in figure 6b. The dotted-dashed lines are the
border of the domain where the metamagnetic phase
separation occurs in the liquid.

If we add metamagnetism in figure 3, two main
cases are possible : either Ma falls outside of the
metamagnetic range of the liquid phase, or it falls
inside so that the first tangent contact of the two g
curves shown in figure 3a now occurs in a point
where gL is a straight line. The first possibility is
shown in figure 7a (moustache with plateaus), the
second in figure 7b (a curve that we nicknamed
« diavolo »). In figure 7, we have assumed the

metamagnetic effect in the liquid phase to disappear
at high pressure, but this is not necessarily the case :

Fig. 6. - Liquid-gas equilibrium curves when the liquid
can be metamagnetic. Points A and B on the gL curve
correspond on the equilibrium curves to a plateau A’ B’
and a kink at point E’. The dotted dashed lines in

figure (b) show the metamagnetic diagram of the liquid
phase (in the absence of gas). Dashed lines in figure 6b
correspond to metastable situations where the liquid
remains homogeneous, but could decrease its Gibbs free
energy by undergoing a metamagnetic transition. The end
of these dashed lines occurs at a pressure where the curve

9G becomes tangent to the common tangent in C and D of
the curve gL.

the metamagnetic separation line (dashed curve)
does not always close at the top, as we will see in
section 3. Moreover, other more complicated situa-
tions are of course possible (more azeotropic points
or metamagnetic plateaus). A general discussion of
equilibrium diagrams and singular points, in the case
of phase changes of mixtures of two substances, can
be found in Landau and Lifschitz [31] and transposed
to polarized 3He (M being analogous to concen-
tration).

2. Formalism.

In the preceding section, the thermodynamic poten-
tial used was the Gibbs free energy ; this is well

adapted to a discussion of equilibrium between
phases at the same temperature and pressure, but
with different molar volumes. In this section, where
we wish to treat phenomenologically the interactions
between particles, it is much more convenient to use
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u I

Fig. 7. - Two other diagrams combining metamagnetism
and evaporation.

the volume (that is the density) as a thermodynami-
cal variable, and the Helmholtz free-energy F as a
potential.

2.1 HELMHOLTZ FREE-ENERGY : MODELIZATION OF
THE INTERACTION TERM. - The variables we now

take are M, T, and the total number density
P: 1

(N : number of particles, V : volume). If p T and

p I are the partial number densities, one obviously
has

where M is the relative (dimensionless) mag-
netization. Rather than F, we shall use the free-
energy f per unit volume (*) :

(*) Here, a lower case letter corresponds to a ther-
modynamical function per unit volume, and not per atom
as in section 1.

and assume that :

In this expression, fni is the free energy density of a
non-interacting Fermi gas [32], which can be writ-
ten :

while fv is the contribution to f due to the interac-
tions. Obviously, this function can not be calculated
exactly and we use here a phenomenological model
to obtain its value. Actually, we simply generalize
the expression used in BPS (for unpolarized 3He) to
non-zero M values, and write the expression :

which includes explicitly a M dependence up to
terms in M4. In BPS, parameters bo and co were
chosen in order to reproduce the experimental
values of the energy per particle, the density and the
incompressibility of unpolarized liquid 3He at zero
pressure and T = 0. The resulting predictions for the
liquid-gas phase transition were in reasonable agree-
ment with the experimental data ; in particular the
vapour pressure was reproduced within 20 % at all
temperatures of equilibrium. Nevertheless, in the

present work, we are interested in finer details than
in BPS, and we shall follow a different strategy to fix
the values of the parameters in (17), and actually
take some of them temperature dependent.
The values of bo, co and Q we take at T = 0 are

those of BPS. For simplicity, we assume that

co and a do not depend on T(co = 871.487 x
104 K A3(1 + o,), = 2.658) but, for bo, we include a
T dependence which is fixed in order to reproduce
exactly at each temperature the experimental values
of the saturating vapour pressure of unpolarized
3He [33]. Table I shows that bo then depends only
weakly on T, as could be expected from the quality
of the result obtained in BPS for the saturating
pressure.
We have seen in section 1 that the magnetic

susceptibility X plays a crucial role in the problem
studied here. We therefore wish to reproduce pre-
cisely the corresponding experimental values. Within
the frame of our model, the value of X is given by
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Table I. - Values of the free energy parameters as a
function of T.

where X ni is the magnetic susceptibility of the

polarized non interacting Fermi gas. The parameters
bl and cl are consequently chosen in order to

reproduce the experimental values of y (T) [34] for
two different values of p, 33.0 and 35.5 cm3lmole.
We have checked that our fit is able to accurately
reproduce X (T) up to p = 32.0 cm3/mole, which is
well above the values which appear in our cal-

culations. The values of b1 (T) and c1 (T ) are also
shown in table I.

In order to fix the value of the remaining two
parameters b2 and c2, we have considered

equations (16) and (17) for the fully polarized system
(M =1 )

where

V 
- 

4.- V ’ G

Since we chose T dependent parameters for the
unpolarized phase, we could in the same way assume

that b and c t depend on T. Nevertheless, for the
fully polarized phase, no experimental data are yet
available, which could be used to fit the parameters.
Then, we shall simply assume that b T and c T are

T independent. This absence of temperature depen-
dence of the parameters of the fully polarized phase
is actually not sufficient to fix them univoquely :
they will be fixed by assuming given values for the
binding energy E and the saturation density
Pot of the polarized liquid at T = 0. Both E and

p o 1’ then appear as the natural free parameters of
our model.

It is important to realize that, in our calculations,
the non interacting parts of equations (16) and (19)
are computed exactly, by calculating the Fermi

integrals that enter their definitions [35]. This is
crucial since we wish to describe a wide spectrum of
situations ranging from the classical regime in the
gas (low density) to the degenerate limit in the liquid
(high density).

2.2 PHASE TRANSITIONS. - Simple as it might
seem, the free energy functional of equation (16) is
of great richness. We now show how it allows the
study of coexistence between different phases.
Homogeneous partially polarized 3He is not neces-

sarily stable for all values of p, M and T, due to
combined effects of statistics and interactions.

Necessary conditions for the stability of a binary
system made of spin up and spin down atoms, are
[36] :

where u is the internal energy per unit volume

K the compressibility (u + and IL - are the chemical
potentials defined in Sect. 1). The value of the

pressure P and of the IL’S are given by

and : 
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where tL i, - is the chemical potential of an ideal
Fermi gas. It is straightforward to evaluate the
contributions of the interactions to ¡.L + , - , because :

with

In addition to conditions (20), the pressure P must
be positive.

In general, a violation of the stability criteria (20)
indicates the occurrence of a phase separation : the
system splits into separate phases in equilibrium.
The phases can differ in p and/or M. It is important
however to stress that these conditions are necessary
but not sufficient for stability (they can be satisfied
in regions where the system is not stable, but only
metastable, as discussed in Sect. 1). We have verified
that condition (20a) for the specific heat is satisfied
for all the values of p and T encountered in our
calculation. Conversely, situations have been fre-

quently found where conditions (20b) and (20c) are
violated. In particular, at low temperatures condition
(20b) is violated in a wide range of values of

p for M fixed. This region of negative compressibility
is associated with a liquid-gas phase transition and
was already found in BPS for unpolarized 3He
(M = 0). The properties of such a phase transition
will be explicitly illustrated in the next section for the
fully polarized case (M = 1). Values of M at which
condition (20c) is violated have also been frequently
met at high density (liquid) and low temperatures.
Condition (20c) is equivalent to requiring that

x &#x3E; 0 ; its violation is responsible for the phenome-
non of metamagnetism (see Sect. 1).
To find two phases in equilibrium we have to solve

the system of equations :

In principle the Gibbs phase rule would allow for
the equilibrium of three or even four phases. Ac-
tually, in our calculation we have found only three
phases in equilibrium at most. This corresponds to
two liquids characterized by rather close values of
p but significantly different values of M, in equilib-
rium with a gas.

3. Results.

In this section we present the results for the phase
diagrams predicted by the phenomenological model
described in the previous section. The free par-
ameters of the model are the binding energy
E T and the T = 0 saturation density p t of the fully

polarized system. The values of E t and p are not

presently known, although from theoretical argu-
ments (confirmed by recent microscopic calculations
[22, 37]) one expects that they should not differ very
much from the corresponding values in the un-

polarized phase

We have first assumed p o t = p o and made two
different choices for E t: E 1’ = - 2.4 K and E t =
- 2.2 K. The former choice corresponds to an energy
gap AE =Et2013E==0.1K which is smaller than
that (AE =I 0.18 K) obtained extrapolating to M = 1
the low M behaviour of the energy at T = 0 :

This choice is then a natural candidate to provide the
phenomenon of metamagnetism. Conversely, with
the latter choice one does not expect to find

metamagnetism at low pressures. The values of the
parameters b t and c t (see Eq. (19)) corresponding
to the two choices are shown in table II. With these
choices for b t and c T , the free energy of the

system (Eqs. (16) and ( 17)) is completely determined
as a function of p, M and T.
We have first explored the fully polarized system

(M =1 ). In this case we find the typical phase
diagrams in figure 8 characterizing the liquid gas
phase transition. A critical temperature T, t =
5.36 K is found with the choice E t = - 2.4 K,
p 0 t = po. This value is higher than the one found in
BPS for unpolarized 3He (Tc = 4.32 K). Of course,
the absolute values should not be taken too seriously,
since in the unpolarized phase the present method
overestimates the critical temperature by = 30 %.
The relative increase of T, t with respect to

Tc is however in reasonable agreement with the
estimate of [8] based on the theory of corresponding
states improved to account for the effects of statis-
tics [38].

Table II. 

Let us now discuss the results for the partially
polarized system. As seen in the previous sections, a
key quantity, which characterizes the structure of
the liquid-gas phase transition as well as of the

possible metamagnetic transition, is the magnetic
susceptibility x. In figure 9a and b we plot jin 2X as
a function of M for a value of the density which is
typical of the liquid phase and for two different
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Fig. 8. - a) Equation of state diagrams predicted for
fully polarized 3He. The obtained critical temperature is
Tc = 5.36 K. b) Temperature dependence of the densities
of the two phases in equilibrium (liquid and gas).

temperatures. In the figures we also show the
susceptibility of the classical non interacting gas
(CL) (see Eq. (lla)) which very accurately describes
the behaviour of the gas in equilibrium with the
liquid. We also show, for comparison, the prediction
of the non interacting Fermi gas (NIFG). We notice
that at small M, y is always smaller than XCL.
However, depending on the assumption on E and
on the value of T, X can become larger than

XCL when M increases. As discussed in section 1.3,
this behaviour is consistent with the existence of a
maximum value for the vapour pressure at some
intermediate value of M. The figures 9 do not
exhibit the metamagnetic effect (negative X) because
they correspond to relatively high values of T.

Fig. 9. - Magnetic susceptibilities X /c (with c = p, n) of
the liquid phase of 3He, at fixed temperature, as a function
of the relative magnetization M. Two different values of
the free parameter E t are taken (- 2.2 and - 2.4 K), but
Pot is kept fixed and equal to p o. As a point of

comparison, the magnetic susceptibilities of a classical gas
(CL) and a non interacting Fermi gas (NIFG) are also
shown.

Figures 10 show the phase diagram obtained with
ET= -2.2K and pot=po. As expected, we do
not find metamagnetism in this case (we have not,
however, explored the very low temperature re-

gime). The occurrence of the cross-over temperature
predicted in section 1.1 emerges in a clear way,
though it occurs at a higher value ( T = 0.9 K) than
predicted by equation (5b) (T* = 0.45 K). One
should however remark that at such temperatures
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Fig. 10. - Phase diagrams of liquid-gas equilibrium for
partially polarized 3He at three different (fixed) tempera-
tures. The free parameters are fixed at the values
E t = - 2.2 K and Po t = p o. The cross-over temperature
is T* = 0.9 K.

the effects of non degeneracy in the liquid, neglected
in equation (5b), can be rather important.

Figures 11 a, b and c show the results obtained
with choice E t = - 2.4 K and p o T = p o. In this

case, indeed, we find metamagnetism when T 
0.4 K. The effect is very spectacular at T = 0.2 K

(Fig. 11 a) where we find the « diavolo » predicted in
section 1.5. At T = 0.35 K we find another situation

(Fig. llb) already anticipated in section 1.5 (mous-
tache with plateau). The curves of metastability
(with respect to the metamagnetic separation) are
also drawn. The cross-over temperature is found to
occur at T* : 0.2 K consistently with the prediction
of equation (5b) (T* = 0.14 K).
We finally discuss the role of the parameter

Pot. By varying this parameter by - 5 % with
respect to p o we have found that the liquid gas phase
transition are only weakly modified. Conversely by
taking p = 1.05 p o we have found some modifi-
cation in the liquid metamagnetism. In this case the
metamagnetic separation line does not close at high
pressures (see Fig. 12), in opposition to the case
p o t = po and po t = 0.95 p o.

Conclusion.

The phenomenological model used in this article

gives interesting predictions in several cases, and
shows that the binding energy of the fully polarized
phase plays a crucial role in determining the

polarized liquid-gas equilibrium curves of partially
polarized 3He. Even if this binding energy were
known precisely, which might be the case with the
impressive progress made in recent variational calcu-
lations [37], one should keep in mind that our model
remains phenomenological: it is based on assump-
tion that equation (17) gives a good approximation
of the effects of interaction on the free energy of the

system. Such a simple M2 and M4 interpolation is



1348

Fig. 11. - Phase diagrams for liquid-gas equilibrium for
partially polarized 3He with the same value of po t than in
figure 10 (po T = po), but a different value for E ’ :
- 2.4 K, which favours metamagnetism at low tempera-
tures. The metamagnetic separation lines for the liquid (in
the absence of gas) are also shown in the upper part of the
figures, but with different pressure scales. Three different
temperatures which give rise to three different situations
are shown: T = 0.2 K (Fig. a), T = 0.35 K (Fig. b) and
T = 0.4 K (Fig. c). In the latter case, the metamagnetic
transition no longer manifests itself as a straight line

plateau, but it is clear that near-metamagnetism affects
strongly the shape of the phase diagram.

indeed plausible, but not certain. It has the merit of’
being the simplest model able to include non trivial
effects such as metamagnetism. Adding higher order
corrections could of course change quantitatively the
predictions of the model for large polarizations.
Nevertheless, as long as the general shape of the

curves is not changed (in particular, the number of
inflexion points in Fig. 5a), the general conclusions
that we have obtained remain qualitatively valid.

If the M2 - M4 interpolation turns out to be a
good approximation, our predictions could be useful
for future experiments. Several of the diagrams
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show that most of the interesting effects occur only
beyond M = 50 %, a valuable information.

Moreover, even if metamagnetism does not occur,
figure 11c shows how « near metamagnetism » could
play an important role, as pointed out in [5]. One
could imagine purely thermal overpolarization
methods taking advantage of the particular shape of
these diagrams.
Note added in proof : phase diagrams correspond-

ing to Eo t = - 2.3 K can be found in Ref. [39].
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Fig. 12. - Same figure as figure lla, but with a larger
value for the density pot. The metamagnetic separation
line no longer closes at high pressures.
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