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Résumé. 2014 Nous présentons les résultats de calculs analytiques et numériques pour une dynamique parallèle à
température nulle de modèles de verres de spin et de réseaux de neurones. Nous utilisons une approche
analytique pour calculer l’aimantation et les recouvrements après quelques pas de temps. Dans la limite des
temps longs, cette approche analytique devient trop compliquée et nous utilisons des méthodes numériques.
Pour le modèle de Sherrington-Kirkpatrick, nous mesurons l’aimantation rémanente et les recouvrements à
des temps différents et nous observons des décroissances en loi de puissance. Quand on itère deux

configurations différentes, leur distance d(~) au bout d’un temps infini dépend de leur distance initiale
d(0). Nos résultats numériques suggèrent que d(~) a une limite finie quand d(0) ~ 0. Ce résultat signifie qu’il
y a un effet collectif entre un nombre infini de spins. Pour le modèle de Little-Hopfield, nous calculons
l’évolution temporelle du recouvrement avec une pattern mémorisée. Nous observons un régime pour lequel le
système retient mieux après quelques pas de temps que dans la limite des temps longs.

Abstract. 2014 We present the results of analytical and numerical calculations for the zero temperature parallel
dynamics of spin glass and neural network models. We use an analytical approach to calculate the

magnetization and the overlaps after a few time steps. For the long time behaviour, the analytical approach
becomes too complicated and we use numerical simulations. For the Sherrington-Kirkpatrick model, we
measure the remanent magnetization and the overlaps at different times and we observe power law decays
towards the infinite time limit. When one iterates two configurations in parallel, their distance d(~) in the
limit of infinite time depends on their initial distance d(0). Our numerical results suggest that d(~) has a finite
limit when d(0) ~ 0. This result can be regarded as a collective effect between an infinite number of spins. For
the Little-Hopfield model, we compute the time evolution of the overlap with a stored pattern. We find
regimes for which the system learns better after a few time steps than in the infinite time limit.
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1. Introduction.

Zero temperature dynamics have become of more
and more interest in the study of spin glasses and of
neural networks [1-5, 9, 10, 19]. They exhibit

qualitatively the same features (many metastable
states, remanence effects) as spin glasses at low

temperature. However they are much simpler to
study from a theoretical point of view because the
effect of thermal noise is eliminated. They may also
have practical advantages if one wants to build

pattern recognition devices.
The reason that zero temperature dynamics are

non-trivial and interesting is the existence of many
metastable states [6]. These metastable states are

responsible for remanence effects [7], very slow
relaxations and sensitivity to initial conditions.

They are also at the origin of all optimization
problems [8]. At the moment one knows, at least in
infinite ranged models, how to compute the number
of metastable states [6, 11]. However much less is

known about the sizes and the shapes of their basins
of attraction which play a crucial role in zero

temperature dynamics [3, 11, 12]. Even the charac-
terization of these sizes and shapes is not easy.

In the present work, we will develop an approach
to zero temperature dynamics. This paper will treat
only parallel dynamics because it simplifies our

calculations but we think that some of our results
could be generalized to serial dynamics. We will
mainly consider a system of N Ising spins.
(a i = ± I ) with interactions, Ji, , between all pairs of
distinct spins. The interactions are defined such that

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphys:01987004805074100

http://www.edpsciences.org
http://dx.doi.org/10.1051/jphys:01987004805074100


742

Jl = Jji’ and Jii = 0, but more general cases can be
dealt with using the same analytic approach.

Parallel dynamics means that the configurations at
time step t is given by the rule

where all the spins are updated at the same time. We
consider, the 7 are random variables which remain
fixed in time. Therefore for a given sample, and a
given initial configuration {u?} at time t = 0, the

configuration at any later time t is uniquely deter-
mined by iterating equation (1.1).
We will consider three models. Firstly, the Sher-

rington-Kirkpatrick [13] spin glass model for which
the Ji are independent random variables with a
distribution

Secondly, the Little-Hopfield model [14, 15] which is
a pattern recognition model. The Jij are given in this
model by

where Na is the number of patterns which are
stored and lJ.L) = :t 1 is the value of spin ai in the
pattern tk.
The third model we consider is a generalization of

the Little-Hopfield model to the case of p-spin
interactions [16]. The updating rule, equation (1.1),
is generalized to

where

and the number of patterns is 2 NP -’ a lp! .
In section 2 we present an analytic approach which

allows one to compute the time evolution of mag-
netization, overlaps, local fields, etc. averaged over
disorder, after an arbitrary number of time steps.
For the SK model we compute certain quantities
exactly up to the 5th time step. Although the method
can in principle be used to compute all properties

after an arbitrary number of time steps, in practice
the number of order parameters increases very
quickly with time and makes each time step more
difficult.

In section 3, we apply the same method to the two
neural network models. We give the analytic ex-
pression of the overlap with a stored pattern after
one and two time steps.

In section 4 we present various numerical calcula-
tions for the SK and the Little-Hopfield models with
parallel zero temperature dynamics.

For the SK model at short times the numerical
results agree with the results obtained by the analytic
method of section 2. At longer times, these results
indicate a power law decrease of magnetization and
of the overlap between successive times. The study
of the overlap between two configurations show that
the basins of attraction of the different valleys have a
high degree of interpenetration.
For the Little-Hopfield model, we obtain the

projection on a stored pattern after one, two and an
infinite number of times steps as a function of the
projection at time t = 0. Again the results at short
times agree with the results of section 3 whereas the
results at long time show a clear change between the
good recall and the bad recall phases.

2. The SK model.

The map, equation (1.1), is deterministic, so that
given an initial spin configuration {ulO)} at t = 0,
the spin configuration, {uf}, at any later time, t, is
uniquely determined. Consider

where

This quantity is unity if f o- is the descendent of

{ u ?} after T iterations of the map and zero other-

wise. The disorder average of nT( {cr,9), {ul}) is
the probability that for a randomly chosen sample,
{o-} is the descendent of ( at) after T time steps.
This allows, for example, the average magnetization
after T time steps from an initial configuration
{ u?} to be written

Where ( ) /y B denotes an average over the random couplings.
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As we will show in this section the natural

parameters of the problem are related to the disorder
averaged correlation functions between the spins,
cr!, and the local fields Hi’ given by

so that

and

Note that y(O, 0) = 1, since for a given initial

configuration, the configuration at each later time is
uniquely determined. From equation (2.3), y (g, h )
is invariant under the gauge transformation

Jij --+ Ji si 8j’ crf --+ Ei uf (and therefore Hj - Ei Hf)
for all time t &#x3E; 0. This transformation changes the
initial configuration from o-° to E at, so that

y (h, g ) is independent of the initial configuration.
For convenience we shall take a normalized trace

(Tr 1=1) over the initial configuration. Of particu-
lar interest is the average magnetization after t time
steps, from an initial configuration with all spins up.

at different times. These can be computed from the
following generating functional,

m (t ), given by (2.5) is the magnetization after t time
steps if one starts with m (0) = 1. For any other
starting configuration m (t ) is the projection of the
configuration at time t on the configuration at time
0. If one starts at t = 0 with a configuration with
magnetization tk, then at time t, the magnetization
will be J.Lm (t).

In order to perform the averages over the random
couplings Jij, we will use the following integral
representation of the 0 functions, in equation (2.3),

where, Thus

where

Performing the disorder average, over the distribution p (Jij) equation (1.2) gives

Retaining terms of leading order in N, in the exponent, this can be written
- r 
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The first term in the exponent can be reduced to a single sum over sites by introducing the delta function
constraint

Similarly the second term in the exponent of equation (2.10) can be decoupled using Gaussian integral
identities. The result is

where the Const. depends only on N and J and plays no role in the following because we use a saddle point
calculation.

Thus y(h, g), equation (2.7), can be written as an integral over the variables ptl ’2, qtl t2,
r, t s tl t2 ; which can be computed by steepest descents in the limit N - oo.

where

and

In all the sums the upper limit is T’ and the lower
limit is 1. The saddle point equations are for

9 ( t i, t j) = 0 and h(ti,tj) = 0
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where the expectation value ( is with respect to the generalized trace defined in equation (2.13c),
with h(tl, t2) = 0 and g(tl, t2) = 0, i.e. with

A useful check on the saddle point equations, is that
in zero field the exponent in (2.13a) should vanish as
y(0, 0 ) = 1 from equation (2.3).
A direct evaluation of these expectation values in

zero field (h = y = 0), (see Appendix 1 for details)
show that a number of order parameters vanish:

The physical meaning of the order parameters can
be obtained by taking derivatives of equation (2.13a)
with respect to h (tl, t2 ) and g (tl, t2 ) and comparing
with equations (2.4). The derivative with respect to
h gives

where q t’ t2 is evaluated in zero field. Thus q t’ t2 is
equal to the overlap between configurations at time
t1 2013 1 and t2 - 1- If one makes the global change
{Jij} --+ - Jij), the dynamics (1.1) of the spins
implies that aj - - aj for odd t and aj - aj for
even t. Therefore since the distribution of 7 is
symmetric, one has

This is certainly true for all times t1 and t2 with
1 t1 - t21 [ odd, but we did not find how to derive it

easily from the saddle point equations.
Taking the derivative of equation (2.14b) with

respect to g, gives

where t2  tl 1 and equations (2.15) have been used.
Due to the symmetric distribution of the Jij’s, the left
hand side of equation (2.17) vanishes when 1 t1 - t21 [
is even, so that

We will now consider the time evolution of the

average magnetization starting from an initial con-
figuration with magnetization 1. Setting tl = 1 in

equation (2.16) gives for the average magnetization
after t time steps

If one wants to know the properties of the system at
time t, it is clear that one does not need to know
what happens at later times t’ &#x3E; t. Therefore the
order parameters defined at a particular pair of time
steps can depend only on parameters defined at

previous time steps. Thus at short times the proper-
ties of the model are determined by a few order
parameters. At successive time steps the number of
order parameters increases rapidly (approximately
as the square of the time).
The equations obtained from the saddle point for

the remanent magnetization after two times steps
are

where

The equations for the order parameters and magneti-
zation upto T = 4 are given in appendix 2.

Using equations (2.21), (2.16), (2.18) and the
results of appendix 2 we obtain for the first few
order parameters,
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since m (t ) vanishes for odd values of t the magnetiza-
tion oscillates between zero and a finite value which
decreases with time. Clearly its value at successive
time steps provides one way of approximating the
final remanent magnetization.
Numerical results to be described in section 4

show that the final value is 0.23 ± 0.02 so the

approximate value m(4) = 0.468 is still rather far
from the correct one.

3. Neural network models.

In this section we show how the properties of the
Little model, equation (1.3), and its p-spin
generalization, equations (1.4), (1.5) can be obtained
analytically. The method is similar to that used for
the SK model in section 2.

In the Little-Hopfield model N a patterns are

chosen at random, thus the overlap between two
patterns is typically of order N - 1/2. In the N -+ 00
limit this overlap is zero and the patterns are

orthogonal. We consider spin configurations which
have a finite overlap with one of the patterns, and a
microscopic overlap (of order N - 1/2) with the re-
maining patterns. The overlap between a given
pattern {/ II)} and the spin configuration {u f} at

time t is defined by

The time evolution of m’ depends strongly on the
choice of the initial spin configuration at t = 0. Here
we shall choose the initial spin configuration to have
a finite overlap with the a = 1 pattern, and a

microscopic overlap with the remaining patterns.
We assume that this property holds for the sub-

sequent spin configuration in time. This assumption
is shown to be self consistent, at least for short times.
A generating functional for the average spin-spin

correlation function can be defined in the same way
as for the SK model :

where  ) {Î} indicates an average over all the N a patterns. The trace, Tr’ over the initial spin
 

soUi

configuration is restricted to

so that it has overlap 2 g -1 with the tk = 1 pattern. Introducing the integral representation, equation (2.6),
for the 0-functions, y becomes

I

In order to perform the average over the patterns we use the identity

so that y becomes,
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where

Using the assumption that the spin configuration has a finite overlap only with pattern 1, only the first
term in the expansion of In cos [ ] contributes to leading order in N. Thus Y(xl!, crl!, g’ , n) becomes

· 

The sums on sites and sums on patterns can be decoupled by using the identities

The final form for y (hrl t2 ) is then

where

and

and
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The integral in equation (3.9a) can now be computed
in the limit N -+ oo by steepest descents. The saddle
point equations are

where the expectation value ( ) 2 ±is with respect
to the weight in equation (3.9d), and

where the expectation value  &#x3E; w is with respect to
the weight in equation (3.9c).
The parameters in equation (3.10) are related to

correlation functions involving local fields and spins
in similar way to the SK parameters in section 2. All
the correlation functions are of course always real
but due to our definition of the order parameters in
the present section some order parameters are

imaginary. Using a similar argument to that of

appendix 1 we find that certain order parameters are
zero :

The non-zero parameters have the following physical
interpretation ; q tl t2 is the overlap between spin
configuration at time t1 2013 1 and t2 - 1 ; stl t2 is related
to the overlap of local fields and spins (cf. Eq. (2.18))
and ml is the overlap between pattern 1 and the spin
configuration at time t.

The parameters in equation (3.11) are related to
the average of the products of the overlaps between

the spin configurations and the patterns with

A &#x3E;. 1. Using the results, equation (3.12), and an
argument similar to that given in appendix 1, we find

We have computed the parameters for the first
two time step ( T = 2). Note that the initial overlap
is mr = 2 g - 1, as it must from the constraint

equation (3.3). The non-zero order parameters after
one time step are

The new non-zero order parameters after two time

steps are

The qualitative behaviour of the overlap ml 1 with a
stored pattern after one time step (Eq. (3.14)) is
different depending on whether a, is greater than or
less than ao 

= 2/7T :::L-. 0.64 ; for a greater than this
value ml is always less than mo whereas for

a  0:0, there is a fixed point of equation (2.14) at
m mo (a) m decreases if m :::. mo (a) and in-
creases if m mo (a ). The transition at a o is second
order since mo (a) --+ 0 as a -+ a 0. Similarly,
equation (3.15) implies that mf increases after the
second time step if its starting value m° is sufficiently
small and if a  0.67. -

Physically, this means that the system goes towards
a learned pattern after one (two) time steps provided
a  0.64 (0.67). These values of a are much larger
than the value suggested by thermodynamic calcula-
tions [9, 20] which predict the existence of an energy
valley correlated with the input pattern only if
a  ac - 0.14. The transition at ac is first order ; m
jumps from zero for a &#x3E; a c to a non-zero value.
However the a c predicted by thermodynamic
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calculations may not be relevant to dynamics.
Moreover, we will see in section 4 that the critical a
for parallel dynamics in the long time limit is clearly
smaller than 0.67.

The calculations for multiconnected neural net-
work model can be done in a similar way to the
calculations for the Little-Hopfield model. The

analogue of equation (3.4) is for htt t2 = 0,

The p spin calculations however turn out to be
simpler than the two-spin calculations because corre-
lations between different Ji 1 ... arise only from the
symmetry of the interactions [16]. The reason is as

follows ; equation (3.16) includes a product over
microscopic patterns of exponential factors. If each
of these exponentials is expanded and the average
over patterns at each site is performed the linear
term vanishes and

The second order term may be exponentiated and 5-functions introduced to give

where

where,

All terms of higher order than the second in the

expansion over microscopic patterns are of orderP
N 2 relative to the second order term and there-
fore do not contribute in the thermodynamic limit.
For p = 2 the whole series can be resumed to give
the determinant W (q, s, p ) of equation (3.9c). The
equation for ml after the first time step is then,

In contrast to the corresponding equation for the

Little model (3.14) the fixed point of the first stage
of parallel interaction of the multiconnected model
(3.19) are identical to the replica symmetric solution
for the metastable state close to the pattern in the

thermodynamic calculation [16]. There are two fixed
points for a  a,, (p ) which approach one another as
a - a c (p ) and the transition at a c is first order.

4. Numerical study of long time behaviour.

In this section, we will first present numerical results
obtained for the zero temperature parallel dynamics
of the SK model. The calculations were done on
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finite samples of N sites (25 -- N , 400 ) and the
quantities were averaged over 1 000 to 2 000 samp-
les. The interactions Iii were randomly chosen

according to a flat probability p (Iii) (p (Jij) =
1/2 Jo for I Jij I -- Jo and p (Iii) = 0 for I Iii I &#x3E;. JO). In
the thermodynamic limit, all symmetric distributions
of Iii give the results which depend only on

(IÕ) for the SK model.

In table I, we give numerical results obtained for
the magnetization m(2), m(4) and m(oo) at times
t = 2, t = 4 and t = oo and for the overlap q 42 and
q53. All these quantities except m(oo), describe the
system after a few time steps and can be compared
with the analytical results of section 2. We see that
the agreement is excellent. One can also see in table
I that the long time properties (like m(oo)) depend
much more on the size N than the short time

properties.
In the approach developed in section 2, the calcu-

lations become more and more tedious as one

increases the number of time steps. This makes the
understanding of the long time behaviour quite
difficult by this analytic approach. So for the long
time behaviour, we could only use the numerical
simulations. We have computed the magnetization
mN (t ) at the t-th time step (starting at t = 0 with
mN (0 ) = 1) and the correlation qN (t, t - 2) between
the configurations at time t and at time t - 2 for
samples of N spins. Due to gauge in-

variance, q t, ’ -2 is independent of the starting con-
figuration when it is averaged over disorder.

We did not consider q (t, t 2013 1) as it vanishes at all
times equation (2.17). This is because for each i and
t, u i (t) U i (t - 1) is an odd function of the interac-
tions Iij. One should notice that qN(t, t - 2 ) defined

in (4.1) gives q ’ ’ l,’- 1 defined by (2.16) in the limit
N -+ 00.

The remanent magnetization

depends strongly on the size N (Fig. 1) whereas at
short times, the size dependence of mN (t ) is much
weaker. This makes the analysis of the long time
behaviour of the magnetization rather difficult. The
following two attempts were made :

Fig. 1. - The magnetization MN (00 ) of the SK model
versus N - 1/2. Extrapolating to N -+ oo gives moo ( 00 ) =
0.23 ± 0.02.

Table I. - Magnetization at times 2, 4 and oo and the overlaps qt,t- 2 for t = 4 and 5 for the SK model. The results
at short time converge quickly to the predictions of section 2. The convergence of m(oo) is much slower.
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First, if one considers MN (t) - MN (00 ) for each
size N, the results seem to decay exponentially at
long times

Our numerical results suggest that TN increases like
N" where a = 0.5. An accurate determination of a
is not easy because we can only increase N up to a
few hundreds and TN has to be extracted from the

long time behaviour (t::’ T N ) for which the error
bars are the biggest.
On the other hand, if we try to look at

M. (t) - m. (oo ), one finds a power law

The estimation of i3 is not easy either, because one
needs to take the limit N -+ oo. For short times t,
this is not very hard because mN (t ) does not vary
much with N but for t -+ oo, this is more difficult (see
Table I and Fig. 1). Also the range of times on which
the power law (3.3) can be observed is rather limited
1 -- t , 20 because our sizes N are small and (3.3)
only be valid for t -,- T N. However a log-log plot
gives 0.5 -- -- 0.7 depending on what we choose
for MN (00 versus N - 112. The convergence to

N -+ oo is rather slow and our estimate for m. (oo ) is

The N - 1/2 convergence is the same as the one found
by Kinzel for serial dynamics [7]. This value differs
from moo (oo ) = 0. 14 -t 0.01 predicted by Kinzel for
sequential dynamics. This difference is not surprising
because the two dynamics have no reason to give the
same remanent magnetization. For example for 1d
spin glasses, sequential dynamics give m.(oo) =
1/3 (see Ref. [12] and references therein) whereas
parallel dynamics would give m.(oo) = 2/3. Also a
value of j3 = 0.5 (see Eq. (3.3)) is rather similar to
what had been previously found or predicted for
finite temperature dynamics near the spin glass
transition (Ref. [18] and references therein). It is not
clear however whether our value of j8 could be
compared with any result even at low temperature
because one expects that moo ( 00 ) =1= 0 for T = 0
whereas m.(oo) = 0 at low temperature.
The long time behaviour is much easier to study

when one considers the time evolution of

qn(t,t -2). In the limit t-+ oo, qN(t,t-2)-+ 1
independent of N. So the problem we had because of
the N-dependence of the remanent magnetization is
not present here. In figure 2 we show

log (1 - qN (t, t - 2 ) ) versus log t for N = 100 and
N = 400. We see for each size two regimes. The
short time regime where

Fig. 2. - 1 - q+ 1, t -1 versus t. The overlap q+ 1, t -1 is the
overlap between a configuration at time t and at time
t - 2. We see that 1- q+ 1, t -1 decreases like t-312 over a
range of times which increases with N.

and a long time regime which is size dependent. The
exponent 3/2 is rather accurately determined. In

figure 2 we see that, the range on which (4.5) holds
increases with N and therefore (4.5) is probably
valid at all times in the thermodynamic limit. The I
result (4.5) is compatible with the power law (4.3)
and the estimate 0.5 , /3  0.7 since one has always

(3.6) expresses that the change in the magnetization
is always less or equal to the number of spins which
have flipped.
Another quantity which can be computed at short

times analytically and at long times numerically is
the overlap between two configurations. If one
chooses 2 configurations (ai(0)) and (Ti(0)) at

time t = 0, and if both configurations evolve accord-
ing to the same set of interactions Jij one can try to
compute the time evolution of the overlap Q (t)

At short times, calculations very similar to those

presented in section 2 give
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where

We see from these expressions that the calculation
becomes more and more difficult as one increases

the number of time steps and so here again, we could
only study the long time behaviour by means of
numerical simulations. In figure 3 we show d(oo )
versus d (0 ) for 0 , d (0 ) _ 0.05 where d (t ) is the

Fig. 3. - The distances d (1 ), d(2) and d(aJ ) at time
t = 1, t = 2 and t = oo versus the initial distance d (0)
between two configurations for the SK model. The two
curves are the result of equations (4.8)-(4.11). We see that
d (oo ) does not seem to vanish when d (0) -+ 0.

distance between the two configurations and is

defined by

We see that, even d(oo ) still depends on the system

size N, it is rather clear that d (oo ) does not vanish
when d (0 ) vanishes

It is not very easy to determine the limiting value
accurately because one needs to take two limits,
Q (0) -+ 1 and N -+ oo. However, the fact that

d ( oo ) does not vanish if d(0) -+ 0 gives an idea of
the ’ structure of the basins of attraction of the
attractors. Two starting configurations even if they
are very close will evolve to attractors which are far

apart.
This means that the frontiers, between basins of

attraction are dense in phase space. Also this means
that there is a cooperative effect between an infinite
number of spins : if the dynamics could be reduced
to finite clusters of spins, then when d(0) -+ 0, the
number of clusters for which the configurations
ai(O) and Ti(O) differ would be proportional to
d(O). Only these clusters could contribute to

d(oo ) and therefore one would have d(oo ) pro-
portional to d(0). The fact that d ( (0) does not
vanish as d (oo ) -+ 0 means that there is a cooperative
effect involving an infinite number of spins. The
same results has already been found in the dynamics
of other random systems : random networks of
automata [17].

For the Little-Hopfield model, we have computed
the overlap m’ with a stored pattern as a function of
m° for several values of a. In figures 4, 5 and 6 we
show our results for a = 0.1, a = 0.4 and a = 0.9.
For all these values of a, we observed that

ml has a limit mf as t -+ oo. This means that the
oscillations of mi between odd and even times

(which are present in the SK model) are either

absent or too small to be observed (i.e. smaller than
our error bar) for these values of a. We see that for
a = 0.1 (Fig. 4), the system remembers (since for
mo:::. 0.5, one finds mi very close to 1). It is

interesting to notice that mf is not always a mono-
tonic function of time. For a = 0.4, the system does
not remember in the limit t -+ oo (mi  m°). How-
ever for short times, we see that there is a range for
which ml and ml are larger than m°. This means that
the configuration in the first time steps goes towards
the pattern but at later times goes away. Lastly for
a = 0.9, we have always mf : mr and the configur-
ation always evolves away from the pattern.
There is therefore a qualitative difference between

the results at long times and those for the first few
time steps. For a  0.64 (0.67), the system remem-
bers after 1 (2) time steps whereas at large time, the
system remembers only if the initial overlap is



753

Fig. 4. - The overlap mi for t = 1, 2 and oo with a stored
pattern versus mo for the Little model : a = 0.1 (Fig. 4a),
a = 0.4 (Fig. 4b), a = 0.9 (Fig. 4c). The points are the
results of numerical simulations and the curves were

obtained from equations (3.14) and (3.15). For a = 0.1
(Fig. 4a), the system learns. For a = 0.4, the system goes
towards the pattern for the first time steps if m° is small
enough but does not learn in the long time limit (the
dashed straight line is m’ = m?). For a = 0.9 (Fig. 4c) the
system does not learn even in the finite time steps.

sufficiently large. This suggests a way of improving
the dynamics for a below 0.64 (0.67). Since non-
equilibrium states which do not appear in the

thermodynamic calculations exist for values of a
above as well as below a [11] it might be possible
after a few time steps of parallel iteration to define a
way of annealing into a metastable state closer to the
pattern.
We have not observed 2-cycles for values of

a  1. However, in the limit a - oo, iterations from
a pattern is equivalent to iteration from any initial
configuration ; for example equations (3.14), (3.15)
reduce to those of the SK model (2.17), (2.21) ; and
in this case the remanent magnetization is zero at
odd times and non-zero at even times. Therefore
either there exists a finite value of a &#x3E; 0.9 above
which limit cycles appear or the oscillation of

mt are present at all values of a but are too small for
a  0.9 to be observed with our error bars.
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Appendix 1.

In this appendix we show that any expectation value
with respect to y, equations (2.13c), of the form

in zero field where S (xt, U t) depends only on times
earlier than T.

This expectation value contains a term of the form

where

Note that C (x,, a,) does not depend on XT or
cr T. Taking the trace on u T gives

In the second term make the change of variable :
XT-+-XT; ’AT-+- A T, so that

Thus the expectation value, (A.I), is zero :

Appendix 2.

In this appendix we give the results for the order parameters and magnetization up to 4 time steps, obtained
from the saddle point equation (2.14a) for the SK model. The results up to t = 2 are given in equation
(2.21), the remaining ones are :
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where erf and using the formula,

where
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