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An application of the optical microscopy to the determination of the
curvature elastic modulus of biological and model membranes

I. Bivas (1), P. Hanusse, P. Bothorel (2), J. Lalanne and O. Aguerre-Chariol

Centre de Recherche Paul Pascal (C.N.R.S.), Domaine Universitaire, 33405 Talence Cedex, France

(Reçu le 5 mai 1986, révisé le 12 décembre, accept6 le 22 décembre 1986)

Résumé. 2014 On présente une nouvelle méthode permettant de mesurer le module d’élasticité de courbure de la
membrane à partir des fluctuations thermiques de la forme d’une vésicule sphérique. Des liposomes ont été
observés sous microscope travaillant au régime de contraste de l’interférence différentielle de Nomarski. Nous
montrons que la valeur ainsi mesurée de kc est celle du flip-flop libre.

Abstract. 2014 A new method is proposed to measure the curvature elastic modulus kc of a membrane, by
observing the thermal induced fluctuations of the shape of a spherical vesicle. Observations of the liposomes
were carried out under a microscospe working in the regime of Nomarski differential interference contrast. We
show that the value of kc thus measured is the curvature elastic modulus of free flip-flop.
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1. Introduction.

Nowadays the liquid crystal approach is considered
as one of the most powerful to explain the properties
of biological and model lipid membranes. In its

earliest form this approach was proposed by
Bothorel and Lussan [1-3], Ambrose et al. [4] and
Fergason and Brown [5]. Later on it was developed
and completed by Singer and Nicolson [6], Sackmann
[7], Chapmann and Wallach [8] and by many others
(for review on this problem see [9]). The liquid
crystal approach considers the long-range order in
the positions of the hydrophilic and hydrophobic
groups of the amphiphilic molecules building up the
membranes. A biological membrane is described as
a two-dimensional liquid composed of lipids, in

which integral proteins are embedded. This concept
naturally supposes that the mechanical properties of
membranes can be treated in the same way as those

of liquid crystals. Energy is required to change their
surface area and their curvature. Helfrich [10,11]
considers the membrane as an infinitely thin layer
which can be characterized by its surface area S and
by the principal curvatures cl and C2 in each point.

(1) On leave from the Institute of Solid State Physics,
Bulgarian Academy of Sciences, Liquid Crystal Group, 72
Lenin Blvd, Sofia 1184, Bulgaria.

(2) To whom all correspondence should be addressed.

The free energy density of curvature gc per unit area
of the layer is proposed by him in the form :

where kc and are the curvature elastic modulus
and the saddle splay curvature elastic modulus, and
co is the spontaneous curvature, which is different
from zero when the two sides of the membrane are

not equivalent. These moduli correspond to the
moduli Kll and K24 in Frank’s theory of elasticity of
nematic liquid crystals down to a length which is
here the membrane thickness. Historically the first
evaluations of kc were obtained by using the moduli
of nematics. In fact, this modulus is more closely
related to those of smectics. There has been a

number of attempts to evaluate them on the basis of
molecular models (for a review of recent results see
[9]). The experiments concerning this problem have
been designed to measure these moduli directly. The
analogy with liquid crystals is evident. One of the
first experimental determinations of the elastic
moduli of nematic liquid crystals consisted in the
measurement of the light scattering properties due
to local fluctuations of the director of the liquid
crystal [12]. The amplitude of these fluctuations is
connected with the elastic moduli of the crystal. The
situation is similar with membranes : they undergo
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out-of-plane thermal fluctuations whose amplitude
depends on their curvature elastic modulus. This

phenomenon was discovered about 100 years ago
[13] in erythrocytes and is known as a flicker

phenomenon. Brochard and Lennon [14] proposed a
theoretical model for determining the curvature

elastic modulus of the erythrocyte membrane by
measuring the time and space correlation functions
of the flicker intensities at different points of the cell
surface. The value of k, they found is -- (1.3-3) x
10-13 erg for the human erythrocyte. The same
method was used by Fricke and Sackmann [15], their
aim being not particularly to measure k, but rather
to determine the form of the correlation function

(i.e. to verify the bases of the theory proposed in
[14]). The same objective (curvature elastic modulus
of red blood cell membrane) was aimed at by Evans
[16]. In his experiment the erythrocyte was aspirated
in a micropipette and the critical pressure of as-

piration, when buckling instability appears, was
measured. The theoretical treatment shows that in
this experiment only the curvature elasticity (and not
the shear elasticity) is responsible for the onset of
instability. The value of kc obtained by Evans is

considerably higher: 1.8 x 10- 12 erg. Servus et al.

[17] were the first to examine the curvature elastic
modulus of a bilayer of egg-yolk lecithin (all the data
cited later on in the introduction concern the unila-
mellar bilayer lipid membrane). They observed
under microscope the fluctuations of tube-like vesi-
cles consider as one-dimensional objects whose
curvature elastic modulus is expressed via the curva-
ture elastic modulus of the membrane and the radius
of the tube. Only tubes which are planar (lying
entirely in the plane of observation of the micro-
scope) were recorded. The measured value was

kc = (2.3 ± 0.3) x 10-12 erg. Using the same

method, Beblik et al. [18] measured kc for some
synthetic lecithins : DMPC (2.4 x 10-12 erg, T =
26.0 °C), DPPC (2.0 x 10-12 erg, T = 44 °C), DSPC
(1.8 x 10-12 erg, T = 56.5 °C) and egg-lecithin
(2.0 x 10-12 erg, T = 24.0 °C). Sakurai and Kawam-
ura [19], slightly modifying this technique (the
myelinic figures [18] of the lecithin, among which the
tube like vesicles were chosen, were obtained in the
lecithin/water system under magnetic field)
measured a value of k,, of 4 x 10-13 erg. Schneider
et al. [20] also studied tube like vesicles. They
investigated the correlation function of the displace-
ment of the middle point of the tube with respect to
the middle point of the segment, connecting the ends
of the tube. Their value of kc was (1-2) x 10-12 erg.
Recently Schneider et al. [21] measured the corre-
lation function in the fluctuations of the shape of
large quasispherical vesicles of egg-yolk lecithin.
The result of their study gave kc = (1.5 ± 0.5) x
10-12 erg. Using the theoretical treatment of [21],
Engelhart et al. [22] proceed from the mean square

amplitudes of the circular harmonics of the equato-
rial cross-section of the vesicle. Although the result
is not the same for all harmonics, then conclude that
the significant values for kc (for the lowest har-
monics) are grouped around (3-6) x 10-13 erg for
the liposomes of DMPC, and the mixtures DMPC +
cholesterol and DMPC/DPPC.

This short review of the experimental results

concerning the curvature elastic modulus kc shows
that up to now this quantity is known with little

precision even for objects as typical as lipid bilayers
and erythrocyte membrane. The situation is still
more undetermined with respect to the saddle splay
curvature elastic modulus kc (when even its sign is
not determined unequivocally) and the spontaneous
curvature co.
The aim of the present work is to propose an

additional method, based on optical microscopy, for
the measurement of the quantity kc, using the
thermal fluctuations of giant (of the order of 10 tim)
quasi-spherical vesicles. We have observed these
fluctuations under a microscope working in the

regime of Nomarski Differential Interference Con-
trast. This regime has a very high resolution, but it
introduces optical deformations and it shows only
part of the object under observation. Having in mind
both the possibilities and limitations of the apparatus
available, we have analysed the fluctuations of the
shape of the vesicle by application of a theoretical
model which is presented below.

2. Theory.

Our theoretical approach is based on the considera-
tions of Schneider et al. [21] and Engelhart
et al. [22]. The membrane is considered as a two-
dimensional liquid, characterized by its curvature

elastic moduli A:c, kc and co. The vesicle is charac-
terized by its volume V. The number of amphiphilic
molecules building up the membrane of the vesicle is
such that the chemical potential per molecule is
minimized (this corresponds to the situation when
the lateral tension of the membrane is zero). We
note that in the chemical potential, the energy of
curvature must also be included, as it is necessary for
the formation of the closed two-dimensional surface
of the membrane (the surface surrounding the

volume V) as well as for the determination of the
mean energy of thermal curvature fluctuations. Let

us consider a hypothetical state of the vesicle, with
temperature T = 0 K, and in which the curvature
elastic moduli and the surface area do not change
(later on, when stating that T = 0, we shall be

referring to this state). When T = 0, the equilibrium
form of the vesicle is not always spherical [23-25].
This is the case when the spontaneous curvature

co is different from zero (e.g. the ghost red blood cell
membrane) and/or the hydrostatic pressure inside
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and outside the membrane are different, the differ-
ence between them being larger than some

threshold. In what follows we shall only consider
symmetrical membranes (i.e. with co = 0) with equal
hydrostatic pressures, inside and outside the vesicle.
Under these conditions, when T = 0, the vesicle will
be spherical. At non zero temperature the membrane
fluctuates. We suppose that the temperature is low
enough so that the fluctuations are quite small. This
is why our method can only measure a high enough
curvature elastic modulus (the quantitative ex-

pression of this condition will be given later). We
could consider fluctuations as perturbations of the
spherical form of the volume V. For given values of
the temperature and kc, this volume is such that the
pressure difference across the membrane vanishes.
The dependence of V on T and kc will be discussed
later. The condition that V remains constant corre-

sponds to the very realistic assumption that the

liquid inside the vesicle is incompressible and that
there is no exchange of the liquid between the
interior and exterior. We also suppose that, after the
vesicle attains its equilibrium, there is no exchange
of amphiphilic molecules between the membrane
and the solvent.
We introduce a reference frame XYZ, whose

origin 0 coincides with the centre of mass of the
volume V. Let us consider the direction charac-
terized by the polar angles (0, qi). In what follows
we shall suppose that never more than one point of
the membrane M(O, qi) can be found in this direc-
tion. We denote the distance between 0 and M by
p ( 0, qi ), and define the quantity u ( 0, qi, t ), where t
is time, as :

where R is the radius of the sphere with volume V. It
will be shown that the mean square value of

u (0, qi, t ) depends on kc. We suppose that kc is

large enough so that the inequality

is practically always valid.
The curvature at each point of the deformed

vesicle can be expressed in terms of the quantity
u ( ø, t/J, t ). If

where cl and C2 are defined in expression (1), the
relation between C ( (J, .p, t ) and u(O, qi, t) is

(Schneider et al. [22]) :

where V2 is the polar part of the Laplacian. In order
to keep the notation used in [21], we assume that the
curvature is negative, when the centre of the vesicle

and the centre of the curvature are on the same side
of the membrane. The quantity u(O, qi) can be
decomposed into spherical harmonics Y::Z ( ø, 41 )
[21] :

where P" (0 ) are the normalized Legendre polyno-
mials and so is the mean surface area per molecule in
the membrane.
The sum over n begins at n = 2, and not

n = 0, because if the mode n = 0 were different
from zero, the volume V would not be conserved,
and if the mode n = 1 were different from zero, the
centre 0 of the frame XYZ would not coincide with
the centre of mass of the volume V.

Assuming as in [21] that all modes are indepen-
dent, we can express the mean values (I u;:’ (t ) I ) in
terms of the temperature, the curvature elastic
modulus and the radius of the vesicle. Angle brackets
stand for time average.
The final result is [21] :

where k is the Boltzmann constant.
Let us consider the equatorial cross-section of the

vesicle with plane XY. It represents a deformed
circle, which would have radius R if not perturbed.
The amplitudes of fluctuations of this contour in the
plane XY can be characterized by u (7r /2, t/J, t ),
where u (0, 0, t ) is given in (5). We denote :

Following Engelhart et al. [22] we present v (qi, t )
in the form :

After some algebra :
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But within the framework of the approximations
that we use, it follows that there is no correlation

between the amplitudes of the spherical harmonics :

Let us define Aq as :

The values of Aq can be calculated numerically.
The results for I q I -- 10, with nmax = 16, are given in
table I. Aq converges very rapidly with nmax, and the
series (13) converges with q very rapidly. This is why
in the numerical calculation, the precision obtained
with these values of qmax and nmax is sufficient, and
much higher than the experimental accuracy of our
measurements.

As was mentioned in the introduction, our exper-
imental set up shows only one part of the contour
(two arcs, each one representing about 40 % of the
contour). For this reason we cannot determine the
values of the quantities lvq 12 for each contour. To
overcome this difficulty, we use the fact that all

points of the contour are equivalent. Let f (qi, t ) be
a function of the polar angle .p connected with the
fluctuations of the contour points. We denote :

Because of the equivalence of contour points we
have

where a and /3 are arbitrary fixed angles (the result
does not depend on a and /3).

We choose to measure the function (’Y) exper-
imentally

In the experiment only those contours were used,
whose two arcs cover the intervals 1- 7T /4, 7r/41 [
and 13 7T /4, 5 7r/41 [ entirely.

Table I. - Values of the coefficient .A.q from (17) for
I q I  10 ; nmax = 16.

Because of property (
be represented as :

Expression (18) shows that (y) can be exper-
imentally measured. To this aim, having a large
enough number of contours with arc amplitudes
larger than intervals mentioned above, it is sufficient
to calculate the integral between brackets in the

right hand side of (18), and to average it over all
contours. But from (17) and (13) §(y) can be
calculated as :
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where 5 is the Dirac symbol.
The numerical factor between braces in (19), with

nmax = 16 and qmax = 10, is represented in figure 1.
The same function with q.x = 2 is given in the same
figure, with dotted lines, the contribution of the
modes q = 0 and q = 2 is much greater than that of
the sum of all the other q-modes.

Fig. 1. - Numerical factor in the braces of the right hand
side of formula (19) - multiplied by 2 w -, calculated
with q max = 10 (continuous line) and q.,, = 2 (dotted
line) ; in both cases nmax =16.

The exact function (y ) can be expressed as a
power series in the quantity ktlkc. The first term of
this series is given by (19). This justifies equation (4),
which is in fact an approximation. Higher order
terms (km T /kc)m, m . 2 could be added to ex-

pression (19).
According to the approximations used in [21], the

amplitudes un (0, t/J, t) are independent (12). Strictly
speaking, this is entirely correct when the stretching
elastic modulus ks of the membrane is low enough.
This is not the real situation. ks has very high values
and in the course of the fluctuation process the total
surface area S of the vesicle membrane is kept
practically constant. As a consequence, some corre-
lation between the amplitudes of different modes

exists. We shall now that this correlation is always
rather low.
Let us consider an imaginary flat membrane,

having a surface area S and a very low stretching
elastic modulus k,, all other properties being those
of a real membrane. Let V, be the volume of a
vesicle formed with this membrane when the hydro-
static pressures inside and outside of the vesicle are

equal. Let So be the surface area of a sphere with
volume VI. Let S, (t) be the time dependent surface
area of the membrane corresponding to spherical
harmonics with amplitudes u’(t). The difference
AS = (Sl So can be calculated. Similar calcu-
lations have been carried out in [9] p. 455 for a

slightly different geometry (flat tension free mem-
brane with periodic boundary conditions, when the
membrane sustains out-of-plane fluctuations). The
result for AS in [9] :

where so is the mean area per molecule. For the

imaginary vesicle AS must be the same, possibly
corrected by a numerical factor of the order of unity.
For the case when k, is high enough (a real vesicle),
we assume that V = V, ; consequently the surface of
the sphere with volume V will be S - AS with
AS from (20). For all fluctuation modes an excess
surface AS is available (i.e. the vesicle is flaccid

[22]). A given fluctuation mode should be practically
uncorrelated with the others if the mean area of the
« free » fluctuation of this mode (i.e. when ks is low
enough) is much less than AS. For the geometry used
in [9] this mean area has been obtained as

(Eq. (4.37a) in [9] :

where p is the wavelength of the p-mode. åSp) is
maximum for pmin = 2 7T / SI/2, that is

Ndte again that this result is obtained for the

geometry defined in [9]. We assume that in the case
of the spherical vesicle the ratio of the mean area for
the lowest harmonics u6 (whose surface area fluctu-
ation is the greatest) to AS is practically the same.
The value of this « worst case » ratio is 0.14, so that
the approximation that the spherical harmonics are
uncorrelated seems to be quite reasonable.



860

We shall now give a justification for the particular
choice of the function g (’Y) that we measure.
Up to now, we always assumed that the centre of

mass of the volume surrounded by the membrane is
known, and that all measurements are made from
this centre. But if only the cross-section with one
plane is known, it is not possible to determine it. At
best it is possible to determine the centre 01
(properly defined) of the cross-section contour of
the vesicle in that plane. A very exagerated defor-
mation illustrating the difference between these two
centres is given in figure 2. If the centre 0 is fixed,

Fig. 2. - A very exagerated deformed state of the vesicle.
Point 0 is the centre of mass of the vesicle, and point
01 is the centre of the contour of the cross-section of the
vesicle with plane XY. 00i = s . 

’

the average position of 01 in time will coincide with
0. But the vesicle as a whole undergoes a Brownian
motion. If the liposome is considered as a solid, the
mean value of displacement « b » due to this motion
is :

where q is the viscosity of the medium ( = 0.01 p for
water) and R the radius of the vesicle (= 5 J.Lm).
This means that the centre 0 changes considerably
its position (about 1 J.Lm after the first second). For
the time of observation (:;. 100 s ) the displacement
of the centre is larger than the amplitude of fluc-
tuations. Let 8 be the vector connecting the centre of
mass of the vesicle with some point 0’ with respect
to which the radii p (qi ) (see formula (21)) are

measured. If 0’=- O 1 (Fig. 2),  18(t)12) is of the

order of the amplitude ( I Vl (t) 12) from (16), i.e. of
the order of kT / kc. Consequently if the amplitudes
(I Vq(t) 12), q = 0,1, 2 ... q Max are measured using
01 as a centre, corrections must be introduced, these
corrections being greater than the fluctuations for
q &#x3E;- 2.
We have calculated the relationship between

where 1 Vq (t) I are the true amplitudes, when

 18 (t) 12) = 0, and vq (t ) I are the measured am-

plitudes when this equality does not hold.
Equation (13) allows us to calculate the value of

kc by measuring the quantities (I Vq (t) 12), and

theoretically the result cannot depend on q. But
because of the uncertainty in the centre position
(which is expressed by  18(t) 12) =1= 0), for obtaining
the real 1 Vq I, , the system of infinite number of

equations (25) must be solved. If relation (13) is

applied directly using vq instead of vq, from (25) it

follows that the value of kc obtained is not exact and
should depend on q. This is the case with the data of
Engelhart et al. [23]. When 0’ is fixed, because of
the Brownian motion, 18 (t) I increases in time, the

quantity  18 (t) 12) cannot be properly defined, and
thus the measured values of kc should depend on
time t. Such an approach should be allowed only if
the observations are made on a time scale during
which the displacement due to the Brownian motion
is much smaller than the fluctuation amplitude. This
is not possible if the dimensions of the vesicle are of
the order of 10 Rm.
To avoid most of these difficulties we work with

the diameters of the contour instead of the radii (the
quantities, taking part in (17) are fluctuations of the
diameters). As can be seen from figure 3, the length

Fig. 3. - Cross-section of the vesicle in the plane XY. 0
- the centre of the vesicle, 0’ - the point with respect to
which the radii are measured, 00’ = 8,
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A’B’ (a diameter making angle qi with the axis X)
depends on the second and higher powers of

16 1 IR, while the radius 0’B’, on the first power of
this quantity. If we choose 0’ as the centre of the
contour (i.e. 0’ = O1 where 01 is defined before

equation (24)),  15 (t ) 12) will be of the order of

R2 kT /kc (the fact that only one part of the contour
is known does not change this order in ( I 8(t) 12) ).
The corrections to ) ( y ) due to the uncertainty in the
centre position are of the order of 1 (kT / kc )21 ’ and
they are negligible when kc is high enough. Up to
now we have implicitly assumed that 8(t) is not
correlated with the fluctuations. Having the two
arcs, which represent parts of the contour, we
determine the circumference which best fits both
arcs. Let us now define 01 as the centre of the
contour lying in the plane XY and having a radius
Rl. Let M be a point of the contour, and let the angle
between 01M and the axis x be t/J. We denote
01M = PI (t/J), and choose 01 and Rl so that the
quantity :

is minimum with respect to the position of 01 1 and
the value of R1. This choice ensures that the vector
6 = 001 I is not correlated with even modes vq, but
with odd modes (because the contour is not entirely
known). In the calculation of ) (y ) only even q-
modes take part (see expression (13)). So, the form
of 6 ( y ) and the choice of the centre O1 with respect
to which the fluctuations are measured, ensures that
all the corrections due to the incompleteness of the
contour and the uncertainty in the centre position of
the vesicle are negligible (of higher order with

respect to A;r/A:J.
Let us call Do the mean value of the contour

diameter observed under the microscope. Due to the
optical method and the treatments applied for the
determination of the contours (see below), the mean
diameter of the vesicle Do depends on the angle w
with respect to the axis X : Do = Do (qi). This means
that when the vesicle does not fluctuate, the arcs
representing the contour will be parts of an ellipse or
a more complicated figure (this does not mean that
when T = 0 the cross-section of the vesicle in plane
XY is elliptical, but that the contour representing the
cross-section is elliptical). Let D,,,ax = max I Do I
and Dmin = min I Do (qi ) I . We denote :

In our experiment we have v = 0.05. With a

precision of the order of v, the fluctuation v ( , t ) +
v (gi + -rr, t ) can be obtained as :

There is one more factor which could influence
the final results, namely, the noise. As can be seen in
the next section, the origin of the noise is the

discretization of the contour (its representation as an
ensemble of a finite number of points) and the
electrical noise of the apparatus (camera and video-
recorder). Let the contour be represented by n
approximately equidistant points. We denote

lkmin = 2 ’IT In. Our assumption is that if the ampli-
tude of the noise, denoted by Vnoise (t/I, t ), which
depends on the polar angle qi and on time t, obeys
the following relation :

In other words, the contribution of the noise to
the function )(y ) will be a &#x26;like function at

y = 0. More precisely, this contribution will have a
Gaussian shape with half-width of the order of

41min- 
The measured amplitudes (Ivq(t)12) contain a

noise contribution. Making the reasonable assump-
tion of a white noise (this condition is stronger than
condition (29)), a constant value will have to be
subtracted from (I Vq (t) 12) for each value of q.

3. Experiment.

In the experiments we have used egg-yolk lecithin
prepared in the laboratory. The method applied for
the extraction of the phosphatidylcholine was that of
Singleton et al. [26]. Egg-yolk was precipited in
acetone. The residue was passed through ethanol, in
which the lecithine was dissolved. A purification of
the product was achieved via dissolution in petrolic
ether and precipitation in acetone. A second

chromatographic purification over a column of
aluminium separated the phosphatidylcholine from
the fatty acids and other phospholipids. The final
product (chromatographically pure) was lyophilized
and kept under vacuum.
To obtain giant vesicles we used a procedure

described in [21, 22]. 5 mg of the lecithin were
dissolved in 0.5 ml of the solvent 2:1 v:v chloroform-
methanol. The solution was placed in a 10 ml flask,
and the solvent was evaporated under vacuum for
about 10 min. During evaporation the flask was
inclined at 45° and gently turned. By this method the
lecithin deposited on the periphery of the bottom of
the flask. The recipient was filled with deionized
water which was deairated by nitrogen bubbling.
Two samples were prepared and maintained at room
temperature, for the lecithin swell. Observations
were carried out after three days on the first sample
and after 6 days on the second. Probes were taken at
different distances from the bottom, without disturb-

56
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ing the solution. Vesicles were selectively searched
for which were isolated and which had a membrane
free of visible defects under the microscope (we will
call them «perfect» vesicles). After 3 days
« perfect » vesicles were found with a diameter
smaller than 10 f.Lm. After 6 days vesicles up to

20 f.Lm were found, but never perfect (they had
always one or more little vesicles of the order of
1 )JLm stuck either in or out of the membrane). These
results were confirmed in experiments performed
later [27]. After observation, the water was evapo-
rated from the flask in order to concentrate the
solution. On the so-concentrated solution, thin-

layered chromatography was carried out to verify
the decomposition of the phosphatidylcholine
molecules. Plastic sheets pre-coated with silica-

gel 60 (Merck) were used. The eluant was a

chlorophorme : methanol : water solution (65 : 25 :

4 vlvlv ). Spots containing = 100 Vtg of the lecithin
were deposited on the sheets. The chromatograms
were revealed with iodine and the visualisation

techniques of Dittmer. With this amount of lecithin
in the initial spot the method permits the detection
of quantities of lysolecithin (product of the decom-
position of the lecithin) of more than 5 %.
The sample from the third day did not reveal the

spot corresponding to the lysolecithin. Above the
spot of lecithin, a spot of admixture molecule was
observed, which was interpreted as traces of fatty
acids. The sample from the 6th day revealed a spot
of a lysolecithin. The results of the control can be
summarized as follows : after the third day the

decomposition of lecithin is less then 5 %, and after
the 6th day above this limit.
The optical observations were carried out under

the inverted microscope IM 35 (Carl Zeiss, Ober-
kochen, BRD) working in the regime of the Nomars-
ki Differential Interference Contrast. The principle
of the method is described in detail in [28]. Its main
properties are briefly described here. The beam of
incident light is split into two spatially separated
beams with a distance slightly superior to the resol-
ution of the microscope (= 0.15 iLm). The contrast
of the resulting image increases proportionally to the
optical path difference introduced by the specimen
in the two separated beams. Let the direction of the
incident light beam be that of the axis Z of the XYZ
frame in which we observe the vesicle. The plane XY
is taken as the object plane of the microscope. Let
the plane passing through the two split beams be
parallel to the ZY plane. Due to proper polarisations
of the beams and their interference, the microscope
offers the following possibilities when the objective
x 100 is used : the practical resolution of the micro-
scope is smaller than the theoretical limit of
0.2 Rm ; the depth of field is = 2 VLm. When a

gradient of refractive index in the Y direction exists,
it is visualized. If the gradient is parallel to the axis

X, the corresponding region is not visualized. In the
intermediate cases, the smaller the angle between
the gradient and the X axis, the better the contrast.
The method provides the possibility of detecting

the cross-section of the vesicle membrane with the

object plane, despite its very little thickness. Because
of the particularity of the method, the real circular
contour will be observed as two arcs (the parts of the
contour parallel to the axis X are not visualized).
The two arcs represent approximately 80 % of the
contour.

The cells, used in the optical observation, are

illustrated in figure 4.

Fig. 4. - Cell used for the optical observation. Material of
the slide-glass. Thickness of the slides : upper 1 mm, lower
100 J.Lm. The spacers, disposed as shown in the figure, had
a thickness 40 )JLm. They were coated with araldite. The
same adhesive filled up the empty spaces in the periphery
of the cell. The thickness of the cell, after it was stacked
up, was = 60 Rm. The upper slide had two holes, through
which the cell was filled with the vesicle suspension. After
the filling the holes were sealed in order for the cell to be
hermetic, to avoid flows within the cell.

The vesicles revealed a tendency to sedimentate
with time. Only « perfect » vesicles were studied,
which were far enough from the surfaces of the cell,
and which were not in contact with other vesicles.
These requirements diminished drastically the en-
semble of vesicles used. We made a comparison
between images of the same sample, observed under
the microscope in the regime of phase contrast and
that of Nomarski Differential Interference Contrast.
The number of details (little vesicles, threads, tube
like vesicles, etc.) revealed by the second method is
much larger. We found objects consisting of two or
more concentric vesicles. Onion like structures were

observed, where the different layers were well

distinguishable. The question arises whether the
« perfect » vesicles that we found were unilamellar.
We believe that the answer is yes. Indeed, let us
assume that a multilamellar vesicle is formed. The
time of swelling being three days (or 6 days) water
penetrates between the layers. If this happens for
multilamellar structures (with more than 100 layers)
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as we have observed, it must be also the case for

liposomes consisting of 2, 3 or more layers, and
because the layers in the onionlike structures are
well distinguishable when using our optical setup, it
is reasonable to accept that the layers would be
distinguishable as well in multilamellar liposomes
subjected to the same treatment.
The main advantage of the optical method that we

used is its greater resolution. This method permits
the identification of « perfect » vesicles which are
probably unilamellar.
Once a « perfect » vesicle has been detected, it is

recorded by a videotaperecorder during 2 minutes,
The camera can be a standard video camera or a

high sensitivity camera. Using a standard camera,
the signal level may be rather low, inducing high
camera noise. After recording, the sequence is

digitized and analysed on a image analysis sys-
tem (1). First a spatial filtering is performed to

eliminate noise from the camera and more generally
to smooth out high frequency random noise. Next, a
horizontal scanning of the picture is performed to
detect the vesicle contour, whose intensity profile is
given in figure 5.

Fig. 5. - Contour detection : extrema (9) are first

located, then the contour point (M) is defined at half

height position.

This treatment gives a « raw » contour. It is then
analyzed to determine the two largest arcs. A
distance criterion is defined, typically 5 pixels for a
vesicle with a diameter of ::-- 100 pixels, to determine
whether two successive contour points belong to the
same arc. This procedure is designed to eliminate
short noisy pieces of contour near angles 7r/2 and
- 7T/2 where the optical set-up is unable to visualize
the contour. This gives two long arcs near 0 and 1T.
We then determine the centre of the contour

according to the procedure described above (see the
discussion before and after Eq. (26)). From this
centre is defined the effective contour. We keep only
those contours which cover both intervals

[- 7T/4, 77/4] (right side) and [3 77-/4, 5 ir/4] (left
side). Only the points of the contour belonging to

(1) We use U-Matic standard tape recorder. Digitization
and image analysis is performed on a Pericolor 2000

system from Numelec Company ; digital pictures have
512 x 512 8 bits pixels.

these intervals were used to calculate the diameter
correlation function § (y ) defined in equation (17).

In figure 6, we show images of the vesicle before
and after smoothing, as well as the profile of the
intensity of the signal along one horizontal line.
We found four vesicles which seemed to be

perfect. About 300 contours, taken on a time interval
of the order of 120 s, were analysed for each vesicle.
The time between two successive records was

= 0.5 s (not exactly constant). After the treatment,
smoothing of the image and obtaining the two arcs of
the contour, only 15 % of the contours satisfied
the condition that their two arcs cover entirely the
intervals of polar angles : [- wl4, -gl4] and

p ff /4, 5 m /4 J. These « correct » contours were

virtually random samples among the initial
= 300 contours. An analysis of fluctuations was
made only for those contours with large enough arcs
(i.e. about 40-60 contours for each vesicle).

If at all times the centre of the vesicles were
located on plane XY, the quantity Do(.p) defined in
(28) could be represented as  D ( .p , t ) &#x3E;, where
D ( .p, t ) is the diameter of the contour making angle
.p with axis X at time t. But because of the Brownian
motion the vesicle changes its position, not only in
the plane XY, but in the Z direction of the reference
frame as well. If the centre 0 of the liposome is out
of the mid-plane of the slab where the objects are
visible, the cross-section of the vesicle will not

correspond to the equatorial one. As a consequence
the mean diameter of the vesicle will diminish. In the

process of recording we continuously focused the
object, trying to obtain the maximal area of the
cross-section observed on the video monitor. Inevit-

ably the centre 0 fluctuates around the mid-plane
(even if we compensate part of this fluctuation). Let
us denote by e (t) the distance between the centre 0
and the mid-plane of the slab at time t. We assume
that E  R. The mean diameter  D ( .p, T can then
be expressed as :

To obtain this quantity we used the fact that, when
(le(t)12) = 0, (D(tfJ,t) must be maximal. A1 is a
positive constant of the order of unity, (I e(t) 12)
depends on the speed of correction for refocusing
the vesicle. The values v ( tfJ , t) + v (tfJ + ’T1’, t) also
depend on e (t ), but because of the assumption that
c (t )IR  1, we disregard this correction ( E (t )
should give as a result that (y ) from (16) must be
multiplied by a factor of the kind

where a == 1).
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Fig. 6. - Image of a vesicle under the microscope,
working in the differential-interferential regime. a) The
vesicle before smoothing. Below the photograph is given
the intensity profile of the signal along line AA. b) Same
image, and respective intensity profile, after smoothing.
c) Contour corresponding to the smoothed image, ob-
tained according to the procedure described in the text.

Let us denote :

From (17), (28) and (30) it follows that if

)(y ) is calculated using the fluctuations of the

quantity defined in (31), the experimental curve
could be expressed as a sum of the theoretical one,
plus a constant term of the order of (I e (t) 12) IR 2.
This constant was left as an adjustable parameter.
The values of (D (.p, t) were first determined

(all the operations were repeated for each of the four
vesicles), then the fluctuations were calculated ac-
cording to (31), and the function ) (y ) was obtained
for 0  y  7r /2. The values of kc and the additional
constant were determined by a standard least-square
procedure.

D (41, t ) is calculated with some error due to the
finite pixel-width. In our experiment the typical
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value of D, measured in pixels was 100 with an
accuracy of the order of 1 pixel. For the quantity
(D (t/J, t )) the error is of the order of 1/ J N (in
pixels) where N is the number of contours taken into
account. With N -- 50, the error in (D(t/J,t»
appears to be of the order of 0.15 pixels. Conse-
quently for the difference D (t/J, t) - (D (t/J, t )) the
error Bp in a single measurement is of the order of
1.15 pixels. For a given angular displacement y, the
minimal number of contour points j (y ) for which
g ( 1’) is calculated, and for which the errors are not
correlated because of the finite pixel width, is :

(the arcs contain approximately 100 pixels). The
measured value of ) (y ) is of the order of 10-3 (see
Fig. 7). Then, the error A(y)in (y) should then
be :

A numerical estimate using the above mentioned
values of ), N and D is :

Because j ( y ) varies between 1 and 100

A (y )/ (7) varies between 20 % for y = 7T /2 and
2 % for y = 0.

Fig. 7. - Experimental data for (y ) (circles), the fitted
theoretical curve with parameters kc and

A,( I __ (t ) 1 2&#x3E; IR 2) (continuous line) and the correspond-
ing theoretical curve when ( I E (t) 1 2&#x3E; should be equal to
zero (dotted line). Diameter of the vesicle : 7.1 )JLm. The
deviations around y = 0 are the contributions of the noise

(for details see the text).

One could wish to evaluate the minimal number N

of contours necessary for calculating (D ( «/J, t» and
6 (y ). We think it is the time interval on which the
images are taken which is more crucial. This time
interval must be much greater than the characteristic
time of relaxation of a given fluctuation (which is of
the order of 5 s [21]). The vesicle sustains rotational
diffusion motion as well. But this will only decrease
the necessary minimal time interval mentioned

above. When it is long enough, the error in
(D(/J, t» is of the order of (0)- 1/2 D/2 BI’N
(supposing that there is no error in the measurement
of D (41, t )). The error A, (y ) due to the finite

number of contours is :

This formula allows us to determine the number N
of contours necessary to obtain a given precision. In
our experiment with N = 50 and (0 )/ 6 (y ) -- 1/2
for y :&#x3E; 7T /25, the relative error is :

This error is between 30 % for y = ?r/2 and 3 %
for y = 0. These estimates show that the fit between
the theoretical curve and the experimental data is

expected to be worse for the larger values of y,
which is indeed the case as shown in figure 7.
A typical curve is given in figure 7. Around

y = 0 a displacement of the experimental data from
the fitted curve can be noted. According to our
interpretation, this is the result of the preliminary
smoothing of the image, which changes the spectrum
of the noise. As a consequence the 8-function (more
precisely the Gaussian function with halfwidth

 4’min)g representing the contribution of the noise,
changes in a Gaussian curve with a larger halfwidth.
Performing double smoothing gives a still greater
increase of the halfwidth of this part of the curve,
which confirms our interpretation.
The values of kc calculated for the four vesicles

studied are presented in table II. The values for the
lst, 2nd and 4th vesicle are very similar. The value
for the third vesicle deviates by about 30 %. For this

Table II. - Values of kc, obtained after best fit of the
experimental data with the theoretical curve.
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same vesicle the constant, proportional to

 I e (t ) 12&#x3E;, is much smaller (but still positive) in

comparison with the other three. An explanation
could be that this vesicle is not free. It could be
attached to the surface of the cell by filaments,
which are too thin to be visualized under the

microscope.
The fact that for the four liposomes the values of

k, are almost identical is added evidence that, when
the vesicle seems to be « perfect » under the micro-
scope (after some days of swelling), it is probably
unilamellar.

The average value of k,, for the four vesicles is :

4. Discussion.

We would like to begin by discussing the nature of
the modulus k,,, as measured by this experimental
method, and by other similar experiments. It is well
known that two curvature elastic moduli exist [11] at
free flip-flop, kfr, and at blocked flip-flop, kbl. When
the flip-flop is free, the chemical potential of the
molecules from the two sides of the bilayer are equal
because the exchange of molecules between the

monolayers is permitted. In the other case the

equality of the chemical potential is no longer valid.
According to theoretical estimate [11], kcf’ is one

order of magnitude less than kbl. The characteristic
time of the flip-flop is very long (of the order of
days) for the pure lecithin. But there is one more
mechanism for the redistribution of molecules within
the bilayer, namely, the lateral displacement
(Fig. 8). Let us consider the vesicle at T = 0. After a
sufficient time it will attain its equilibrium state in
which the number n° of the molecules per unit area
of the membrane in the « outer » monolayer is

Fig. 8. - Schematic distribution of the molecules in the
two monolayers of the vesicle. a) Without fluctuation.
b) With fluctuation. Two mechanisms can contribute to
the relaxation towards equilibrium, after the creation of
the deformation : the molecules can pass from the one

monolayer to the other by free flip-flop (solid arrow), or
they can be redistributed by lateral displacement without
going out of their monolayer (dashed arrow). The latter is
a much faster process.

slightly greater than this number n’ in the « inner »
monolayer. A coefficient of flip-flop l f can be
defined [10] :

Let a slightly deformed state, characterized by the
function u (0, qi ), occur (see Eq. (2)). If the flip-flop
is free, the total number of molecules in the inner
(N’) and outer (N°) monolayers will be :

with c (0, qi ) from (4). Within the scope of these
approximations N ° and N’ do not depend on the
from of u ( (J, I/J). When a fluctuation u ( (J, I/J, t )
appears, changes in the equilibrium local densities of
both monolayers appear as well. Consequently if the
densities are kept, as in the case without fluctuation,
the so obtained state can be considered as a state

with density fluctuations in both monolayers. An
energy of stretching of both monolayers is accumu-
lated and the vesicle will tend to relax to the state,
when this energy is zero. This can be done via the

exchange of molecules between the monolayers
(flip-flop, very slow process). But our considerations
show that the same equilibrium state can be attained
via a translational displacement of the molecules in
the same monolayer (a process which is much more
rapid). The estimation of the relaxation time Twill
be carried out. For simplicity, again the situation
with a flat membrane with periodic boundary condi-
tions will be considered. T can be expressed via the
stretching elasticity modulus ks, the effective surface
viscosity a, and the length « p » of the wave vector :
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T will be longer for the mode with minimal p ;

The main contribution in a is due to the friction
between the two monolayers (relaxing, the corre-
sponding points of the two monolayers have opposite
velocities). We assume that this friction can be taken
into account by means of one effective viscosity
a’:

where a o is the viscosity of the hydrocarbon chains
(similar to the viscosity of the hydrocarbons) and f2
is the thickness of the layer where the hydrophobic
chains of both monolayers interpenetrate. With

This value of Tmin is much less than the time of

observation of the vesicle in our experiment, so that
really the curvature elasticity modulus of free flip-
flop is measured.
The exact effective curvature elastic modulus

kc’ff can be expressed as :

Actually, with A: 10-12 erg, the approximation
kc’ff .-- kfr is good enough, if kfr::-- 0.1 k bl

Finally we would like to discuss the influence of
small vesicles attached to the membranes of larger
vesicles (we normally discard these vesicles as non
perfect). The modulus measured in that case, is one
order of magnitude smaller. The reason for this is

that the little defect changes locally the curvature of
the membrane of the giant vesicle. Its mean form

(when T y 0) should no longer be spherical but egg-
like (with the little vesicle at one of the poles).
Because of the rotation of this « egg », great fluctua-
tions in the form of the cross-section appear, which

are interpreted as thermal fluctuations, correspond-
ing to a very low value of A;c.
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