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Magnetic field induced generalized Freedericksz transition
in a rigidly anchored simple twisted nematic

U. D. Kini

Raman Research Institute, Bangalore 560 080, India

(Reçu le 30 septembre 1986, révisé le 31 décembre, accept6 le 27 mars 1987)

Résumé. 2014 On considère un film nématique dans une situation de torsion simple et d’ancrage rigide aux
parois. Un champ magnétique appliqué normalement aux parois peut induire soit des domaines statiques et
périodiques, soit une déformation homogène. On étudie ce théorème dans le cadre de la théorie du continuum
pour l’élasticité de courbure des nématiques, dans l’approximation des perturbations faibles. Dans le cas d’un
polymère nématique qui a été étudié récemment, on trouve que seul l’un des deux modes périodiques est
favorable. Cependant le calcul montre que l’autre mode périodique peut survenir dans des matériaux
d’élasticité extrêmement anisotrope soumis à des torsions fortes. Il semble qu’on ne puisse pas éliminer le
mode périodique par une torsion de la configuration initiale des directeurs.

Abstract. - Using the continuum theory of curvature elasticity of nematics in the small perturbation
approximation, the occurrence of magnetic field 2014 induced static periodic domains (PD) relative to that of the
homogeneous deformation (HD) is studied for a rigidly anchored simple twisted nematic film as a function of
material constants and twist angle, the field being applied normal to the plates. One of two distinct modes of
PD is found to be favourable in the case of a polymer nematic studied recently. A model calculation shows,
however, that the other PD mode may occur for large twists in materials exhibiting extreme elastic anisotropy.
There seems to be no way by which PD can be eliminated by twisting the original director configuration.
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1. Introduction.

The Oseen-Frank continuum theory of curvature
elasticity [1-2] has met with a good measure of
success in accounting for the elastic properties of
nematic liquid crystals (for reviews on the subject
see, for example, [3-7]). In this theory, the bulk
elastic free energy density W is written as a quadratic
in the spatial gradients of the unit director vector
field n which describes the average molecular orien-
tation at any given point in the sample. W depends
on three curvature elastic constants Kl, K2 and
K3 pertaining, respectively, to splay, twist and bend
deformations of n.

Perfectly aligned nematic samples (with n = no =
constant) corresponding to minimum elastic free

energy can be prepared between flat plates by
suitable treatment of the bounding surfaces. Owing
to the diamagnetic susceptibility anisotropy X a of a
nematic a magnetic field H can exert a disrupting
torque on n ; this destabilizing influence is countered
by stabilizing elastic torques.
When H is applied normal to the plates of a

nematic film with Xa &#x3E; 0 and no parallel to the

sample boundaries (splay geometry) and I H I is
increased from a low value, n remains unperturbed
for H I : a critical value H,, called the splay
Freedericksz threshold. For H Hc, a splay distor-
tion occurs which is uniform in the sample plane.
Such a deformation is known as a homogeneous
deformation (HD) whose optical detection leads to
the evaluation of Kl in the splay geometry if n is
assumed to be rigidly anchored at the sample
boundaries. In the same (rigid anchoring) hypothesis
K2 and K3 can be evaluated separately by applying H
along other directions normal to no in the same

geometry and in the bend geometry, respectively.
Recently, Lonberg and Meyer found that when a

certain polymer nematic is subjected to H in the
splay geometry the deformation above a well defined
threshold is spatially periodic in the sample plane,
the direction of periodicity being roughly normal to
no [8]. They showed that such a periodic distortion
(PD) involving splay and twist close to the threshold
is more favourable than HD for Kl &#x3E; 3.3 K2 when n
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is rigidly anchored at the sample walls ; this inequali-
ty is certainly valid for the material studied [8, 9].
Apart from being a new effect the occurrence of PD
imposes a serious restriction on using the conven-
tional method of determining Kl.
Employing the rigid anchoring hypothesis and the

small perturbation approximation it is found [10]
that HD may become more favourable than PD
when no is oblique relative to the sample boundaries
or when H is applied obliquely in a plane normal to
no (as studied earlier by Deuling et al. [11]) ; these
configurations may enable a determination of

Kl through a suppression of PD. PD appears to be
favourable when H is applied normal to no but

parallel to the sample plane if the material is such
that K2 &#x3E; Kl (as, for instance, in nematics close to a
smectic transition [12]). A one-one correspondence
exists between the PD thresholds and wave vectors
for the two opposite cases K, :--. K2 and Kl  K2
owing to a symmetry transformation.
The above conclusions on PD have been arrived at

by Oldano [13] and independently by Zimmermann
and Kramer [14]. These authors have also concluded,
by using different forms of a simple expression for
the surface free energy density [15a, b] that weak
director anchoring may considerably affect the rela-
tive occurrences of PD and HD. The results of [13,
14] have been generalized and presented in some
detail in [16].
A configuration of much practical importance is

the simple twisted nematic cell in which n is initially
aligned parallel to the sample walls. A uniform twist
is subsequently imposed on n by turning one of the
plates in its own plane about an axis normal to the
sample through an angle 2 00  -xl2. Leslie [17]
derived the HD threshold for such a configuration
when H is applied normal to the plates. The sub-
sequent work of Schadt and Helfrich [18], who
replaced the disrupting influence of H by that of an
electric field E (which exerts a torque on n via the
dielectric susceptibility anisotropy ej, paved the
way for the development of the twisted nematic
display.

In this communication, the occurrence of PD in a
simple twisted nematic cell is studied by considering
the effects of H. In section 2 the differential equa-
tions and boundary conditions are enumerated. In
sections 3 and 4 results are presented for the
threshold and domain wave vectors of two distinct
PD modes which are generally found to exist.
Section 5 concludes the discussion by pointing out
some of the limitations of the mathematical model
used in the present work.

2. Governing equations, sample geometry, boundary
conditions and modal analysis.

The Oseen-Frank elastic free energy density of a
nematic is given by [3-7]

At equilibrium n satisfies the differential equations

where p is the hydrostatic pressure, G the gravi-
tational potential, X 1 the diamagnetic susceptibility
normal to n and y a Lagrangian multiplier ; a comma
denotes partial differentiation and repeated indices
are summed over. Equations (2) and (3) correspond,
respectively, to translational and rotational equilib-
rium of n. As shown by Leslie [17, 19], (2) is satisfied
provided that (3) holds and p is restricted by the
condition

po being an arbitrary constant. In what follows, (4) is
assumed to hold and solutions of (3) alone are

considered in the light of suitable boundary con-
ditions.
The nematic is assumed to be confined between

plates z = ± h such that at equilibrium,

in Cartesian coordinates. Thus, with half-twist angle
0 0 such that 0 -- 4o 0 : ir /4, no (z --t h ) = (cos 0 0,
-t sin 0 0, 0). The upper limit on 0 is imposed so
that the sample may be regarded as monodomain.
The coordinates are so chosen that at the, sample
centre z = 0, no = (1, 0, 0 ) regardless of the twist.
This helps in a separation of the independent modes
of solutions of (3). Under the action of H =

(0, 0, Hz), n is assumed to be perturbed into the
form

where 0 =- 0 (x, y, z) and -0 = 0 (x, y, z) are as-

sumed to be small. By using (1), (3) and linearizing
wrt 0 and 0 the following equations result:



1189

As a first step, the rigid anchoring hypothesis is

invoked ; the director is assumed to be rigidly fixed
at the boundaries. Then, the vanishing of the

perturbations at the boundaries

provides the boundary conditions for solving (7).
For a homogeneous deformation (HD), with 0

and 0 depending on z alone, (7), (8) reduce to the
HD threshold [4, 17]

This corresponds to Mode HI in which 0 is even wrt
the sample centre. (Mode H2, with 0 odd, has twice
the threshold of Mode HI and is consequently of no
interest. For both modes, however, 0 = 0 to first
order near the threshold.) For HzH to exist [17]

This condition is satisfied for all values of material

parameters chosen in this work. In nematics which
exhibit a low temperature smectic phase, (10) may
be violated ; in such a case the equilibrium configur-
ation may be rather different [20] from (5).
Using energetics it can be shown [17] that the

deformed state for Hz a HzH has lower total free
energy than the ground state (5) only if

Interestingly enough, CPM depends only on K3 and
K2 but not on Kl. This condition will be seen to have
an important bearing on results discussed in later
sections as, even if (10) holds, the value of

HzH obtained from (9) may be of only academic
interest if (11) is not satisfied.
While seeking more general solutions of (7), (8)

the following observations may be made :

(i) If 8, cP are assumed to depend on y, z but not
on x, (7)-(8) support two independent Modes,

Modes Yl, Y2 can be regarded as generalizations of
Modes Hl, H2, respectively. It is also seen, by
comparison, that Mode Yi has the same structure as
the mode studied in [8] for a planar untwisted
sample (PUS). In a way, this is not surprising as a

PUS can be regarded as a simple twisted nematic
having zero twist. In particular, it must also be noted
that Mode Yl has the same symmetry as the non-
linear solution studied in [17]. Lastly, the twist

associated with Mode Y1 is odd, similar to the twist
of the ground state (5).

(ii) If 0, 0 are assumed to depend on x, z but not
on y, the independent Modes are

Modes Xl, X2 are again seen to be extensions,
respectively, of Modes Hi, H2. There exists one

important difference ; the even twist associated with
Mode Xl is not in conformity either with (5) or with
the non-linear solution of [17].

(iii) In the case of 0, 0 depending on x, y, z the
perturbations are, in general, asymmetrical so that
(7)-(8) do not support independent modes.

To solve for the Mode Y, threshold, for example,
0 and 0 are assumed to have variations of the form

f (z ) cos (qy y ) and g (z ) sin (qy y ), respectively.
Then, (7) reduces to a pair of coupled ordinary
differential equations with variable coefficients in f
and g. The solution of these equations with (8) leads
to a threshold condition. Starting with qy close to
zero, the lowest possible HZ H,, ,c(qy) satisfying the
threshold condition is found ; Hzc is generally close
to HzH of (9). When qy is increased, Hzc(qy) de-
creases. A variation of qy leads to a neutral stability
curve Hzc = Hc(qy) from which the minimum

Hzp = Hzc(qyc) is found, occurring at qy = qyc. Then,
HzP is regarded as the Mode Yi PD threshold and
qy is considered to be the domain wave vector at PD
threshold. [At threshold the domain wavelength
,k YC = 2 7T lqyc. An increase (or decrease) in q.,
results in a decrease (or increase) of domain size.]
The ratio

is now determined. If RH ’ 11 PD is assumed to be
more favourable than HD. If, on the other hand,
RH ,1, HD is assumed to occur provided that (11)
holds. The study of RH eliminates X a and h from the
final results and facilitates the use of any convenient
value for X a such as unity. The solution for the X
Modes can be found similarly. In the case of the x, y, .
z variation one has to find the minimum Hp =
Hzc(qxc, qyc) of a neutral stability surface Hzc =
Hzc (qx, qy).
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Equations (7) and (8) have been solved numeri-
cally by employing the orthogonal collocation
method (for details see [21, 22]) with the zeroes of
the Legendre polynomial of order twelve [23] as

collocation points. Results have been randomly
checked by a Fourier series method adapted from
[24] and also by using the twenty four point col-
location. It is found that Modes Yl, Xl have lower
thresholds than Modes Y2, X2, respectively.
A comparison of (7) with the differential equations

for PUS [8] shows that the effect of uniform twist in
na is to bring in the bend elastic constant K3 and the
half-twist angle 00 as additional parameters. All

physical quantities are measured in cgs units. As
only the ratios of elastic constants are ultimately
relevant in this work, it is found convenient to fix

K2 at unity. The angle 00 is measured in radian. By
changing over to a dimensionless variable E = z/h, h
can be absorbed into the dimensionless wave vector

Qy = qy h or Q., = qx h. The semi-sample thickness
is fixed at h = 0.01 cm in all calculations. Results for
Modes Y, and Xl have been plotted together for the
same set of parameters ; in all diagrams the primed
curves correspond to the Xl Mode. To avoid confu-
sion results for the two modes are discussed separ-
ately.

3. Results for Mode Yl.

Figure 1 illustrates the plots of RH and Qyc (the
dimensionless wave vector at Mode Y1 threshold) as
functions of K1 for different values of K3 and

00. While for polymer nematics [8, 9] Kl - 11 and
K3 - 13, a rather wide range of values have been
considered purely for the sake of completeness. The
following points may be noted :

(i) At given 4o 0 and K3, when K1 is sufficiently
high (say 20), RH "- 1. As Kl is decreased, RH

Fig. 1. - Plots of RH = Hzp/HzH’ the ratio of PD and HD thresholds and Qc, the dimensionless domain wave vector at
PD threshold as functions of the splay elastic constant K, for different values of bend elastic constant K3 and the half-
twist angle 00 (radian). K2 =1 in all cases. Curves 1, 2, 3 correspond to Mode Yt while the primed curves represent
Mode Xl for the same set of parameters. Curves for Mode Xl have been drawn only for those set of parameters where
Mode Xl becomes more favourable than Mode Y, at least over part of the range. Dashed parts of curves show regions of
no real interest. Curves are drawn for K3 = (1 ) 1, (2) 10 and (3) 20 in all diagrams. Three values of *o = (a, b) 0.05 ;
(c, d) 0.4 ; (e, f) 0.775 have been chosen. As the curves for Mode YI are almost coincident in (a, b) for all three
K3 values only one curve has been shown in figures a, b. In (c, d) Mode Xl becomes more favourable than Mode
Y, only at small K, (00 = 0.4, K3 = 20). The RH curve for Mode Xl has not been included in (c) for the sake of clarity as
RH is very close to unity and decreases slowly with Ki. This proximity to HD is reflected in the very low value of
Q.,,. When 00 = 0.775, Mode Y, remains favourable for K3 = 1 though Mode Xl dominates for higher K3, especially in
regions of smaller Kl. Thus when 4Jo is high and K3 sufficiently larger than Kl Mode X, dominates ; when
¢o and K3 are smaller Mode Y, is favourable. The K, range of existence of Mode YI is curtailed when

K3 or 4po is enhanced. As per equation (11) (Fig. 4) 4JM(10) = 0.52 and c,M(20) = 0.36. The results of curves 3 (Figs. c,
d, e, f) and curves 2 (Figs. e, f) merely indicate that where PD exists, the PD threshold : the HD threshold ; for these
values of parameters HD is itself not energetically more favourable than the ground state (5).
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increases and Qyc diminishes. When K, --+ a lower
limit Klo, RH -+&#x3E; 1 and Qy,,, --,), 0. Thus, for Kl : Klo,
HD is more favourable than PD. It must be noted
that Klo is, in general, a function of K3 and

cf&#x3E;o. The variations of RH and Qyc with Kl for
different values of 00 and K3 are qualitatively similar
to those for a PUS.

(ii) When 00 is small ( = 0.05 ; Figs. la, 1b) the
curves for different K3 very nearly coincide. Klo is
practically independent of K3 and has almost the
same value (- 3.3) as for a PUS [8]. This is natural
as the results for Mode Yi must go over to those of
[8] in the limit 00 -+&#x3E; 0 and also because in a PUS

K3 does not determine the PD threshold.

(iii) When 00 is higher (Figs. lc-1f) K3 does have
a marked effect on RH, Qyc and Klo. For fixed

K, and 1&#x3E;0’ when K3 is enhanced RH increases and
Qyc diminishes (Figs. 2c-2f). This has the predictable
effect that for a fixed 0 0, Klo increases with

K3 ; as K3 is enhanced, the Kl range of existence of
Mode Yl 1 shrinks.

(iv) For given Kl and K3, RH increases with

00 (Figs. 3a-3h). If K3 is small enough (curves 1,
Figs. ld, lf) Gyc increases with 00 ; for higher values
of K3 (curves 2, 3 ; Figs. ld, If) Q., decreases when
1&#x3E;0 is enhanced. Thus an increase in the domain size
with the twist angle may be generally expected in
polymer nematics [8, 9].

Owing to the variable coefficients in the differen-
tial equations the task of physical interpretation of
the above results is rather formidable. To facilitate a
tentative discussion it is necessary to write down

Wy, the elastic free energy density for the Y modes,

Fig. 2. - Plots of RH and 6c as functions of K3 for different Ki and 00. Modes Yl and Xl are represented ; curves for
Mode X, are identified by primes and are presented only where Mode Xl exhibits a crossover with Mode

Yl. K2 =1 for all calculations. In all diagrams, K, = (1)7, (2) 14 and (3) 20. The different diagrams correspond to
00 = (a, b) 0.05 ; (c, d) 0.4 ; (e, f) 0.775 radian. Dashed parts of curves indicate regions of no interest. For low twists
K3 has little or no effect on the Mode Y, threshold or domain size. When 00 is large enough and Kl sufficiently smaller
than K3, Mode Y, PD can be suppressed. But in this region Mode Xl is more favourable than HD though its domain size
is some what large. The conclusions of figure 1 are essentially reinforced. Here again equation (11) (Fig. 4) demands that
part of the result be treated with caution. It must be noted that om(16) = 0.4 radian and ¢ M (5 ) = 0.77 radian. Hence,
results for K3 &#x3E; 16 in figures c, d and results for K3 &#x3E; 5 in figures e, f have to be understood in the light of the fact that in
these regions HD is not less energetic than the original director configuration (5).
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Fig. 3. - Plots of RH and Qc vs..0 0 the half-twist angle for different materials. K2 =1 in all cases. the bend elastic
constant K3 = (1 ) 1, (2) 10 and (3) 20 in all diagrams. The splay elastic constant Kl = (a, b) 20 ; (c, d) 14 ; (e, f) 7.
Results for both YI and Xl PD Modes are presented. Curves for Mode X, are identified by primes and are included in
only those situations where Mode X, shows crossover with Mode Yl. Dashed parts of curves depict regions of no
interest. When 00 is high enough and K, sufficiently smaller than K3, Mode Y, can be suppressed. In these regions Mode
X, prevails, though with a much larger domain size. In figures (g, h) the polymer nematic studied in [8, 9] having
Kl = 11.4 and K3 = 13 is considered. For this material Mode YI appears to prevail over most of the 00 range. Mode
Xl may be favourable close to the upper permissible limit of 00 = ?r/4. Equation (11) (Fig. 4) imposes the following
limits : 0 m (10) = 0.52 ; 0 m (13) = 0.46 ; 0 m (20) = 0.36. It must be kept in mind that in a given curve HD may not be
less energetic than the ground state (5) when cfJo:&#x3E; cfJM.

To understand (iii) and (iv) qualitatively it must be
noted that close to HD threshold, cf&#x3E; :::=::: 0 so that the
elastic free energy density for HD is

which is determined by 0 and 8,z. On the other hand,
Wy depends on 0, 0 and their gradients. If now one
separates the part of WY depending on K3 and
0 0 it is found that the term

is common to both HD and PD. Hence, when
K3 is large enough WI, which increases with

K3 or with 00, contributes the same increase to both
WH and Wy. However, an enhancement of K3 or
c/J 0 can cause additional increase in WY as Wy
depends on other terms such as 

’

It must also be noted that S = sin (00 z/h) increases
with .0 0 when 0 , 1 c/J 0 z/h[  Tr /2. Thus when

K3 or 0 0 is augmented the increase in Wy can be
greater than that in WH. This may cause HzP to
increase more steeply than H,,H causing an increase
in RH = Hzp/HzH’ An enhancement of RH effectively
brings PD closer to HD at a given Kt. As HD
corresponds to the limit Q,, -+ 0 it is intuitively clear
that Qyc must decrease, in general, when K3 or
00 is augmented. Another fact to be kept in mind is
that when K3 or 0 0 is enhanced, a further increase in
Qyr., would cause an inordinate increase in Wy and
the lowering of Qyc may also be demanded by
energetics for equilibrium to exist. The increased

proximity of HD to PD with an enhancement of
K3 or 00 may naturally be expected to shift the limit
Klo (at which RH -+ 1 and Q, -+ 0) to a higher value.
The one exception to the above discussion occurs

when K3 is very small and 00 is increased;
Qyc increases with 00. Qualitatively this may be
attributed to the term

in Wy becoming more negative as 00 is augmented.
It seems possible, therefore, that for the terms such
as (14) to balance Wl, Qyc may have to be higher.
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In all the discussion above though it has been

suggested that Mode Y1 may be energetically more
favourable than HD, no attempt has been made to
establish that Mode Y1 is energetically more favour-
able than the ground state (5) : nor has the existence
of the HD threshold been examined in the light of
(11). The importance of this will be seen later in the
same section.

Figure 2 contains plots of RH and Qyc as functions
of K3 for different K1 and cf&#x3E;o. The results are

essentially those of figure 1. When 00 is small (Figs.
2a, 2b) RH and Qyc depend only on Kl and hardly
change with K3. At a given Kl, when 00 is fixed at a
higher value, RH increases and Qyc diminishes when
K3 is enhanced (Figs. 2c-2f). At given K3 and
00, when Kl is diminished RH increases and

Qyc decreases.
Figures 2e, 2f show that when Kl is low enough

and 00 sufficiently large, the variations of RH and
Qyc with K3 are rather pronounced (curves 1). When
K3 is enhanced from a low value RH increases and
Qyc decreases until, when K3 -+&#x3E; K3, RH --’)’ 1 and

Qyc -+&#x3E; 0. Thus for K3 &#x3E; K3, Mode Y1 PD gets sup-
pressed. At this point it therefore seems possible
that if other PD modes are not more favoured than
HD for K3 &#x3E; K3, then in such materials it may be
possible to excite HD and thus determine Kl from
H,H (9) provided that the other quantities are

known. It seems appropriate to return to this point
at the end of this section and pass over to the next

diagram by remarking that K3 is a function of

Kl and 00 ; also K3 may exist for the other

Kl values but may be much higher.
Figure 3 illustrates the variations of RH and

Qyc as functions of the half-twist angle 00 for
different materials. For the sake of relevance, the
polymer nematic studied in [8, 9] has also been
considered (Figs. 3g, 3h). Some of the results are
similar to those depicted in the two earlier diagrams.
For a given material, RH increases and Qyc decreases
when 0 0 is enhanced. (As noted earlier, an exception
to this occurs for small K3 where Qyc increases with
00.) When Kl is sufficiently smaller than K3,
RH -+ 1 and Qyc -+&#x3E; 0 as 00 -+ 0’. Thus, in such a
material, for 00 0 it seems reasonable to expect
that HD may be generated and Kl determined. It
must be borne in mind that 0’ 0 is a function of the
material (i.e. of Kl and K3).
At this stage it seems necessary to view the results

presented above more critically. Mode Y1 threshold
Hzp is calculated for a given set of parameters ; the
HD threshold HzH is also calculated for the same set
of parameters ; now the two thresholds are com-
pared. Only a tentative argument has been put
forward to indicate that PD may be energetically
more favourable than HD. However, owing to the
complexity of the calculation involved, Mode Y1 has
not been proved to be energetically more favourable

than the ground state (5). Again, no thought has
been expended to find out whether HD is itself a
state of lower energy than (5).
The last mentioned point assumes significance

when we interprete conclusions of figures 2e, 2f and
3e, 3f. For sufficiently high K3 or 00 Mode Y, can be
suppressed. This ought to solve the problem of
estimating K, by a study of HD which is more

favourable than ModeY1,. A study of (11) shows
that this may not happen ; in regions where Mode
Yi is suppressed HD is found to be energetically less
favourable than the ground state (5) though the HD
threshold (9) exists.

Figure 4 shows a plot Oof (Am (K3 ) as a function of
K3. It may be recalled from section 2 that HD has
less energy than (5) only if cfJo - CPM(K3)  7T /4
[17]. It is clear from figure 4 that CPM(K3)  7T /4 for
K3 &#x3E; 5 (since only the range K3 az 1 is physically
meaningful; also, CPM(10) = 0.52, -OM(13) = 0.46
and cfJM(20) = 0.36. All results presented in figures
1, 2, 3 must be appreciated in the light of figure 4.
Thus, for instance, in figures 3e, 3f we can no longer
say that for K, = 7, K3 = 20, HD can exist for

CPo::&#x3E; 0.67. This is because m (20 ) = 0.36  0.67. A
similar argument will suffice to show that in figures
2e, 2f one cannot assert that for Kl = 7, 00 = 0.775,

. HD can exist when K3 &#x3E; 15. This is because,
CPM(15) = 0.42  0.775. Figure 4 (or Eq. (11)) can
be similarly used to demarcate ranges of parameters
over which Mode Yl PD threshold the HD
threshold but HD is not energetically more favour-
able than (5). These have been indicated fully in the
figure legends.

Fig. 4. - Plot of 0 m (radian) vs. K3. K2 = 1 - 0 m is a

limiting value of the half-twist angle (Eq. (11)) such that
for 0 0 &#x3E; cp m, the ground state (5) has less total free energy
than HD even though the HD threshold (9) may exist [17].
For K3 = 1, 10, 13 and 20, Om = 7f’ /2, 0.52, 0.46 and 0.36
respectively. Results of figures 1, 2 and 3 have to be
viewed in the light of this diagram. For PM:&#x3E; ir/4, the
curve is drawn with dashed lines.

As HD cannot exist in regions where Mode
Y1 is suppressed it seems reasonable to look for
other solutions which are more favourable than HD
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at least in terms of their threshold. This task is done
in the next section.

4. Results for Mode Xl.

We now turn to the variations of RH = Hzp/HzH and
Qxc with different parameters. Here, Hzp is the Mode
Xl PD threshold and Qxc the dimensionless wave
vector. To facilitate comparison with Mode Yl,
results for Mode Xi have been included in the same
figures. However, to avoid confusion, the results for
Mode Xl have not been shown in places where Mode
Yl 1 alone is favourable over the whole range of a

particular parameter. All curves for Mode Xl are
identified by adding an apostrophe to the corre-
sponding number for the Yi Mode.

Figure 1 shows plots of RH and Qxc as functions of
K, for different K3 and 00. It is seen that for small
00 (= 0.05 ; Figs. la, 1b) the Xl Mode is not

favourable. This is natural as it is known that in the

limit 00 -+ 0, for a PUS, this mode does not exist
[10]. When 00 takes on a higher value (= 0.4 ;
Figs. 1c, 1d) Mode Xl becomes more favourable
than Mode YI only at high K3 (= 20) and low
Kl « 5). Interestingly, Mode Xl can exist down to
K, - 1 though Qxc is very small ; the domain size is
very large and RH is only slightly less than unity.
When 00 attains values close to its, higher limit
( ==== ’IT /4; Figs. 1e, lf) Mode Xl becomes more
favourable than Mode Yi even at lower K3 (= 10).
However, the K, range of existence of Mode

Xl increases considerably only when K3 increases
from 10 to 20. In general, at fixed 0 0 and

Kl, RH and Qxc decrease when K3 is augmented.
In figure 2, RH and Qxc are shown as functions of

K3 for different Ki and 00. At small 00 (= 0.05 ;
0.4 ; Figs. 2a, 2b, 2c, 2d) Mode X, does not exist.
When CPo is high ( -- 7r /4 ; Figs. 2e, 2f) Mode
Xl is found to exist when K3 is sufficiently higher
than Kl. As can be seen, the K3 range of existence of
Mode Xl, for fixed .00, broadens when K, decreases.
At fixed 00 and Kl, RH and Qxc decrease when
K3 increases, especially in the higher ranges. At
given K3 and 00, RH increases and Qxc diminishes
when K, is decreased.

Figure 3 contains plots of RH and Qxc vs. CPo for
different materials (Ki and K3). When Kl is very

high (= 20 ; Figs. 3a, 3b) Mode Xl is found to be
unfavourable over the entire permissible range of
00 even when K3 - KI. When K, decreases to 14
(Figs. 3c, 3d),Mode Xl is found to be favourable at
high 0 0 ( 7r /4) and K3 (= 20). When K, is much
smaller ( = 7; Figs. 3e, 3f) Mode Xl can exist even
for K3 =10 though it must be stressed that the

00 range of occurrence of Mode Xi does broaden
considerably only when K3 increases to 20. At given
K, and K3, RH diminishes and Qxc increases when
0 0 is enhanced. When qb 0 and K, are fixed and

K3 diminished, RH and Qxc increase in the K3 range
where Mode Xl is favoured wrt Mode Yl.

In figures 3g, 3h, RH and Qxc are studied as

functions of 00 for the polymer nematic studied in
[8, 9] for which K, = 11.4, K3 = 13. It is found that
Mode Xl may be more favourable than Mode

YI only in a small 0 0 range close to the upper limit of
7T/4. An experiment may be able to settle this point.
It must also be noted that if, at a high 0 0, a cross
over does occur from Mode Yi to Mode X, this
would involve the domains occurring with periodicity
in an orthogonal direction ; the domain size would
also increase by a factor of two.

Keeping in mind the rather insignificant range of
existence of Mode Xl for realistic parameters an
attempt will not be made to study qualitatively the
occurrence of this Mode relative to that of Mode

Yi or HD ; such a task is also not very straightfor-
ward. It may, however, be pertinent to remark that
though Mode Xl (8, cP even) can be regarded as an
extension of Mode HI (0 even), the 0 perturbation
associated with it does not conform to the symmetry
of the ground state (whose twist angle = qo z varies
as an antisymmetric function wrt the sample centre).
When Mode YI (with odd cp) develops in a given
situation the director at the sample centre can be
expected to be left undisturbed except for a splay
and the total twist angle remains antisymmetric. On
the other hand when Mode Xl grows in a sample the
director at the sample centre suffers not only a splay
but also a twist ; the total twist angle (qo z + .0 )
becomes asymmetric. This might tentatively account
for the generally high RH and low Qxc associated with
Mode Xl, even in the parameter ranges where this
Mode is favourable. As was stressed in the previous
section equation (11) shows that in regions of high
00 or K3, HD has higher free energy than (5). This
fact has to be kept in mind as the Mode Xl threshold
has been compared with HzH in regions of high
00 or K3 where Mode X, is generally favourable.
The ranges of parameters which are restricted by
equation (11) are indicated in the figure legends.
Before passing over to the concluding section it

must be mentioned that the general asymmetric case
(iii of section 2) has also been studied. Preliminary
calculations, in the range of parameters indicated in

figures 1 to 3, shows that this case has higher
threshold than the PD Mode which is generally
favourable at a given point. A more complete
calculation may indicate some range of parameters
where the asymmetric case has lower threshold than
the other two Modes studied in this work.

5. Conclusions ; limitations of the mathematical

model used in this work.

In conclusion, one can state that for a polymer
nematic [8, 9] Mode YI PD is favourable over almost
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the entire range of twist angles. However, a model
study, made by varying Kl, K3 and cf&#x3E;o, has shown
that while Mode Yi is certainly favourable in the
range of small 0 0 and K3, Mode Xl may dominate
when cf&#x3E;o is large and K, sufficiently smaller than
K3. There seems to be no way by which an imposed
twist can suppress PD in favour of HD and make

possible a determination of Kl.
Mode Yi has the same nature as PD in PUS and is

associated with a twist fluctuation 0 which is odd wrt.
the sample centre like the original antisymmetric
twist in no. Mode Xl PD which has a symmetric twist
fluctuation occurs generally with a relatively high
threshold and large domain size. Modes Y2 and
X2 have been ignored as their thresholds are higher
than those of Modes Yi and Xl respectively.
The coordinates have been so chosen that as’
0 is enhanced, no (z = ± h ) rotate in opposite
directions leaving no (z = 0) fixed at (1, 0, 0). In
this frame Mode Yi (or Mode Xl) PD occurs with a
periodicity along y (or x) i. e. in a direction parallel
to the plates and normal to (or parallel to) x axis. If
no at z = - h were fixed along (1, 0, 0 ) and

no at z = + h along (cos 2 00, sin 2 00, 0) we would
find Mode Yi (or Mode Xl) PD developing with
periodicity along a direction making an angle
00 + 1T/2 (or 00) with the x axis.

Results have been obtained by employing the
linear perturbation approximation. The linear (Mode
Yi or Mode Xl) PD threshold is compared with the
HD threshold. It has not been possible to show that
above the PD threshold, PD has lower free energy
than the ground state (5). The present approach has,
therefore, to be viewed in the light of (11) or

figure 4. When 00 or K3 is high one can no longer
assert unequivocally that PD, which is more favour-
able than HD, will exist. This uncertainty appears to
exist even for a realistic material [8, 9] for which
0 m (K3) -= 0 m (13) = 0.46. The question is : will
Mode YI PD occur in this material for c/&#x3E;o:&#x3E; -om ?
An experiment may be able to answer this question.
On the other hand, a feature worth remarking is that
(11) depends on K3 and K2 but not on Kl. It has been
made clear that [17] this condition (11), derived by
considering fields slightly above HD threshold, may
not be a sufficient condition. It seems interesting to
solve the non-linear equations [17], calculate the
free energy of HD numerically and check that the
validity of (11) does not depend on the value of
Kl chosen.
Another well known feature of studying linear

thresholds is that the perturbations are assumed to
be analytical functions of the coordinates. This
results in an eigenvalue problem in which the

eigenvectors (absolute amplitudes of perturbations
at threshold) are indeterminate. Physically, the

equality of free energy for the configurations
(0, 0 ) and (- 0, - 0 ) can lead to the formation of

domains when the field is increased well above
threshold. The present work cannot shed much light
on the nature of such domains or on other non-linear
effects such as change of effective pitch caused by
perturbations.
The director has been assumed to be rigidly

anchored at the boundaries. Recent studies [13, 14,
16] have shown the importance of weak anchoring in
determining the relative occurrence of PD and HD
in PUS. Undoubtedly, finiteness of anchoring energy
will considerably influence the domain of existence
of PD wrt HD. The rigid anchoring hypothesis has
been used in the present work not only because it
simplifies matters mathematically, but also because
it is not very straightforward to study the effects of
weak anchoring in a general way using the simple
picture [15]. One can certainly follow Nehring et al.
[25] and consider only the « splay » part,

of the surface free energy under the assumption that
the undistorted state is still given by (5) ; this would
mean that while the splay fluctuation is weakly
anchored, the twist angle of the director is rigidly
fixed at the boundaries. If, however, the « twist »
part of the surface fre energy is also included it is
found that this may influence even the original
director configuration. The uniform twist can relax
to a lower value T and

where Bo is the anchoring strength for twist. To
study PD in the context of weak director anchoring,
perturbations have to be imposed on no given in
(15) ; this will be treated elsewhere.
From the point of view of an experiment the effect

of an electric field E is more important [18]. It is well
known that the case of an electric field is complicated
owing to the field inside the sample being modified
by the induced dielectric polarization [5]. One can.
write down the differential equations for E assuming
that the sample is an insulator and that the director
is rigidly anchored at the boundaries. The modal
structures explored in section 2 are left undisturbed
except for admitting electric field perturbations
E’ as new infinitesimal variables. Thus the picture is
not merely an extension of the case of H by a
replacement of Xa by Ea/4 7r, for it is no longer
possible to factor out Ea ; as the individual dielectric
susceptibilities 81 and 8 J.. enter the picture it is

necessary to study the effect of varying an additional
parameter such as the ratio ellE,-. The Maxwell
equations, which provide relations between director
fluctuations and E’, have also to be taken into
account. It seems proper, therefore, to study this
case separately.
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Mention must also be made of an important
(though obvious) difference between the present
case and PUS with no = (1, 0, 0 ). In PUS there
exists a symmetry in the governing differential

equations [10, 13, 14] owing to which results for PD
with Kl &#x3E; K2 and field Hz can be mapped in a one-
one manner onto those for PD with Kl -- K2 and
field Hy. In the present case the twist in no destroys
the symmetry transformation. A field Hy annihilates
the uniformity of twist in no and this happens without
a threshold ; the director field will then be given by

no = (cos cp, sin (p, 0) where cp is a function of z
which has to be calculated numerically. Thus, results
obtained in the present work for Kl :::. K2 (relevant
to polymer nematics) and field Hz cannot be used to
predict results for K2 &#x3E; K, (relevant to nematics in
the vicinity of a smectic phase) and field Hy.
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