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Résumé. 2014 On étudie les fonctions de corrélation T-1(E) T-1(E’)&#x3E; et ln T(E) ln T(E’)&#x3E; des coefficients
de transmission d’un système désordonné à une dimension, pour des valeurs différentes E et E’ de l’énergie.
Les longueurs caractéristiques associées à la décroissance de ces fonctions sont calculées et sont différentes de
l’échelle de longueur correspondante au corrélateur T(E) T(E’)&#x3E;. On interprète l’existence de différentes
échelles associées aux différents corrélateurs comme la manifestation de distributions de probabilité
anormalement larges dans ces systèmes désordonnés.

Abstract. 2014 We study the correlation functions T-1(E)T-1(E’)&#x3E; and ln T(E) ln T(E’)&#x3E; of the

transmission coefficients of a disordered 1D system taken for two slightly différent values E and
E’ of the incident wave energy. Characteristic length scales associated with the decay of these correlation
functions are obtained and are shown to differ from the length scale associated with the correlator

T(E) T(E’)&#x3E;. The existence of several length scales associated with différent correlators is interpreted as a
manifestation of unusually broad probability distributions in such disordered systems.
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1. Introduction.

One of the most exciting properties of disordered
systems is their ability to exhibit coherent effects
during the propagation of linear waves. Localization
theory in disordered electronic systems is a striking
illustration of these phenomena [1]. Recent experi-
ments performed on submicronic conducting rings
have shown magnetoresistance oscillations of the
Aharonov-Bohm type, with a period corresponding
to a normal flux quantum hle [2] and a strong
h/2 e harmonic [3]. A tentative explanation [4, 5]
lies on the idea that the period of the probability
distribution oscillations is h/2 e, as predicted by
weak localization theory [6] and observed in hollow
cylinder experiment [7]. However, lack of self av-
eraging occurs in 1D rings and a given sample shows
mainly the hle oscillation [4]. A cross-over from the
sample behaviour to the averaged one can appear at
finite temperature since the conductance in the

Landauer picture involves the transmission coeffi-
cients at energy intervals of size - kB T. Under
certain conditions, this thermal superposition
mechanism can have the same effect as an ensemble

averaging [5]. In fact, decorrelation between trans-
mission coefficients at two different energy values

occurs when the energy separation is greater than a

correlation energy Ec. A priori E, depends on the
sample geometry and on the degree of disorder.

In the present paper, we calculate this quantity in
1D systems for the correlators of the logarithm and
negative moments of the transmission coefficient.
An estimate of Ec has been proposed in reference [4]
for the two following cases :
- 1D ballistic transport : Ec = IiV 0/ L, where

V 0 is the group velocity and L is the length of the
system ;
- 2D diffusive transport : Ec = liD / L 2, where

D is the diffusion constant.

The 1D localized case is interesting because much
more precise results can be derived. However, it
should be noticed that in this case, there is no true
diffusive. weak localization regime. This is an import-
ant restriction on the validity of our results in

comparison with actual experiments where the width
of the wires is finite.

Correlators of positive moments : (t (E) t * (E’ ))
and (I t (E) 12 1 t (E’ )12 ) have already been calcu-
lated by the authors of references [8] and [9], who
emphasized their connection with the bandwidth [8]
or the noise [9] in 1D disordered systems.
Another work [10], on the same subject was

devoted to the correlators involving exact wave
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functions. Is it possible to associate with these
different correlators a single expression of Ec or a
single characteristic decorrelation length L * ? Our
answer will be negative : L * depends strongly on the
observed quantity. This paper is organized as fol-
lows. In section 2, correlators of negative moments
of the transmission coefficients are investigated.
Section 3 is devoted to the correlator of logarithms.
Then, in section 4, our results are compared to those
obtained in previous works [8, 10].

2. Negative moments correlators.

Let us consider the following disordered tight-bind-
ing Hamiltonian, corresponding to a one dimensional
geometry shown in figure 1 :

Here the e¡’s are independent random variables,
which satisfy  ei) = 0. We suppose that disorder is
limited to the region including the sites 0, 1, ...,

n. Elsewhere, Ei = 0, which corresponds to pure
semi-infinite systems. In the absence of disorder,
free modes can propagate: cpn = eikn, with the

following dispersion relation : E = 2 cos k. Here

E denotes the wave energy and k its wave vector.

Fig. 1. - A one-dimensional disordered tight-binding
model (see text).

The transmission matrix m of the disordered region
can be defined by considering ingoing and outgoing
waves on both sides. Our notation is explained in
figure 1. We then have :

Let us denote by t and r the transmission and the
reflexion coefficients for incident waves coming
from the right. Because the system is invariant under
time-reversal, m takes the usual form :

As noticed in reference [11], it is useful to consider
the Hermitian matrix M = m + m in order to study
the transmission problems. We have

with

The transmission matrix m ( j, c) associated with a
single impurity at site j where Ej = E, is given by

The transmission matrix of the whole system is
therefore given by :

When the length of the disordered region is increased
by one unit length, this results in a modification of
M as follows

Let us introduce the following parametrization of
M(n) :

Using (2.3) and (2.4), we obtain the evolution of the
variables F,, and cp n resulting from the addition of a

single impurity. Up to second order in En, this

reads :

and

In (2.5) and (2.6), 8 n = cP n - 2 kn. In the limit of
weak disorder:  E 2)  1, after averaging over the
strongly oscillating phase factor e’ION , it is possible to
write a Fokker-Planck equation for the probability
distribution W(F, L) of the parameter F (L being the
length of the disordered part) :



935

Here, x = L/03BE where § =4sin 2kl ( E2) is the
localization length, as can be seen from :

Let us now consider two incident waves, with

slightly different energies E and E’. Since the wave
vectors k and k’ are different, the phases 0,, and
0’ n which appear in (2.6) become uncorrelated at
large L. This effect is in general larger than that
resulting from the difference between group vel-
ocities : 2 sin k # 2 sin k ‘. More quantitatively, the
phase difference becomes significant at length scales

comparable to the « optical » length LOPt -- 1op l Ak l
However, the variation of the group velocity results
in a variation of the localization length, which
defines a characteristic length

In the weak-disorder limit studied here, § &#x3E; 1 and

Lopt  03BE .

From this argument, we shall only consider the
effect resulting from the phase difference and then
set sin k = sin k’ in the relevant equations (i.e.
neglect the difference of group velocities). 

Let us now introduce the variable un = cp n - cp n.
Using (2.6) one obtains the recursion equation :

As the length L of the system increases, the prob-
ability distribution of 0N and 0’ n spreads out over the
interval [0, 2 7T] after the scattering by the first

impurity. However, On - On’ = un - 2 Ak . n has a

slowly diffusive motion. It is then possible to obtain
a Fokker-Planck equation for the probability distri-
bution W(F, F’, u ; L), after averaging over the

phases 0 n, 0’ n and On + Bn. Such an equation can be
written as

Here, j8 =2A.g and F = (1 +/?)/T=2/r-l.
In the large L limit, the main contribution to the probability distribution of F, F’ comes from the region

F &#x3E; 1, F’ &#x3E; 1. In this limit, (2.8) takes the simplified form :

Equation (2.9) allows us to write an evolution for the
correlator (FF’) which turns out to be coupled to
(FF’ cos (u - f3x» and (FF’ sin (u - (3x )) in the
following system :

The exponential growth rate of (FF’) is given by
the largest eigenvalue of the matrix :

p 2

This eigenvalue is equal to 6 - + 0 (p 3) up to
second order in 13. Consequently :

This relation defines a characteristic length scale
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L(FF’) for the decay of (FF’)

For Ak . I &#x3E; 1, this length is much greater than the
« optical length », 1 . Furthermorel AK l

(the intersite distance a has been introduced in order
to exhibit the homogeneity of this ratio). From this
relation, we see that it is not legitimate to neglect the
variation of the group velocity when [ Ak I is very
small, i. e . at , L FF’) .
Now, one can try to generalize this result to the

case of the general correlators (Fm F’n), m and
rc are integers. When m = 1 or n = 1, it is possible to
generate a finite and linear differential system as
above, associated with the following matrix :

Its largest eigenvalue A is given by

and then

where

Therefore the functional form does not depend on
the exponent m which only enters as a numerical
prefactor.
Another derivation of (2.11), (2.12) can be ob-

tained using the transfer matrix method of references
[8] and [9]. The corresponding calculations will not
be given here.

3. Correlator ( In T- 1 (E) . In T -1 1(E’».
It is equivalent to calculate the correlator

(In F . In F’ ) where F and F’ have been defined in
the previous section. From the Fokker-Planck

equation (2.9), we deduce :

and then, using the result (In F) = x :

It is then necessary to study the probability distri-
bution of the phase difference u. From (2.9) and
after integration over the variables F and F’, one
obtains :

Let us define qi by : 2 qi = u - B x. Equation (3.2)
becomes

where W denotes the probability distribution of

03C8
At large L, it is possible to approximate the

probability distribution of qi by the stationary solu-
tion of (3.3), given by the solution of :

This differential equation has already been studied
in reference [12] (Eq. (3.9)), for the calculation of
the correlators involving products of exact wave

functions. From the positiveness of W and the

normalization condition, this probability distribution
takes the following form [12] :

According to equation (3.1), the relevant quantity to
evaluate is (cos (u - 8 x )) = 1 - 2 (sin2 .p). From
(3.5), one obtains :

In the limit P - oo , we have : sin2 o) = 1 as
2

expected, since here, the stationary distribution
becomes uniform, and ln F and ln F’ are uncor-

related. In the other limit P -&#x3E; 0 :

where A denotes a numerical factor.

Using this expression and (3.1), the asymptotic
value of the correlator (In F . In F ’ ) becomes
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The correlation coefficient tends to the following
limit :

It is now interesting to study the short length regime.
The initial condition is given by : W ( I/J , x = 0) =
8 ( I/J ).
As long as gl remains small, equation (3.3) can be

written as :

This leads to :

and then

After expanding to order ",2 in (3.1), one gets :

This leads to

This result is valid as long as f3 2 e2 x remains small.
Here a new characteristic length scale x * appears as

a solution of: x* = f3 8 2 e2x.. 
Then, we have :

As can be seen from (3.1), this length scale also
describes the decorrelation of the phases of the
reflection coefficients.
Here we have restricted our attention to the two

limiting cases of very large and very short L. The
transient regime however exhibits an interesting
behaviour with oscillations around the stationary
distribution.

4. Comparison with other studies.

In reference [10], correlators involving exact wave
functions have been calculated. For instance, the
correlator FW(1’)(z), defined by :

has been shown to decay with the length zO ( w ) _
2 ç In ( ú)8 T) where ç denotes the localization

w T

length and T the elastic scattering time. This length
zo ( w ) is identical, up to a numerical prefactor, to

L In F . In F’ &#x3E; introduced in the last section. This

relationship between these two lengths results from
the fact that both are related to the decorrelation of
the phases of the reflection coefficients. zo(w ) is

used to determine the dynamical conductivity
u (W ) through Kubo’s formula [10]. Indeed,

where S denotes the cross-section area of the wire.
From this relation, we recover for a ( w ) the follow-
ing known expression [10, 12, 13] :

The correlators

have been calculated in [8] and [9]. Here it is worth
noting that the Fokker-Planck presented here is not
well adapted to calculate these correlators. Since
resonant events ( I t I - 1 ) with a small probability
are relevant here, the small transmission approxi-
mation used before is no longer valid. As a result, it
is not possible to write down a closed system of
evolution equations for a finite set of correlators, as
has been done in section 2. This difficulty with the
probability distribution of the transmission coeffi-
cient is well illustrated in the following known
expression for the positive moments :

The restriction of the n dependence of  1 t 12 n)
results from the contribution of these highly unprob-
able resonances 1 t I = l.

In [8] and [9], transfer matrices were used, and the
determination of the characteristic decorrelation

length was mapped into an eigenvalue problem
relative to a singular non-Hermitian differential

operator.
Let us just quote the results obtained in these

references :
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where

We were unable to understand the reason for the
occurrence of 3 as well as the difference between a
and b. We believe that a is the correct result, and
this gives rise to a third length which has the

following form : L *TT&#x3E; , -03BE ln2 ( 1 . Theg 

2 rr&#x3E; 1,&#x26;k 16 ) -
presence of ln2 ( -201320132013 ) is reminiscent of the

[ Ak [ ) 
2 .

dynamical conductivity u (w ) - w 2ln2 w. In fact, it
can be shown [14] that the static conductivity of a
one-dimensional system calculated with the Kubo
formula is identical to the conductivity given by the
simplified Landauer formula : G = e I t 12. The

nh
same ideas show that the Kubo formula for the

dynamical conductivity can be written in terms of
correlators involving combinations of the reflection
and transmission coefficients, taken at energies
EF and EF + hw . This is probably the origin of the
difference between

for the phases and the transmission coefficient

decorrelation lengths. It is also interesting to notice
that the ln2 w in the Kubo dynamical conductivity
comes from the squared modulus of the dipolar

2

matrix element f dx ’" 1£ (x ) x’" " (x ) 12, and the ex-
pression of zo (w ) for the relevant correlator [10].

5. Discussion.

In this paper, we have shown that decorrelations
induced by a small perturbation of the incident wave
energy, are described by different characteristic

length scales and this according to the considered
quantity. To summarize, we have three length
scales :

- for negative powers of t,

- for the logarithm of 1 t 12 or the phase difference
between the reflection coefficients,

Note that the two lengths La and L* differ only by a
logarithmic factor. The absence of a single decorrela-
tion length must be viewed as another manifestation
of special features of the probability distribution in
such disordered systems. For instance, the distri-
bution of 11 T is very broad, but exhibits tails

corresponding to resonances (T -- 1 ).
Among these three length scales, however, Lo is

of particular importance, since it is related to the

phases of the reflection coefficients at E and
E’. This length appears directly in physical pictures
as those given by Mott [13] for the hopping conduc-
tivity in the strongly localized regime. Two localized
states at a distance z have a mutual overlap of order
e - Z / t. The energy separation between these levels
has the same order of magnitude as the overlap :
AE - e-’16. Consequently, the typical distance be-
tween two localized states with an energy difference

AE is given by z * In ( 1 ) . At shorter lengthAE 

scales, the possible resonance between the two
incident waves occurs on the same localized state,
and the correlation remains important. At larger
length scales, resonances may correspond to two
different localized states and the correlation de-
creases.

The non-analytic dependence of La and L+ on
Ak, as ak goes to zero, is to be noticed. From [8] and
[9], this behaviour comes from a singular perturba-
tion in a differential equation. Physically, one can
expect an analytic dependence on Ak in the limit
where the wave propagation is well described by
geometrical optics. Here Ak . L is the optical path
difference between the two waves. However, in the
localized regime, a strong interference can built up
in the system, and the waves are scattered many
times by the same impurity. Consequently, when L
is greater than the localization length, the expression
I Ak I L strongly underestimates the phase difference
between the two waves at different energies.

Experimentally, these results are relevant to noise
experiments in 1D conductors. Available exper-
imental data on magnetoresistance oscillations of
small rings seem to support the idea of a gradual
crossover between hle and h/2 e periods. Such a
crossover occurs [4] at a temperature given by
kB T - HDIL 2. However it would be interesting to
investigate the other possible crossover between 1D
and 2D behaviours as the number of active transmis-
sion channels (i.e. width of wires) is further de-
creased.
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