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Interference effects and magnetoresistance oscillations
in normal-metal networks.
2. Periodicity of the probability distribution 

B. Doucot and R. Rammal

Centre de Recherches sur les Très Basses Températures, CNRS, B.P. 166X, 38042 Grenoble Cedex, France

(Requ le 2 octobre 1986, accepté le 9 f6vrier 1987)

Résumé. 2014 Nous étudions les propriétés de transmission de systèmes désordonnés quasi unidimensionnels, en
présence d’un champ magnétique. Pour une boucle seule, le coefficient de transmission oscille, en fonction du
flux magnétique traversant la boucle, avec la période h/e pour une réalisation du désordre, et la période
h/2 e pour la distribution de probabilité. Dans le cas de boucles connectées en série (collier), nous montrons
que la distribution de probabilité présente la période h/e à faible désordre et h/2 e en désordre fort. Le cas
d’un problème à deux canaux de transmission couplés (échelle) est également abordé dans la limite de faible
désordre, faisant apparaître la période h/e. Nos résultats montrent que les oscillations du type Altshuler-
Aronov-Spivak avec la période h/2e sont obtenues à condition que la longueur caractéristique associée au
désordre (longueur de localisation) soit inférieure au périmètre des boucles. Nous soulignons l’influence des
détails microscopiques du désordre et nous comparons ces résultats avec ceux obtenus dans la référence [1].
Abstract. 2014 We study the transmission properties of quasi one dimensional disordered systems in the présence
of a magnetic field. For a single loop, the transmission coefficient as a function of the magnetic flux across the
loop oscillates with the period h/e for a given realization of disorder and the period h/2 e for the whole
probability distribution. For the series of identical connected loops (necklace geometry), we show that the
probability distribution has the period h/e at weak disorder, and h/2 e at strong disorder. The case of a two-
channel system (ladder geometry) is also investigated in the weak disorder limit, and the period
h/e is shown to appear. Our results show that the Altshuler-Aronov-Spivak oscillations with the period
h/2 e are recovered if the characteristic length scale associated with disorder (localization length) is less than
the perimeter of the loops. The influence of the microscopic features of disorder is outlined and compared with
the results of the first paper in this series (Ref. [1]).
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1. Introduction.

It is now well established, both theoretically [1, 2]
and experimentally [3-7], that interference effects of
the Aharonov-Bohm type can exist in disordered
conductors. But the presence of disorder may
change dramatically the features of this phenomenon
as compared to the case of a pure metal. The basic
effect is the oscillation of all physical observables
(enegy spectrum, thermodynamical properties, elec-
tric conductance) of a ring or a regular assembly of
loops, with a period hle in the applied magnetic flux
per elementary loop [8]. In the case of a disordered
system however, Altshuler, Aronov and Spivak have
shown, using weak-localization theory [1], that the
conductance of such a multiconnected system, aver-
aged over the realizations of disorder, should oscil-

late with the period h/2 e. This effect is directly
related to the fact that weak-localization corrections
to classical transport theory comes from the inter-
ference between the two possible ways of travelling
around a closed loop [9]. Experiments performed on
a hollow cylinder [3], or on regular arrays [4, 5] have
shown this period h/2 e with great accuracy. But in
the case of a single loop, an oscillation at hle has
been predicted [2] and seen [6], as well as a

superposition of both hle and h/2 e components [7].
Recently, Stone and Imry [2] gave a coherent

description of these different experimental results.
They use the concept of lack of self-averaging in
small disordered systems, such as submicronic loops.
A given sample can oscillate with the period
hle, while the period for the probability distribution
is h/2 e. A self-averaging effect is obtained by
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increasing the number of loops [10], or the tempera-
ture [2, 11] and this leads to the recovery of the
h/2 e oscillation. This explanation is also consistent
with the fact that hle oscillations survive at high
magnetic field [6], while h/2 e oscillations do not [1].
However, some recent investigations [11-15] have

shown that the oscillation period of the whole

probability distribution can be either hle or h/2 e.
This is not in contradiction with the weak-localiza-
tion results where only the interference between
time reversed closed paths survives. In a closed ring
geometry the usual Aharonov-Bohm interference

(period hle) is of main importance [6, 11]. For
instance, reference [11] discussed a situation where
the averaging procedure does not lead to the period
h/2 e. In that case the average is a thermal one and
not over disorder configurations : for small transmis-
sion, the thermal ensemble is not broad enough to
wash out the hle period. In this respect, our

averages are taken over disorder configurations and
should not be confused with thermal averages.
Other situations where both hle and h/2 e periods
appear have been studied in reference [14]. Such a
result has been derived for the averaged transmission
properties as the density of impurities is modified. It
is important to notice that the impurity potential in
that case is assumed to be larger than the band width
and therefore comparison with weak-localization is
inappropriate. Similar results have been obtained in
reference [15] through explicit calculations done on
a very small system.

In this paper, we study the periodicity of the
probability distribution of the conductance in differ-
ent quasi one-dimensional geometries. The case of a
single loop is investigated in section 2. Section 3
considers the case of a necklace of loops, both in
weak and strong disorder limits. Because this

geometry still involves a single effective channel, a
detailed study can be done. Then we examine the
case of two coupled channels (ladder geometry) in
section 4, in the weak disorder limit. Two principal
conclusions can be drawn from our study : the

period h/2 e for the probability distribution is recov-
erred when the localization length is smaller than the
perimeter of a single loop (strong disorder con-
dition) ; and microscopic features of disorder may
have a great influence on this period. This result can
be viewed as a one-dimensional counterpart of the
transition from hle to h/2 e discovered by Nguen,
Shklovskii and. Spivak in a two-dimensional dis-
ordered model [14].

2. Single loop.

This geometry has been investigated by many au-
thors [11, 12, 16, 17]. Here, we wish to give a simple
model for describing scattering events which can
occur in the upper or lower branch of the ring, or at
contact points between the ring and the outside

world. Let us consider the single ring geometry as
shown in figure 1. The model is a usual disordered
tight-binding Hamiltonian :

where ei is zero if site i belongs to the external arms.
Along the ring, the si are independent random
variables, such that  E i &#x3E; = 0. The hopping matrix
elements are : Vij = V if i and j are nearest

neighbours and Vij = 0 otherwise. In the following,
we shall take V as the energy-unit. The dispersion
relation for waves propagating along the ordered
arms is simply :

where k denotes the wave vector and E the incident
wave energy.

Fig. 1. - A one-dimensional disordered ring. 0 denotes
the magnetic flux through the ring.

The transmission matrix for the whole system is
expressed in terms of the transmission coefficients
t, t’ and the reflection coefficient r as :

In the absence of magnetic fields, time reversal
invariance holds and then t = t’. Let us introduce
the transmission matrix ml and m2 for the upper and
the lower branch of the ring in the absence of

magnetic field. For finite magnetic fields, and with a
particular choice of the gauge, we have to replace
ml by e-i’Y/2 m, and m2 by ei’Y/2 m2. Here y =
2 ’IT cP / CPo, where 00 = hle.

In this model, scattering at nodes is described by
the following 3 x 3 S matrix (see Fig. 2 for the

notations) :
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where and

Using this notation, we obtain the transmission matrix m for the whole system:

U, V and G are related to tl, ri, t2, r2 and y. For this purpose, it is interesting to write :

(similar definitions hold for t2 and r2) and this leads to :

where

As a consequence of equation (2.7) the transmission coefficient T of the system is given by :

The conductance g is given by Landauer’s formula
[18] :

It is interesting to show explicitly the flux depen-

dence of T :

with

and
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Fig. 2. - Propagation of waves in the disordered ring of
figure 1.

This expression for T has the usual form [16]

The term e cos2 y in the denominator comes from
the interference between the two possible orienta-
tions of paths around the ring. Indeed the coefficient
e is proportional to T1 T2. Its net effect is to induce a
negative magnetoresistance at low fields and an

oscillating component with the period 00/2.

2.1 CASE OF A PURE SYSTEM. - In this case

(tl = t2 = 1, 71 = r2 = 0, q1= CP2 = 0), equation
(2.15) becomes T = N/D where :

and

Two possibilities arise, according to the value of

a) K&#x3E;4

T(y ) exhibits the’behaviour shown in figure 3a.

b)K  4
Here there is a resonance for some values of the

magnetic field, as can be seen in figure 3b.
The qualitative difference between these two

situations can be understood from a direct analysis
of the S matrix structure (Eqs. (2.4), (6)) which
describes the scattering at nodes [16]. When k -&#x3E; 0,
one is always in case a, but as k approaches
’IT’ /2, case b is recovered and a negative mag-
netoresistance in weak field appears. This behaviour
is related to the fact that, at k - 0, a wave coming

Fig. 3. - Transmission coefficient of a single ring without
disorder for cases a and b (see text).

towards a node is reflected with a probability close
to one. As a consequence, the wave cannot turn

many times around the ring. In the opposite limit,
k &#x3E;- N/2 ’r , the probability of a perfect reflection is

rather small (1/9) and then, the interference mechan-
ism between closed paths takes place. However, it is
important to notice that we always have T = 0 for
y == 7T (i.e. 4o = h/2 e).
2.2 CASE OF A DISORDERED LOOP. - Let us assume
that the length of the ring is larger than the
localization length 6 at energy E. As a result

Tl and T2 are typically very small. But the important
fact here is the distribution of phases cp 1, 03C81,
’P2, t/12. The probability distribution of the phase of
the reflection coefficient in the strongly localized
regime has been studied carefully in reference [19]
where it has been shown that this distribution is not

uniform, and has maxima for the values ir + 2 7Tm
(m integer). With our notation :

Taking the length L of the system into account, the
result of reference [19] implies that the probability
distribution of cp and t/1 has strong correlations and
exhibits maxima when :

The probability distribution W ( cp, I/J) is a 2 ’T1’

periodic function of both variables w + 03C8 and

w - gl + 2 kL. This is true in the stationary regime
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and this requires the hypothesis of a ring larger than
the localization length 03BE. From this, one deduces that
the probability distribution W satisfies :

It is important to notice that this property remains
true although the phase of the reflection coefficient
is not uniformly distributed.
The general expression for T is invariant under the

transformation :

As a consequence, the probability distribution of T
is periodic, with the period h/2 e. It is important to
notice here that this result holds in general, without
any assumption as done usually in the literature : for
instance, a uniform distribution for (pl, ’P2, 03C81,

4’2 in reference [11], or 1/1 = - ; in reference [12].2
It is not easy to calculate exactly the probability

distribution of T, mainly because of the complexity
of equation (2.15). Indeed, perfect resonances

( T =1 ) can always occur when :

However, for small T, and T2, and outside the
resonance sectors :

This expression has the form :

Here, À, JL are two (non-independent) random
variables with a probability distribution which is
even in both variables.

In this limit,

if the correlations between A and g can be neglected.
This shows that for a given sample, the mag-
netoresistance always oscillates with the period
hle. Fluctuations from sample to sample are very
strong. Now, if m such loops are connected in series,
and assuming that the phase of the transmission
coefficient of a single loop is uniformly distributed,
we have:

Then In T(m) is a self-averaging variable, and oscil-
lates with the period h/2 e for a given sample. This
result is a consequence of the phase spreading over
[0, 2 7T ]. A necessary condition for its occurrence is
that the localization length being smaller than the
loop perimeter.

3. Necklace of loops.

Let us consider the necklace geometry shown in
figure 4 and describing a tight-binding model. The

disordered region has a finite length n and is
connected on each side to a semi-infinite ordered
necklace. A magnetic field is also present in the
disordered region. Here y denotes the reduced flux
per elementary loop (’Y = 2. ’IT c/J / c/Jo, c/Jo = h / e).
This system is interesting because the dynamical
variables X m and qi. can be eliminated and a one
channel problem is recovered.

3.1 ORDERED SYSTEM. - Using the notation of
figure 4, the Schrodinger equation can be written
as :

Here, E refers to the eigenvalue (energy), ’Pm’

Xm and t/J m being the wave function amplitudes.
Eliminating Xm and 03C8m leads to a one-dimensional

Fig. 4. - Necklace geometry. A magnetic field is present,
corresponding to the magnetic flux 0 across a single loop.
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problem :

We then obtain the dispersion relation :

where

The band structure thus obtained is shown in

figure 5. Note that only the value E = 2 belongs to
the spectrum for any magnetic flux y.

It is easy to calculate the transmission coefficient
of an ordered system consisting of n loops.

Indeed, setting E2/4 - 1 = cos k = cos f cos k1,2
the transmission coefficient T is given by :

with

The y dependence is not a simple one since

ki is a function of y. An interesting feature is that
T = 0 when y = 7r, for any value of n. A conse-

quence of this simple property is the following one.
When a dilute disorder is introduced (each site may
be occupied by an impurity with probability x), the
total probability that each loop has at least one

impurity is given by (2 x - x 2)n. As long as x is less
than one this probability goes to zero when n

becomes large. Therefore, in the limit of an infinite
system, there is a loop with no impurity, and this
with a probability of one. Such a loop has a

transmission coefficient which vanishes at y = 7T

and then, the transmission coefficient of the whole
system vanishes. In the case of a dilute disorder, the
period of magnetoresistance oscillations in then

hle. This result holds for any value of the impurity
potential. From this we deduce that h/2 e oscillations
may exist only in the case x =1 and in the strong
disorder limit (impurity potential much greater than
the bandwidth). The strong disorder hypothesis is

necessary because otherwise, the period is controlled
by the oscillation of the band structure, and is then
equal to hle. From these remarks we shall investi-
gate the two limiting cases :
- weak and dilute disorder
- strong disorder at x = 1.

Fig. 5. - Band structure of a tight binding Hamiltonian on
the necklace geometry, as a function of the magnetic field
(dashed region).

3.2 WEAK AND DILUTE DISORDER. - This case

corresponds to x . 1 and ( E2)  1 where E denotes
the impurity potential. In this section we shall
calculate the localization length. Here the resistance
due to the interfaces between the central and the two
semi-infinite regions can be neglected. This allows us
to use the eigenmodes of the necklace imbedded in a
uniform magnetic field. One way to calculate the
localization length is to write down a Fokker-Planck
equation for the evolution of the probability distri-
bution of the resistance, the length of the necklace
being the « time » axis [20]. Let us first fix the

energy E of incoming particles at :

where k denotes the wave vector of the incident
wave.

In the weak disorder limit (x  1 ), the probability
for two adjacent loops to have impurities is of order
x2 and such events can be neglected in a calculation
to first order in x. The transmission matrix associated
to a disordered loop, as shown in figure 6, can be
evaluated starting from the following equations
(after elimination of the gl and X degrees of

freedom) :

Here, E1, B2, ’T1 and 0 denote impurity potentials.
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Fig. 6. - Impurity potentials e, q, 0 on a disordered loop.
Sites surrounded by squares are assumed to have no

impurity.

The transmission matrix m of the single loop is
defined as usual by [20] (3.5b) :

where

denote the scattering data on the left, and

on the right.
Note that in the absence of disorder,

Starting from equation (3.5) and up to second order
in the impurity potentials Eo, E1, N, 0, one obtains :

with the following notations :

a 1 is defined as a o, where Eo is replaced by
E1. 

If M denotes the transmission matrix of the whole

necklace, it is interesting to follow the evolution of
the Hermitian matrix J = MM +, which is the relev-
ant matrix of interest here [20].

Here, r’ is the reflection amplitude (for the right
side) of the necklace, R = I r’ /2 and T = 1 - R.

The. occurrence of a disordered loop in the system,
at position n, results in the following modification of
F : 

Here the matrix coefficients mij are defined by
equation (3.6).
The problem can be further simplified by averag-

ing over the strongly oscillating terms ei (lI’n + 2 kn) and
one can obtain a Fokker-Planck equation for the
evolution of the probability distribution of F [20] :
W(L, F), where L denotes the length of the neck-
lace. This equation can be written as follows :

where

and

The length scale 03BE as given by equation (3.8) is the
localization length, since we have :
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and

From the dispersion relation (Eq. (3.3)) it is easy to
check that 6 is a decreasing function of y for

y  7T as long as E belongs to the energy spectrum
of the necklace in the presence of a magnetic field.
For example, E = 2, belongs to the energy spectrum
for any value of y and :

In equations ((3.8) and (3.9))  e2) is the mean

square of impurity potentials, which are assumed to
be independent random variables.

In the limit considered here, the probability
distribution of the resistance of the necklace oscil-
lates with the period hle. To see this, one can use

e2 T
Landauer’s formula 18 : g = e 2 T relating the7rhR -
transmission coefficient T to the conductance g of
the system.

Furthermore, this system exhibits a positive mag-
netoresistance (:D03BE  0 at low magnetic fields

dy
and this can be understood from the narrowing of
the energy spectrum as the field is increased. In
another words, the group velocity decreases when
the magnetic field increases and then the scattering
by impurities becomes larger and larger. In this
weak disorder limit, the band structure governs the
periodicity of the magnetoresistance. Therefore it is
natural to consider the strong disorder limit when
the amplitude of the impurity potentials is much

greater than the bandwith. According to the last

paragraph, a h/2 e oscillation might only appear in
the limit x = 1 and  e2) &#x3E; 1. The following para-
graph will be devoted to this limit. Before, let us
remark that the case  e2)  1 and x =1 is much
more difficult that the two limiting cases investigated
in this paper. This is because the problem becomes
equivalent to a pure 1D disordered Anderson model
with an off diagonal disorder, with a strong corre-
lation between hopping matrix elements. Such corre-
lations can be neglected when x  1 or E 2) &#x3E; 1 as
will be shown below. However, in the opposite case
( E2) .c 1 and x =1) we expect that the periodicity
of the magnetoresistance will also be governed by
the band structure.

3.3 STRONG DISORDER AT x = 1. - In this case it is

not easy to write a simple Fokker-Planck equation
for the probability distribution of the transmission
coefficient. Instead, we shall use a transfer matrix
method, as introduced in reference [21].

Let us start from the Schrodinger equation

Dividing this equation by the factor in front of

CPn leads to a tight binding model with correlated off-
diagonal disorder, as previously noted. This model
can be simplified by setting En = 0 for any n and
TIn = ± W, On = + W with probability 1/2. Further-
more, let us assume that W &#x3E; E. In this limit, the

diagonal matrix element of the Hamiltonian (Eq.
(3.10)) can be replaced by a constant (= E), and
equation (3.10) gives

with

Equation (3.11) can also be written in the follow-
ing appropriate form :

Now assume that the disordered region is restricted
to the loops 0, 1, ..., n - 1. We have :

where J denotes the matrix

and

N laml
Multiplying cP n + 2 and cP n + 1 byNla.1 Y. a* allows usMultiplying pn+2 and Qn+1 by M am* allows usM=-l m

to transform the matrices H(m) into real matrices
and this phase transformation keeps the transmission
coefficient T =ltl2 unchanged.

In the absence of disorder,
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This matrix can be written as :

where

Introducing the following unitary transformation :

Equation (3.12) becomes :

where

Explicitly

M. satisfies unitarity conditions as expected for a
transmission matrix from the current conservation.

In the present considered limit : W - oo, I a I --&#x3E;, 0

and 1 is the leading term.
lal

with probability 1/2.
The localization length 6 in such a strong disorder

limit has been evaluated in reference [21] :

Equation (3.15) shows that the localization length
6 oscillates with the period h/2 e in the magnetic
flux. Furthermore 03BE increases at low fields and this
corresponds to a negative magnetoresistance, which
is also the case in the standard weak-localization

theory [1].
Let us conclude this section by recalling the main

results. The necklace geometry exhibits an hle
oscillation in the weak disorder limit (e2)  1 or
when x # 1. However an h/2 e periodicity appears
in the strong disorder case  E2) &#x3E;1 atx=l. This
behaviour is consistent with the numerical results of
reference [13] for the ladder geometry. In this work,
the period of the localization length oscillations has
been fouad to be hle at small disorder, and

h/2 e at stronger disorder. The cross-over is deter-
mined by comparing the localization length and the
length of a single loop. In order to have an

h/2 e oscillation, the localization length has to be
smaller than the loop perimeter. This is necessary to

randomize the phases of the scattered waves in the
upper and lower branches of a given loop. In our
case, the necklace geometry exhibits a particular
feature : in the infinite W limit, the h/2 e oscillation
is recovered only at x = 1, because the lack of
connectedness of the structure. This influence of the

precise structure of disorder has been investigated in
reference [14] in a two-dimensional model. The
mechanism considered here is of similar nature. The

probability distribution exhibits a crossover between
h/e and h/2 e periods when the sign of the prob-
ability amplitude to travel along half a loop (in the
absence of the field) is positive or negative with
equal probabilities. For low concentrations of im-
purities, the period hle dominates and this because
of the non-symmetric nature of the distribution of
the sign. Such a behaviour contrasts with the usual
weak and dilute disorder limit ( ( E 2  1 and
x  1) where only the combination : x ( E2) is involv-
ed. When  82) is much larger than the bandwidth,
the concentration x becomes a pertinent parameter
and then the magnetic field appeats as an interesting 
probe.

4. Ladder geometry. 
,

In the previous section, we have shown that the
necklace geometry can be transformed into a pure
one-dimensional disordered model. The ladder

geometry is interesting because it is the simplest
non-trivial multichannel system, where numerical
data are available (Ref. [13]). According to the last
remarks, one should consider both the weak

(x ( 82)  1 ) and strong (x ( 82) &#x3E; 1 ) disorder limits.
The multichannel localization problem has already
been studied at zero magnetic field in reference [22].
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Here we shall use a similar method and restrict
ourselves to the weak disorder limit. The strong
disorder limit can be analysed through an extension
of the transfer matrix methods to multichannel
disordered problems [23] but will not be discussed
here.

4.1 ENERGY SPECTRUM OF THE LADDER STRUC-
TURE. - Let us consider the ladder geometry as
shown in figure 7. It will be interesting to consider
the interchain hopping matrix element as a relevant
parameter t. The hopping matrix element along each
chain will be taken equal to unity. As above, we use
the notation y = 2 ir 0 / 0 0 where Q is the magnetic
flux per elementary loop and 00 = h/e. According
to the notation of figure 7, the eigenmodes have the
following forms :

and the eigenvalue equations are given by

The corresponding dispersion relation is as follows

Fig. 7. - Ladder geometry. ,

At fixed E, the number of real solutions k,
- k of equation (4.2) gives the number of transmis-
sion channels. Of course this number can change
with E. For the ladder geometry, the situation is

summarized in figure 8, in the case t = 1. In the limit
t -&#x3E; 0, the region with only one propagating channel
shrinks and disappears at t = 0 (uncoupled chains).
In what follows, we shall study the weak coupling
limit (t -&#x3E; 0 ) and the isotropic chains (t =1 ) limit
respectively. 

4.2 ONE-CHANNEL LIMIT AT t = 1. LOW FIELD Ex+
PANSION. - This situation cannot occur at y =

IT However, around y = 0, the energy region
2 
defined by

exhibits just one propagating channel, the other is an
evanescent one. In the following the localization

Fig. 8. - Energy spectrum of a tight binding Hamiltonian
on the ladder geometry in the case of isotropic coupling
t = 1. The system exhibits two propagating channels in
dashed regions, and only one elsewhere in the spectrum.

length will be calculated in the weak disorder limit,
up to the second order in the magnetic field. Note
that at y = 0, the dispersion relation reduces to
E - 2 cos k = ± 1. Let us assume 1  I E I  3, and
take E &#x3E; 0 for instance. We define k1 and 6 by:

and

Here 8 denotes the attenuation length of the evanes-
cent mode (k2 = ± i / d ) and k1 is the wave vector of
the propagating mode.

In the presence of a small magnetic field, the wave
vectors and the wave functions are modified, accord-
ing to :

where A1, A 2, ILl and u 2 will be defined below.
Let us consider the weak and dilute disorder

limit:  e2) 1 and x  1 (same notation as for the
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necklace geometry). When a propagating wave is

scattered by an impurity, an outgoing wave is
emitted but superposed to a localized wave function
with the characteristic length 8. However, if 8 is
much smaller than the average distance between two

neighbouring impurities (xd  1), one can neglect
the overlap between two such localized wave func-
tions. This approximation is equivalent to selecting
the first term in a perturbation expansion with a

perturbation .parameter of order exp - 1 . In
xs 

perturbation calculations of the transmission coef-
ficient, or of the Green function, this corresponds to
keeping the oscillating part of the bare propagator.

It is then necessary to consider the diffusion by an
impurity (with a potential e or q as shown in Fig. 9).
On the left side (n , 0), we have

and on the right side (n , 0), we have

(the signs in front of k2 have been chosen in order to
have a non-divergent wave function). The transmis-
sion matrix by the impurity, up to first order in

E and q and to second order in y is then given by :

This relation can be cast into the following form :

where a, j3 and 5 are real numbers given by
equation (4.5).
The breaking of time reversal invariance due to

the presence of the magnetic field appears through
the difference between a and ð. This difference

comes from the term y (E - 71 ) which is of first order

Fig. 9. - Impurity potentials e or q located at the origin,
in the ladder geometry.

in y as expected, and vanishes when no dissymmetry
between the upper and lower chains is present
(c = 7y ). For an impurity at position n, the transmis-
sion matrix becomes :

Using again the method of reference [20], described
in section 3, we can write a Fokker-Planck equation
for the evolution of the probability distribution

W(L, F ) along the ladder. Here L is the length of
the ladder and F = (1 + R )/T.

This equation can be written as :

In the limit of large L and F &#x3E; 1 (large resistance),
one obtains :

with

The localization length 03BE is equal to  a 2) - 1. There-
fore, (Eq. (4.8)), 03BE decreases at low magnetic field.
The magnetoresistance is then positive, and strongly
enhanced near the band edge (k -&#x3E; 0). This result is
similar to our result for the necklace geometry, and
comes from the narrowing of the energy spectrum in
the presence of a magnetic field.

4.3 TWO CHANNELS LIMIT AT y = 0 AND y = ’IT. -

In this section, we restrict ourselves to the limits

y = 0 and ’Y = ’IT, for both t  1 and t =1. The

calculation for a general value of the flux y is much
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more cumbersome. Unfortunately y = 0 and y = 7T
both correspond to a system which satisfies the time
reversal symmetry. So these limits are quite par-
ticular.
As before, we start by calculating the transmission

matrix for an impurity at the origin (see Fig. 9). This
- is a 4 x 4 matrix in the case of two propagating

channels. In all the cases considered below, it will
take the form:

where a (E, n) denotes a 2 x 2 real, symmetric
matrix.
For an impurity located at the position n, we have

similarly :

where

kl and k2 being the values of the two wave vectors.
Let us consider the explicit form of the matrix

i) t=1, y=0:
k1 and k2 are defined by E = 1 + 2 cos k 1=

- 1 +2cosk2.
kl corresponds to a symmetric mode ( Q = 03C8 ) and

k2 to an antisymmetric one (cJ&#x3E; = - .p) ( Q and gl
have been defined with the wave function by
Qn = 4, eikn and qi, = gl e-ikn). We have chosen a
normalization of the wave function in order to keep
a simple form for the current J == A1 ( 2 - B1 | 2 +
IAzl2 - I B2 /2 , and this leads to

ii) t = 1, y = IT : .
Taking a gauge in which all the hopping matrix

elements are real (Fig. 10), the dispersion relation
reads E 2 =1 + 4 COS2 k.

If k1 is a solution, we take k2 = k1 - 7T in order to
have the same sign for the group velocity of both
channels.

kl is associated to the wave function Q# =1,
’" = À, where Jl = (E + J E2 - 1 )-1 and k2 to the
wave function 0 A , qi = 1.
With these definitions, one obtains :

iii) t « 1, y = 0 :
In comparison with i), the dispersion relations are

modified :
E = t + 2 cos k 1 (symmetric mode) and E =

- t + 2 cos k2 (antisymmetric mode).
iv) t ,. 1, y = -ff : .
The dispersion relation is E 2= 4 COS2 k + t2, with

the gauge of figure 10. The result is the same as in ii)
with A = t/2 E. Keeping only the first order in t,
one obtains

Let us denote by G the transmission matrix of the
whole system. is a 4 x 4 matrix. An appropriate
parametrization of M = 1.)1.) + is as follows [22]

where u and v are 2 x 2 unitary matrices and r is a
diagonal 2 x 2 matrix with positive real coefficients :
T1 and T2. Given an incoming wave on the left side,
which is a linear superposition of the two channels
with the amplitudes A 1 and A2, the transmitted wave
on the right side is a quadratic form of A1 and
A2. The eigenvalues of this quadratic form are the
two transmission coefficients T, and T2. Then:

Ti = 1 
2 

h r i =1, 2).1 + cosh ri 
From time reversal invariance, we can choose the
following form for u and v :

and

Considering the evolution along the ladder leads to a
6-parameter stochastic process : r,, T 2, 0, cp,

Dl and D2. The effect of an impurity on them, up to
the order of two in the impurity potential ( E, q ) can
be calculated from the transmission matrices given

Fig. 10. - Particular gauge for the case y = ’IT. The

hopping matrix elements along the chains are chosen to be
real and of opposite signs.
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above. The result of this calculation is then used to
derive a Fokker Planck equation for the probability
distribution W(ri, rz, 8, Q, D1, D2 ; L). After a

rather lengthy algebra, and making the change of
variables : Fi = cosh ri (i = 1, 2 ), the first terms of
this Fokker-Planck equation take the form :

(here we have only written the terms necessary for our calculation).
In the limit L -&#x3E; oo, one expects an exponential increase of F1 and F2, with two different characteristic

lengths [22, 24]. With the hypothesis that 1  F1  F2, equation (4.9) leads to :

and

The knowledge of the probability distribution of 0 is
then required. However, as noticed in reference [22],
one has a simple evolution law for (Fl F2)1l2 :

In the limit L -&#x3E; oo, F1 and F2 are very large and the
evolution of 0 becomes independent of F1 and
F 2. It is then possible to write down a Fokker-Planck
for the evolution of the probability distribution

W(0 , L). Setting h = cos 2 0, this equation reads
as :

with

When L is large, the probability distribution of h can
be approximated by the stationary solution of

equation (4.12). This distribution is given by
i) if {3 &#x3E; a

where

where
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The net effect of a, J3 and £ on the shape of
W(h) can be understood from the meaning of

8 : 0 is the rotation angle which is necessary to

diagonalize the quadratic form associated with the
transmitted current. Let us first suppose £ = 0.

Then W (h ) = a (1 - 2 IL i3 (I + 2 . If J3:&#x3E; a ,Then W(h)= 
- a (1 - h ) + J3 (1 + h ) 

If b&#x3E;a,

the distribution has a maximum at h = 0, i. e. at

0 = 7T /4 + (?r/2) n, n integer. This corresponds to
a strong diffusion from one channel to another. If

J3 &#x3E; a , the maximum of W(h) occurs at h2 = 1, i.e.
for 0 = 7r n. Here the diffusion between the two

2
channels is weaker. C introduces an asymmetry in the
probability distribution. If £ &#x3E; 0, W(h ) increases for
h  0 and decreases for h &#x3E; 0. This implies that the
eigenmode of the transmission quadratic form corre-
sponding to Tl (largest transmission coefficient) is

closer to channel 2 than to channell. This is a

natural result since £ &#x3E; 0 means that scattering is
weaker in channel 2 than in channel 1.

Using equations (4.13), (4.14) and (4.10a), one
obtains the localization length 11 associated with the
largest transmission coefficient :

To summarize, we shall give now the values of
ll and (111 + 12- 2)/2 obtained from equations (4.11)
and (4.15), 12 being the localization length associated
with the smallest transmission coefficient T2 and
consequently l2  l 1.

i) cp = 0, t = 1 :

The function :F (E) is defined by

and

Here-

Starting from E = 0, when I E I becomes greater
than Ec, the shape of the probability distribution of 0
changes, and the asymmetry between the two chan-
nels becomes very important as I E ’-+&#x3E;0, since one
of the two allowed channels becomes evanescent.

ii) cfJ = 7T, t = 1 :
The energy spectrum is defined by 1  E --

B/5, and we have

where

and

Here, we have set k = (E + (E2 - 1 )1f2 )-1.
The difference between the cases 0 = 0 and

0 = w is more striking in the limit t  1. In what

follows, the difference between the group velocities
of the two channels will be neglected, because it
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introduces analytic corrections of order t2 to the
localization lenghts.

Note that for 0 = w, l1 is not an analytical function
of t, as t goes to zero. This is to be contrasted with
the smooth behaviour at 0 = 0.

4.4 DISCUSSION. - From the above results, it turns
out that the period of the magnetoresistance oscilla-
tions is hle in the weak-disorder limit, both in the
weak (t  1) and isotropic (t = 1) coupling cases.
The oscillation period of the band structure is then
relevant in this weak-disorder limit. The limitations
of our approach can be summarized as follows :
- In two-channel case, our calculations are re-

stricted to time reversal invariant situations (o = 0
and 0 = 7r). If this symmetry is broken, the calcu-
lation of the transmission matrix for one impurity
becomes tedious. Furthermore, the simple relation
between the matrices u and v * is lost and an

additional parameter 0’ should be introduced.
- Our weak disorder result is not valid at band

edges, or when a propagation channel disappears.
For instance, in 1D systems, a different scaling of the
localization length occurs [25].
- The strong disorder limit has not been inves-

tigated. But the result of the necklace can be thought
to be valid here. It seems reasonable to expect a
cross-over from hle to h/2 e when the localization
length becomes of the order of a loop size

(x  s2) ~ 1), as was numerically observed in refer-
; ence [13].

 5. Conclusion.

Let us briefly summarize our main results.
For a single disordered ring, the magnetoresist-

ance of a given sample always exhibits the period
hle, in agreement with previous studies [2, 16]. The
whole probability distribution of the transmission
coefficient oscillates with the period h/2 e if the

length of the ring is larger than the localization

length.
For the infinite systems considered here (necklace

and ladder), we have calculated the localization

length which is defined from In T. Since In T is

known to be a self-averaging quantity, the localiza-
tion length is well defined for a single very long
system. We have shown that

i) for weak disorder, or more precisely, when the
localization length is much larger than the loop size,
the main effect of the magnetic field is due to the
oscillation of the band structure of the pure system
in a magnetic field, with the period hle. In this case,
hle is also the period of the magnetoresistance
oscillation ;

ii) for strong disorder (localization length much
smaller than the loop size), partial waves coming
through the upper and lower sides of a loop have an
arbitrary phase difference. After ensemble av-

eraging, only the interference between the two time-
reversed paths associated with a closed loop survives,
and the period h/2 e is recovered. These results are
in good agreement with numerical studies on dis-
ordered ladders [13]. Furthermore, the microscopic
nature of disorder may have an influence on the

magnetoresistance oscillation, as discussed in the
case of the necklace. Such an influence has already
been noticed in references [14, 15].

In order to compare these results to experiments,
it should be stressed that our calculations deal with

pure 1D disordered wires. In real samples, wires
have always a finite width, and this leads to a quasi-
diffusive behaviour (weak localization regime) in the
weak disorder limit [1]. An important feature of this
regime is the existence of two well separated length
scales : the elastic mean free path I and the localiza-
tion length 6, which satisfy I  03BE. In the pure 1D
cases investigated here, I =03BE up to a numerical
factor. A direct calculation using the same methods
as those used in the present paper, on systems with
wires of finite widths is difficult. However, we argue
that similar conclusions can be expected for such
realistic geometries, if one compares the mean free
path (rather than the localization length) with the
loop perimeter. Clearly, weak localization calcula-
tions [1] are no longer valid in a weak enough
disorder, where the mean free path becomes larger
than the loop perimeter. As in the original
Aharonov-Bohm experiment, the period h/e.should
be expected in such a case. If the mean free path is
smaller than the loop perimeter, randomness occurs
in the distribution of the phases of the transmission
matrices associated with different wires. Then the

period h/2 e should be obtained for the behaviour of
the whole probability distribution. This is not incon-
sistent with the observation of an hle oscillation for
small samples [6] (single submicronic ring) or the
superposition of both hle and h/2 e Fourier compo-
nents [7]. In fact, as discussed in detail by Bfttiker
et al. [21], there is no self-averaging in a single ring,
even for a large number of propagation channels.

It should also be noted that the self-averaging
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process which is responsible for the observation of
h/2 e oscillations in the experiments reported in
references [3, 4, 5, 10] is not the same as the
mechanism involved for (In T) of a long system. In

the latter case, only elastic scattering is involved
whereas in the other case the phase coherence
breaking (due to inelastic scattering) is responsible
for washing out the hle component.
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