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Résumé. 2014 Nous avons étudié les digitations formées par de l’eau injectée dans des suspensions aqueuses
concentrées (des pâtes) d’argiles, dans le but d’établir les relations entre les propriétés viscoélastiques de la
pâte et les trois caractéristiques suivantes des digitations : la largeur moyenne des « doigts », leur profil, et
l’angle moyen de branchement. Le résultat principal est que le module d’élasticité de la pâte, G (approximé
par le seuil d’écoulement, 03C30) est un paramètre-clé dans ces relations. Lorsque l’on augmente la concentration
de la pâte, dans un domaine de rapport solide/liquide allant de 0,05 à 0,10 en poids, on observe : (i) une
augmentation spectaculaire de 03C30 (donc de G) allant de ~ 1,5 Pa à ~ 140 Pa ; (ii) une décroissance de la
largeur moyenne des doigts, suivant une loi de puissance en 03C3-0,250 ; (iii) un changement radical de la courbure
des doigts et surtout des fronts de doigts qui, de convexes, deviennent concaves. Cette courbure concave
pourrait correspondre, soit à une singularité prédite par Shraiman et Bensimon, soit, plus vraisemblablement,
à l’apparition de phénomènes de fracture ; (iv) une ouverture progressive de l’angle de branchement 03B2 jusqu’à
03B2 = 03C0 /2 et une asymétrisation des branchements. L’ensemble des résultats suggère que la structure fortement
branchée des figures de digitation en milieu viscoélastique est contrôlée pour une large part par les propriétés
élastiques. Le mécanisme de branchement pourrait être associé à des cycles d’accélération et de ralentissement
du front, en permanence autour d’une réponse élastique.

Abstract. 2014 Fingering of water injected in concentrated suspensions of clay particles in water (pastes) has been
studied in Hele Shaw channels with the aim of investigating the relationships of the paste viscoelastic
properties with three fingers characteristics : the average finger width, the finger profile and the branching
angle. The main result is that the elastic modulus, G, approximated by the yield stress, 03C30, of the paste is a key
parameter in these relationships. Increasing the solid/liquid (weight by weight) ratio in the paste from 0.05 to
0.10 leads (i) to a dramatic rise of 03C30, from 2014 1.5 Pa to ~ 140 Pa ; (ii) to a decrease of the average finger
width, according to a 03C3- 0.250 power law ; (iii) to an abrupt change of the tips profile 2014 from convex to concave
2014 which can be rationalized either in terms of the cusp singularity predicted by Shraiman and Bensimon in the
zero surface tension limit, or, more likely, in terms of the onset of fracture phenomena ; (iv) to an opening of
the average branching angle 03B2 up to 03B2 = 03C0 /2 and to the development of asymmetric branching. When taken
together, the results suggest that the highly branched structure of viscoelastic fingers is controlled to a large
extent by the elastic properties of the pushed medium, the elastic response limiting the speed of the tips.
Branching might be associated to fluctuations close to this limit.
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1. Introduction.

The hydrodynamic instability which characterizes
the flow of a low viscosity fluid pushing a more
viscous fluid into a Hele-Shaw channel can lead to
two extreme pattern growth processes : Saffman-

Taylor fingering [1] on the one hand, which is

characterized, after a short transient, by a single and
smooth finger moving steadily through the channel,
and fractal fingering [2] on the other hand, which is
characterized, from the very beginning of the flow,
by extensively branched fingers. Experimentally,

Saffman-Taylor fingering is observed with immiscible
Newtonian fluids having a non-negligible surface

tension, whereas fractal fingering has been observed
with miscible fluids, the more viscous one being non
Newtonian (shear-thinning).

After about thirty years of experimental [1, 3] and
theoretical [4] efforts, Saffman-Taylor flow is now
pretty well understood. In particular, the mechanism
leading to the selection of one finger size A =

l/w (I is the finger width, w is the channel width) for
a given value of the control parameter 11B* =
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12 g Uw2lT* b 2 (,X is the viscosity of the more

viscous fluid ; U is the tip velocity ; T* is the

effective surface tension ; b is the cell thickness), as
well as the asymptotic limit of the finger size at high
velocity (,k = 12 ) is now clear.

Fractal fingering is still far from offering such a
consistent picture. Most of the efforts have been
directed towards a description of the growth process
in conditions leading to DLA type patterns [5-8], in
radial cells. We have recently broadened the picture
by showing that a whole family of fractal dimensions
for growth can be obtained by changing the viscosity
and the injection pressure, the resulting tip velocity
being a reasonably good control parameter [9]. We
also showed that the velocity dependence of the
displacement efficiency, 5 (8 is the fractional volume
of the more viscous fluid displaced by the less
viscous fluid), is dominated by the tip-splitting
cascade of the fingers, and not by major changes of
the average finger width, l . r was found to decrease
slightly with increasing tip velocity.
The purpose of this paper is to report a brief

experimental study of the finger properties (width,
curvature, orientation) in Hele-Shaw channels, fo-
cusing on the influence of the viscoelastic properties
of the medium. This is an important point since all
the fluids which were used to study fractal fingering
up to now (polymer solution [2, 5-7], suspensions of
latex spheres [5], suspensions of clay particles [8, 9])
are in fact colloidal viscoelastic media. We used
colloidal clay suspensions and pastes.
The first part of the paper will be devoted to the

relationships between the fingerwidth and three

parameters : the cell thickness, b ; the injection
pressure Pi, and the paste concentration.

In the second part, we wish to report some data
about an aspect of fractal fingering which was not
addressed so far : the finger and the tip profile. As
we shall see, using miscible fluids leads to profiles
which are fundamentally different from those ob-
served in Saffman-Taylor flow. Experimental evi-
dence for cusp shaped fingers will be presented for
the first time.

Finally, we will briefly analyse the relationship
between branching angle and paste rigidity.

All the data that we have suggest that the finger
characteristics are controlled by the elastic rather
than the viscous properties of the displaced fluid.

2. Experimental.

As in our previous work, we used water as the less
viscous fluid and concentrated suspensions (pastes)
of clay particles (Wyoming bentonite from N.L.
Industries) as the more viscous fluids. The solid/wa-
ter ratio in the paste, S/L, was between 0.05 and
0.10 (weight by weight). Bentonite pastes are vis-
coelastic shear-thinning materials with a threshold

for flow (the yield stress, o-o). As shown in figure 1,
their rheological behaviour is well described by a
generalized Casson equation [10] :

Fig. 1. - Rheological behaviour of the clay pastes plotted
according to a generalized Casson equation (Eq. (1) in
text). S/L is the clay to water ratio (w/w ) in the paste. A
typical flow curve, with the yield stress, o-o, and the

Bingham yield value, erg, is shown in the insert of figure 2.

Fig. 2. - Concentration dependence of the yield stress in
the clay pastes.
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where 0’ is the shear stress and y the shear rate
(velocity gradient). The shear-thinning txponent, m,
is a decreasing function of S/L whereas o-o is a

steeply increasing function of S/L (Fig. 2). This

expresses the development of the elastic properties.
Also interesting in this respect is the extrapolated
yield stress (the so-called Bingham yield value),
O-B, obtained by extrapolating the quasi-linear high
shear stress region of the flow curves to zero shear
rate (Fig. 2, insert). The pastes were prepared and
characterized as described elsewhere [9]. The nu-
merical values of m and 0’0 and CrB are collected in
table I.

A horizontal cell of dimension 1 m x 0, 3 m x b
was used, with copper spacers and rubber joints.

Table I. - Rheological parameters of the clay pastes.

S/L is the clay to water ratio (weight by weight) in the paste.
co is the yield stress.
QB is the Bingham yield value.
m is the shear-thinning exponent used in equation (1) :

(y - Jo) - /"’
a is the shear stress.

Y is the shear rate.

Injection was performed through a 1 mm hole in the
closed small side of the cell. The injection pressure
was controlled by pressurizing the water reservoir.
The average finger width, I , was measured on

photographs as follows. A number of straight lines
(10 to 20) were drawn across the photographs,
parallel to the minor axis of the cell, in order to
cover regularly the whole pattern. Each intersection
with fingers was then re-oriented in order to bring it
more or less perpendicular to the finger axis, and all
the intersection widths were averaged.

3. Finger width.

We shall successively examine the influence of cell
thickness, elastic properties and injection pressure
(i.e. the pressure of the water reservoir) on 1. As far
as elastic properties are concerned, we will not
consider the elastic modulus, G, which was not
measured, but the yield stress, 0’0’ and the Bingham
yield value, o-g, , which in the case of an ideal

Bingham fluid [10] (m = 1 in Eq. (1)) would be
equivalent to G. 0’01 O’B and G are controlled by the
paste concentration, S/L. Three sets of experiments
were performed, at constant Pi and S/L (b variable),
constant Pi and b (S/L variable) and constant b and
S/L (Pi variable).
Cell thickness (b). - The most complete set of data
was obtained with pastes at S/L = 0.07 and Pi =
12 kPa, i.e. in conditions where Pi &#x3E; ao. b was
varied between - 0.2 and - 6 mm. The set of

patterns is shown in figure 3, and the T vs. b graph is

Fig. 3. - Patterns obtained by injecting water at 12 kPa in a clay paste of concentration S/L = 0.07, in cells of

increasing thickness (in mm, on the figure).
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Fig. 4. - Average finger width vs. cell thickness, for the
patterns of figure 3, at constant injection pressure
(12 kPa) and paste concentration (S/L = 0.07). The
dashed and the dotted lines are the values predicted by
equation (4) using either ao or CrB as approximation for
the elastic modulus.

shown in figure 4. The relationship is linear, within
experimental error, with a slope of - 6.5 :

A linear relationship was already observed by Dac-
cord et al. [7] with polymer solutions in radial cells,
in the range b = 0.2 to b = 1.2 mm (Fig. 4, Ref. [7]).
The finger width in miscible fingering is a point

which was recently addressed by Paterson [11] and
de Gennes [12]. Paterson’s approach is for New-
tonian viscous fluids, whereas the approach of de
Gennes is for viscoelastic media. Using a viscous
dissipation method, Paterson found the most rapidly
growing linearly unstable wavelength, A m, to be

This prediction is slightly below our experimental
observations.
The model for viscoelastic fingering proposed by

de Gennes [12] is based on the following points :
(i) immediately ahead of the growing finger tips, the
stress raises with a characteristic time T s = l / U ;
(ii) the viscoelastic medium response to this stress
will be a flow only when Ts is longer than the
viscoelastic relaxation time TR = AIG ; (iii) the
velocity of the growing tips is given by Darcy law
U = (b2/12 A ) I VP I ; (iv) the pressure gradient
I V P I is of order P /l ; (v) the smallest wavelength
for growth corresponds to TS = TR- Combining these
conditions, one arrives at

which also predicts a linear 1 = f (b) behaviour.
Quantitatively (or semi-quantitatively), the agree-

ment of the model with the experimental values can
be assessed by using the injection pressure Pi for P,
and cro or better, UB’ for G. Using 0’0 leads to
I =11 b (dashed line in Fig. 4), whilst using UB leads
to 1 = 6.3 b (dotted line), which is close to the

observations.

Although satisfying, this agreement should not be
overemphasized. Indeed, for concentrated suspen-
sions like those that we used in this work, several
modifications of the original model and several

experimental corrections have to be introduced.
Indeed, as a first modification, Darcy’s law has to be
replaced by

where m is the shear-thinning exponent [10]. This
leads to

For shear-thinning fluids with a yield stress, P in

equation (6) should be replaced by AP = P - Po,
where Po is the pressure threshold for flow.

Po is clearly related to (J’ 0’ but the relationship
involves other parameters such as the cell thickness
and the tip profile. Experimentally, Po, is not easy to
measure because the flow, at pressures immediately
above Po, is extremely slow and is perturbed by
mixing, diffusion and seepage phenomena [6, 9].
Harder to take into account is the fact that non

Newtonian fluids are generally characterized by a
broad distribution rather than by a single relaxation
time.

Finally, one should be aware of the fact that the
pressure in the growing finger tips, P, is smaller than
the pressure in the large pressurized water reservoir
where the velocity is - zero. In first approximation,
for an horizontal cell, this pressure drop can be
estimated from

P; is the pressure in the reservoir. P is the pressure at
the finger tips growing with a velocity U. U is

increasing as - (P - Po)1/m.
For all those reasons, the fingerwidth - cell

thickness relationship does not seem to be a simple
and unambiguous test for theoretical models. One
fact though which seems clear and which has to be
accounted for by any model is that I is a linear
function of b, whether the displaced fluid has a
threshold or not.

Viscoelastic properties. - The experiments were
performed in a cell of thickness b = 0.35 mm and at
an injection pressure Pi = 104 kPa. The paste con-
centration was varied from 0.06 to 0.10. This corre-
sponds to a - fifty fold increase of 0"0 (Tab. I).
T was found to decrease when o-o increases, as
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Fig. 5. - Patterns obtained by injecting water at 100 kPa in clay pastes of increasing concentration (5/L =
0.06, 0.07, 0.08 and 0.09 in a, b, c and d, respectively), in a cell of thickness of 0.35 mm.
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illustrated in figure 5. Although there is a consider-
abie uncertainty on the F values at low ao due to

finger erosion (compare the tips and the « trunk » in
Fig. 5a), the relationship seems to be of the power
law type (Fig. 6) :

with f3 = 0.25. Equation (4) predicts f3 = 0.50 and
equation (6), at constant Po, would predict Q =
0.29 at ao = 136 Pa (the most concentrated paste)
and /3 = 0.33 at o-o = 3 Pa (the least concentrated
paste).

Numerically, the experimental values are well
within the range predicted by equation (6) (Fig. 6).

Injection pressure (Pi). - Surprisingly, increasing
Pi does not lead to a concomitant increase of

1. In fact, F decreases slightly when Pi increases, but
on the other hand, the overall width of the fractal
tree, L, increases significantly. In other words, the
system does not respond to an increase of injection
pressure by «inflating» the fingers, but by
« inflating » the pattern. A set of patterns obtained at
b = 0.52 mm and S/L = 0.07 is shown in figure 7
and the T vs. Pi graph is shown in figure 8.

Fig. 6. - Log-Log plot of average finger width vs.

0’ 0 (0, full line) or 0’ B (1, dotted line) in a set of

experiments performed at constant injection pressure
(P; =100 kPa ) and constant cell thickness (b =
0.35 mm). Some patterns are shown in figure 5. The
dashed line is the prediction of equation (4).

This result can in no way be predicted by currently
available models. There is little doubt, in view of our
previous measurements in radial geometry [9], that
it is a result of the increasing tip velocity which, as
Pi increases, intensifies the branching cascade. In

Fig. 7. - Patterns obtained by injecting water at increasing pressure (Pi = 12, 13 and 20 kPa, respectively) in pastes of
constant concentration (S/L = 0.07) at constant cell thickness (b = 0.52 mm ).
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Fig. 8. - Average finger width vs. injection pressure in a set of experiments performed at constant concentration
(S/L = 0.07) and constant cell thickness (b = 0.52 mm). Some patterns are shown in figure 7. 

fact, it raises the fundamental question of fractal
fingering. The recent findings of Nittman and Stanley
[13] on the relation between fingerwidth and fluctua-
tions in computer simulated growth suggest that

understanding the role of noise would be of primary
importance in this respect.

4. Finger profile.
The fundamental mechanism of Saffman-Taylor fin-
gering is simple : any bump in the interface between

the low viscosity fluid and the more viscous fluid
increases the pressure gradient in the more viscous
fluid and tends to increase further the local velocity
of the interface. This purely viscous effect is compen-
sated to some extent by the capillary forces which
tend to smooth out perturbations with small

wavelength. A stability analysis leads to the consider-
ation of a characteristic length

Fig. 9. - Growth sequence of a pattern obtained by injecting water at 105 Pa in a paste of concentration

S/L = 0.1 in a thick (b = 7.47 mm) cell.
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Fig. 10. - Magnifications of patterns obtained by injecting water at 100 kPa in pastes of increasing concentration
(S/L = 0.06, 0.07, 0.08, 0.09 and 0.10, from a to e, respectively), at constant cell thickness (b = 0.35 mm).
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which express the ratio of capillary to viscous forces.
Only those erturbations with wavelengths larger
than wlo/ 3 can develop. Those with smaller

wavelength are smoothed out by surface tension.
For very small surface tension, the system is no

longer protected against very short wavelength per-
turbations. Solving the dynamical equations for the
interface in these conditions leads, according to

initial conditions, either to finite time singularities in
the form of power cusps, as shown by Shraiman and
Bensimon, or to À = 1/2 steady fingers [14, 15].
Whilst the selection of a A = 1/2 finger corresponds
well to Saffman-Taylor experiments, no cusp singu-
larities have been reported yet, to our best know-
ledge.
A priori, one may think that our experimental

conditions are favourable to the development of
cusp instabilities. The interfacial tension between
water and an aqueous paste is essentially zero, and
the shear-thinning properties of the pastes are

strongly destabilizing.
In actual fact, we did indeed observe cuspy finger

profiles, but not in all experimental conditions : rigid
pastes (ao a 100 Pa ) are required. Fluid pastes,
even at the largest tip velocities

(U = 5 x 10-1 m s-1 ), lead only to rounded profiles
(Fig. 5a for instance).
At small plate separations, the cuspy shape of the

fingers is not really apparent, but leads to very

« prickly » patterns (Fig. 5d for instance). At larger
separations, the small pricks become real cusps, as
shown in figure 9.

Quantitatively, the cuspy character of the finger
profile can be evidenced by analysing the local
curvature of the finger boundary. An ideally cuspy
finger would have only concave local curvatures and
singular points at the tips. A smooth Saffman-Taylor
finger has a convex profile at the tip, and a planar
boundary along the sides. As tip splitting develops,
an increasing part of the finger boundary has a
concave curvature, but this merely affects the

branching zones and not the tips, which remain
convex.

A quantitative estimate of the cuspy character of
the fingers was obtained by measuring, on a set of
magnifications (Fig. 10a-e) a concavity index, de-
fined as , ,

where lea and lex are the lengths of the boundary line
regions which have a concave or convex curvature,
respectively. lea and 1,,x were measured by (i) deter-
mining visually the concave and convex curve seg-
ments of the boundary line, and (ii) measuring the
total length of each set of segments with yardsticks
smaller than or of the same order as the smallest

wiggles on the finger profiles (Fig. 11).
As shown in figure 12, nca increases steadily with

paste concentration (S/L). nea is negative (i.e. the
finger profile is predominantly convex, as in Saff-
mann-Taylor fingers) below S/L = 0.08, and be-
comes positive (finger profile predominantly con-
cave), beyond S/L = 0.08. At S/L = 0.10, 72 % of
the finger boundary has a concave curvature

(nca = 0.43 ).
When considered as a whole, the nca = f (S/L )

curve shows that an important change in curvature
occurs in the same concentration range change as the
sharp increase of the elastic modulus (compare
Fig. 2 and Fig. 12). The change is even more drama-
tic when one considers only the tip profiles rather
than the whole finger profiles. At S/L = 0.06, the
tips are exclusively convex (Figs. 5a and 10a). At
S/L = 0.10, they are almost exclusively concave
(Figs. 9 and 10c).
Two mechanisms (at least) may be considered in

an attempt to explain the occurrence of cusp shaped
fingers : (i) the growth of cusp singularities or

(ii) the onset of fractures. Cusp formation, as con-
sidered by Shraiman and Bensimon (SB) [14], is a
purely viscous phenomenon, whereas fracture re-

quires elastic properties. We will briefly examine the
conditions in which these very different phenomena
might appear.
Cusp formation, numerically evidenced by SB is a

mathematical singularity which develops in very

peculiar conditions. No stabilizing nor smoothing
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Fig. 11. - Illustration of the procedure used to measure
the concave (a) and convex (b) parts of the patterns shown
in figure 10.

influence has to be present. In other words, the
surface tension has to be zero and, a pointed out by
Nittmann and Stanley [13], the system should be free
of noise. Only in those conditions will a small

Fig. 12. - Concavity index (defined in text, Eq. (10)) vs.
paste concentration, in a set of experiments performed at
constant injection pressure (Pi = 100 kPa) and cell thick-
ness (b = 0.35 mm) (Figs. 5 and 10).

perturbation of the interface between a viscous fluid
and a less viscous fluid sharpen to a point where the
tip curvature and the tip curvature become essen-
tially infinite.
As far as the cusp shaped fingering that we

observed corresponds to the appearance of a real
cusp singularity, it raises at least two questions :
(i) why does it stop after a while or, more exactly,
why is it restricted to the tips and why to fingers
continue to grow ? (ii) why does it only happen in
the more concentrated pastes, or in other words,
why would the sources of noise decrease with
concentration and why does everything happen as if
the interface tension between a solvent (water) and a
dispersion of colloidal particles in the same solvent
were decreasing as the concentration of the disper-
sion increases. We see no obvious answer to the first

question. There is indeed no doubt that cusps are
soon relayed by fingers, as shown in figure 13, in
which a radial cuspy pattern obtained in a concen-
trated paste is compared with a SB-type pattern.
This is in fact a strong argument against an explana-
tion of our observations in terms of cusp singular-
ities. On the other hand, the second question can be
approached by considering the physical meaning of
the interface tension in miscible viscoelastic media.

Thermodynamically the interfacial tension T is
defined as the partial derivative of the system free
enthalpy with respect to interface area, A, at con-
stant pressure, temperature (0) and composition
(C), at thermodynamic equilibrium. The later condi-
tion is easily met at the interface between immiscible
fluids, but can obviously not be met with miscible
fluids without destroying the interface, unless, for
some reason, the fluids do not mix. Such a reason

might be the existence of a threshold for flow

(coo). In the region where a -- ao the system would
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behave as a phase-separated fluid-solid mixture with
zero interface tension and a well defined and stable

concentration profile would build up at the interface.
However, this is unlikely to happen at the tips,
where the stress is maximum. Thus, one is left with
the problem of explaining why an (effective) inter-
face tension might build up between a viscoelastic
medium and a miscible solvent, even above o-o.
The same problem has to be faced if one explains

the cusp shaped fingers in the more concentrated
pastes in terms of fracture or, more exactly, in terms
of subcritical crack growth [16]. Crack propagation
in viscoelastic solids (elastomers for instance) is
described by the following equation [17]

g is the strain energy release rate and T is the
intrinsic surface energy, i.e. the water-paste interface
tension in the present case. 0 is a velocity (U)
dependent term which is related to viscoelastic losses
or internal friction at the crack tip. It is clear from
equation (11) that this type of model breaks down
for T = 0.

5. Branching angle and finger stability.

The last point on which we would like to report some
data is the tip splitting angle which, just like the
finger and tip curvature, undergoes deep modifica-
tions as the paste rigidity increases. As illustrated in
figure 10a-e and plotted in figure 14, the average
branching angle goes from - 25° at S/L = 0.06 to
- 85° at S/L = 0.10. Thus, the branching geometry
of the pattern goes from almost parallel branching
(as in a chandler) to perpendicular branching, in the
same concentration range where the curvature transi-
tion takes place.

Branching angles in natural patterns (trees, rivers)
are usually interpreted in terms of the principle of.
least work, which states that the length of the
branches and their angles in a pattern are such as to
minimize the work of pressure forces [18]. Thus, a
narrow side branch will split off from the main
branch at close to a 90-degree angle because this
minimizes the work of the pressure driving the fluid
in the narrow branch. On the other hand, if the main
and side branches are close to the same size, the
fluid will, with little difficulty, switch over to the side
branches and such side branches will strike off from
the main branch at angles considerably narrower
than 90 degrees.
The principle of least work does not seem to apply

in the present case. In each pattern, the branching
angle is statistically independent of finger width and
length. Actually, we feel that this is but a conse-

quence of the fact that the viscosity of the fluid
within the finger is negligible with respect to that of
the displaced medium. In other words, there is no
load drop within the fingers.

Fig. 13. - Pattern obtained by injecting water at

105 Pa in a paste of concentration S/L = 0.1, in a radial
cell (b = 5 mm). The size of the injection hole (1 mm) is
- three times smaller than the large central spot. The
insert shows a cuspy interface generated by numerical
simulation (adapted from Ref. [14]).

Fig. 14. - Average branching angle as a function of paste
concentration in a series of experiments performed at

constant injection pressure (P; = 100 kPa) and cell thick-
ness (b = 0.35 mm) (Fig. 10).

However, it should be pointed out that this is not a
guarantee that the pressure is homogeneous within
the fingers or, equivalently, that the finger boundary
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is an equipotential surface. It is obvious from

figures 5 and 10 that a finger is actually a sequence of
swelling and necks, and even the simple flow of a
non viscous fluid in such an inhomogeneous pipe
should lead to pressure inhomogeneities.

In fact, the most relevant experimental observa-
tions which might help us understanding the branch-
ing behaviour are the following : (i) the opening of
the branching angle - as well as the change in finger
profile - occurs in a concentration range were the
elastic properties of the embedding medium develop.
90° branching - as well as cusps - is observed at a
point where the elastic modulus undergoes such a
rapid rise that a sol-gel transition seems to be

impending ; (ii) branching is far from being always
symmetrical (symmetrical branching being defined
as the splitting of a finger into two equal fingers
making the same angle with the axis of the parent
finger). As far as one can judge from the patterns in
figure 10a-e, branching is close to symmetrical in the
more fluid pastes, but becomes increasingly asym-
metrical as the paste gets more rigid. At S/L =
0.10, the branching cascade of the pattern has a very
asymmetrical staircase-like structure (Fig. 9 is very
illustrative), with several flights of stairs in which
each stair is a totally asymmetric disturbance with
respect to the axis of the flight ; (iii) in all patterns,
the finger sides are covered by asymmetrical bumps
or cusps which may be considered as the buds of side
branches which will never grow further. Growth is
indeed restricted to the unscreened front regions of
the pattern, in which the pressure gradient (towards
the exit of the cell) is the largest [7, 9].
The symmetry of the disturbances of Saffman-

Taylor fingers is a point which was addressed by
Bensimon et al. [15]. Several unstable modes were
predicted, two of them being observed experimen-
tally : the symmetrical tip-splitting mode, already
observed by Park and Homsy [3] and the asymmetri-
cal « hump » mode, recently observed by Tabeling,
Zocchi and Libchaber [3]. The evolution of a hump
is interesting. It starts as an asymmetrical hernia of
the finger tip. As the finger moves forward, it is

repelled on the side of the finger were the velocity is
slower and finally vanishes as it goes away from the
tip.
When taken together, our observations and those

of Tabeling et al. [3] suggest that the opening of the
branching angle might be due to a progressive
takeover of the branching mechanism by asymmetri-
cal modes, which may be either hump or cusp modes
according to the paste concentration.

Similarly to what happens for the finger profile,
the opening of the branching angle might also be

explained in terms of crack growth. If the finger (or
crack) tip grows at a velocity larger than l/TR, than
a stress will develop behind the tip, along the finger.
This stress will be oriented parallel to the finger and
will grow as the tip moves forward. At some point, a
lateral crack could grow and relax the stress. The
orientation of this crack will naturally be at 90° with
respect to the main finger. As the tip keeps moving,
the lateral stress will grow again and a second lateral
crack would form, and so on. The might explain the
quasi-periodicity of lateral branching in figure 9, for
instance.

The main difference between the hump mode and
the lateral crack mechanism is that in the later case,
branching would start behind the tip whereas in the
former case, it would start at the tip and then slide
along the main finger. This might provide an exper-
imental method for deciding which mechanism is

actually operating. -- 

6. Conclusion.

All the data reported in this paper point to one
major but yet qualitative conclusion : viscoelastic

effects are o f primary importance in fingering between
miscible fluids. The elastic properties of the more
viscous fluid control to a large extent the width of
the fingers and their profile, and perhaps also their
branching angle. However, the relative insensibility
of the finger width and, conversely, the sensibility of
the pattern width to injection pressure have still to be
understood.
The most serious problem, about which our data

raise as many questions than they do provide
answers, is the branching mechanism which is itself
controlled by the type of disturbance generated by
the finger tip. Even simple (but fundamental) ques-
tions such as the relative importance of flow and
fracture phenomena are still totally open. A clue,
which is worth being tested further, is that the stress
rise time might undergo fluctuations around the

TS = TR condition. If this happens to be true, then
one would expect pressure and velocity fluctuations
within the finger. This is currently tested in our

laboratory.
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