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SU(2)  SU(2) x U(1) basis for symmetric SO(6) representations :
matrix elements of the generators 
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(Reçu le 30 septembre 1986, accepté le 28 novembre 1986)

Résumé. 2014 Nous calculons de façon explicite et analytique, les éléments de matrice des générateurs du
groupe SO(6) pour la représentation irréductible symétrique ; nous employons la chaîne de décomposition
SO(6) ~ SU(2) x SU(2) x U(1) (qui est différente du schéma très connu des supermultiplets de Wigner). Nous
indiquons la relation avec la méthode de Gel’fand et Tsetlin qui utilise la chaîne SO(6) ~ SO(5) ~ ... ~ SO(2).
Nous présentons aussi un exemple d’application physique.

Abstract. 2014 Matrix elements of the group generators for the symmetric irreducible representations of SO(6)
are explicitly calculated in a closed form employing the decomposition chain SO(6) ~ SU(2) x SU(2) x U(1)
(which is different from the well known Wigner supermultiplet scheme). The relation to the Gel’fand Tsetlin
method using SO(6) ~ SO(5) ~ ... ~ SO(2) is indicated. An example of a physical application is given.
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1. Introduction.

The algebra of the rotation group in 6 dimensions
SO(6), equivalent to that of SU(4), plays an import-
ant role in nuclear and particle physics. The decom-
position chain SO(6) =&#x3E; SU(2) x SU(2) has been
widely known as the Wigner supermultiplet scheme
(see e.g. Wigner [1] or Hecht and Pang [2]). Another
well-known decomposition of the irreducible rep-
resentations of SO(n) (and in particular of SO(6))
has been provided by the work of Gel’fand and
Tsetlin [3]).
However, in some cases of physical interest (see

e.g. Krumlinde and Szymanski [4] or Piepenbring
et al. [5]) a decomposition different from the above
mentioned Wigner supermultiplet scheme is needed.
It is based on the embedding SO(6) &#x3E; SO(4) x
U(1) ~ SU(2) x SU(2) x U(1). It is a particular case
of decompositions of Lie groups into products involv-
ing the U(I) subgroup as discussed in references [6,
7]. Relevant decompositions have also been revie-
wed in references [8-10].

In the present paper we intend to give a complete
and elementary derivation of the explicit formulae
for the matrix elements of the SO(6) group

(*) Work partly supported by the Polish-US Maria
Sklodowska Curie foundation, grant number PF 7037 P.

(+ ) On leave of absence from University of Warsaw,
Poland.

generators in the symmetric irreducible represen-
tation. In section 2 we establish the tensorial charac-
ter of the 15 group generators with respect to

SU(2) x SU (2) x U(1). Sections 3 to 5 are devoted
to a discussion of the symmetric irreducible represen-
tations of SO(6). In section 6 we explicitly calculate
in a closed form the matrix elements of the group
generators for the symmetric representations of

SO(6) employing the decomposition chain SO(6) :D
SU(2) x SU(2) x U(1). In section 7 we indicate the
relations of the obtained basis with that of Gel’fand
Tsetlin. Finally, section 8 brings an example of a
physical application and section 9 the conclusions.

2. Group generators and their tensorial clas-
sification.

The 15 generators of the SO(6) Lie algebra can be
defined as the operators of generalised momenta

Jag with a, b = 1, 2, ... 6 (cf. for example [2, 4]). In
the case of the Wigner supermultiplet decomposition
the two SU(2) subgroups are simply formed by
Jab with a, b = 1, 2, 3 and Ja6 with a, b = 4, 5, 6,
respectively. The Cartan subalgebra may be chosen
as defined by the three operators J12, J34 and

Js6. This scheme, however, has the disadvantage that
none of these three operators commute simul-

taneously with all the generators forming the two
subgroups SU(2). For our purpose it is, therefore,

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphys:01987004804057700

http://www.edpsciences.org
http://dx.doi.org/10.1051/jphys:01987004804057700


578

more convenient to choose first the four-dimension-
al subspace (say, corresponding to Jab with a,

b = 1, 2, 3, 4). It is well-known that the resulting
SO(4) subgroup is equivalent to the product
SU(2) x SU(2) of the two commuting ordinary
angular momenta. We shall call them quasispins as
to maintain the analogy with the typical application
of section 8 (see also [5]).
Now, the operator J56 commutes with all the six

generators of the SO(4) subgroup and can thus
define a U(I) subgroup completing our chain

SO(6) &#x3E; SU(2) x SU(2) x U(1).
In general (see Racah [11]) the states forming an

irreducible representation basis of the group SO(b)
can be completely characterized by specifying

1/2 - r = 6 quantum numbers in addition to the r
quantum numbers specifying the representation itself
(by its highest weight). Here p = 15 denotes the
number of generators of SO(b) while r = 3 is the

rank of the group (see e.g. [2, 11]). However, we
shall show that, in the case of a symmetric represen-
tation, four quantum numbers will be sufficient to
determine the representation basis completely.
We shall now define explicitly all the 15 generators

of SO(6) in terms of the generalised angular momen-
ta Ja6 (a, b =1, 2 ... 6). The two quasispins, say, K
and L can be introduced as

and

It is easy to see that the two quasispins commute, i. e.

It is also obvious that the operator J56 commutes
with the 6 components of the two quasispins K and
L. The three mutually commuting operators J12 =
Ko + Lo, J34 = - (Ko - Lo ) and J56 are chosen to
form the Cartan subalgebra. The remaining 8

generators of SO(6) can be arranged as tensors of
the order 1 2 with respect to both the quasispins K

and L. Simultaneously, these tensors carry + 1 or
-1 of the quantity d which is defined as an

eigenvalue of (- J56 ). In other words

and

The choice of the quantum number d as an

eigenvalue of (- J56 ) (instead of J56) has been made
as to remain consistent with the results of [5] where d
has a simple physical meaning (1).

Closed-form expressions of the eight components
T.,2112 8 in terms of the generalised angular momenta
Jab can be given explicitly. In order to simplify the
notation Tf ’k 1 8 we shall omit the superscripts k and 1
that are always equal to 1/2 and replace quantum
numbers K (= ± 1/2), A (= ± 1/2) and 8 (= ± 1) by
their signs. Thus for example T 112 112 will be

replaced by T + , etc.

and

Tensors Tf21f2 8 obey the following hermiticity
condition

The eight generators Tk 1 8 with k = 1 =1 and
2

6 = ± 1 exhibit the difference of the present classifi-
cation as compared with the Wigner super-multiplet
scheme [2] where the nine analogous generators
TK a are characterized by k = I = 1.

(1) Throughout this paper, we use the symbol d to
denote the eigenvalue of - J56, which can take any integer
value satisfying relation (25). The symbol 6, which is an
index of the tensors we introduce, takes only the two
values ± 1, and allows a change of d to d + 8.
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3. Symmetric representations.

The irreducible representations are characterised by
their highest weights (see e.g. [11, 12]). The rep-
resentations may be labelled by the vector

I Jí2, J34, J56) of the three eigenvalues of the

generators J12, J34 and J56 forming the Cartan sub-
algebra. Alternatively, one can employ partitions
[A] = [A A2 A3] of an integer number 1

(1 = A 1 + A 2 + A 3 ) specifying the corresponding
Young diagram (see e.g. [12, 13]). The symmetric
irreducible representations correspond to the Young
diagrams [1 j with one row only, i. e. Al = 12 = l ,
A2 = A3 = 0 (with the highest weight corresponding
to the vector with components d2, 0, 0 in the Cartan
space). The positive integer f2 may have a certain
physical meaning as it will become clear below.
To specify the representation basis, it seems

natural to use the two communting quasispins K and
L together with the eigenvalue d of (- Js6 ). Thus we
introduce vectors

with MK denoting the eigenvalue of Ko defined by
equation (1) and K, the total quasispin K quantum
number (i.e. K(K + 1) is the eigenvalue of K2). The
meanings of ML and L are analogous to MK and K
except that they refer to the quasispin L (Eq. (2)).

In general, one mote quantum number is needed
in order to specify the basis vectors of the irreducible
representations of SO(6) as already mentioned in
the preceding section. However, in the case of the
symmetric irreducible representation even the basis
(7) is too general since the symmetry of the represen-
tations implies that

In order to demonstrate the existence of this con-
straint we can employ the branching rule

corresponding to the embedding

given by King [6]. Here (s. t ) corresponds to the
outer product of two Schur functions related to the
two one-row Young diagrams, while [À I (s . t)]
denotes the outer division [A ]/ [s . t ] of two Schur
functions (e.g. [12, 14, 15]). Finally fs - t} denotes
the representations of U(I) specified by the integer
s - t. For the symmetric irreducible representation
[I] of SO(6) the branching rule (9) is simply reduced
to

implying that the irreducible representations

[1 - s - t ] of the subgroup SO (2 k - 2 ) are also

symmetric. In the case of k = 3, one gets SO(4)
which is isomorphic to SU(2) x SU(2). The symmet-
ry of the SO(4) representation requires the vanishing
of its second label, i.e. K - L = 0 and hence

equation (8).
It follows from equation (8) that we may charac-

terise the basis states of the symmetric representa-
tions (7) by only four independent quantum numbers

in addition to the highest-weight labels (f2, 0, 0)
characterising the representation itself. In the case
of a general irreducible representation of SO(6) we
have of course L # K and there remains one more

quantum number to specify the representation basis
(cf. an analogous problem in the Wigner supermul-
tiplet scheme is discussed by Hecht and Pang [2]).

4. Step down operators.

We shall now demonstrate an explicit construction
of all the states forming a representation basis.

Acting with operators K+ and L, and starting with
an arbitrary state K, K ; MK, ML ; d) we may al-
ways reach the MK = ML = K state which we call
hereafter the maximum aligned (MA) state for a
given K :

where the right hand side is a convenient short-hand
notation for the MA states. Thus in order to obtain

any state belonging to a symmetric representation
basis it is sufficient to construct all possible MA
state-vectors. One can show that the two operators

with 8 = + 1 or 8 = -1 are the step-down operators
that by acting on the MA states lower the four
quantum numbers K, L = K, MK = K and ML = K
by one half. Thus we have

where the constant c appearing in this equation will
be discussed below (Sect. 6).
We can see from equation (15) that the representa-

tion basis contains both integer and half-integer
quasispins K and L. Equation (15) follows from the
commutation relations
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and

5. Representation basis.

Now, we are in a position to construct explicitly all
the MA states belonging to the representation basis
and, consequently (employing in addition the K-
and L_ operators), all the representation basis. It is
simply sufficient to act several times with the

operators U:t l’ on the state

corresponding to the highest weight I Ji2, J34, J56 ) =
In, 0, 0). We obtain

with

and where C is a constant which will be calculated
later.

It follows from equations (16-20) that the quantum
numbers appearing on the right-hand side of

equation (22) do not depend on the order of the
operators cr+i and a_ i in this equation. Moreover,
one can show that the constant C appearing in

equâtion (22) does not depend on the order of

u + 1 and o,- 1, either. It can easily be shown that
[or+i, u-1]1 {K} ; d) = 0. Explicitly one gets

and

which lead to the same result since T = T_ ±
commute.

Equations (23) and (24) imply that for a given
value of K we obtain

On the other hand, equation (20) together with
equations (23) and (24) imply that d is an integer
changing in step of 2 between the limits indicated in
equation (25).
The total number of states obtained by acting with

various powers of the step-down operators (18) on
the highest weight state can now be calculated. The

quantum number K varies between 0 and f2 .2 

For each given value of K there exists
fi - 2 K + 1 different values of d (cf. inequalities
(25)), and, finally, there is a (2 K + 1 )2 multiplicity
for each pair (K, d ) connected with the variations in
the quantum numbers MK and ML. Thus the total
number of states results as

It is easy to see that this is exactly equal the
dimension of the symmetric irreducible representa-
tion of the SO(6) group corresponding to the highest
weight In, 0, 0). This can be shown either by the
methods of Weyl [16] (see also Ref. [12], Chap-
ter 14.2) or else by employing the equivalence of the
SO(6) algebra to SU(4). In fact (see [2]) the

symmetric representation of SO(6) with highest
weight ,fl , 0, 0) can be shown to correspond to the
irreducible representation of SU(4) labelled by a
Young diagram {n, n} i.e. which has obviously

the dimension given by (27) (see e.g. Close [17]). In
this way, we have proved that the states (12) indeed
span the total representation space.

6. Matrix elements of the group generators.

We shall now calculate explicitly the matrix elements
of all the 15 generators of the group SO(6) in the
basis of the symmetric irreducible representation
discussed in a previous section. Matrix elements of
the quasispin operators K and L are well known. For
example :
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etc. The three operators Ko, Lo and J56 (or J12,
J34 and J56) are diagonal with eigenvalues Ko = MKI
Lo = ML and J56 = - d, respectively. We are finally
left with the 8 tensor components (5a-h). In order to
calculate their matrix elements we need first the
norm of an arbitrary MA state (cf. Eq. (22)). Let us
denote the norm of the state (22) by JY’(m, n) i.e.

As has been already mentioned in the previous
section, one can show that the order of the operators
u + 1 and u - 1 inside the matrix element (28) does not
change the value of N(m, n ). It can also be shown

(see Appendix) that N(m, n ) satisfies two recursion
relations which are considerably simplified and can
be reduced to one recursion equation if one intro-
duces the quantity

Then the recursion relations together with some
limiting values become

It is not difficult to find the solution of the above
set of equations

Having the above result, the rest of the calculation
becomes standard. Owing to the SU(2) symmetry of
the two quasispins we may use twice the Wigner-
Eckart theorem

with d’ = d + 6 and where the symbol
(Kmkm [ K’ M’ ) in equation (32) denotes a

Clebsch-Gordan coefficient. The doubly reduced
matrix element appearing in this equation can be
calculated when the MA states are taken in

equation (32) together with K = A = + 1 or K =

A = -1. Then the matrix element can be either
2

expressed directly by the norms N(m, n ) or equiva-
lently by the quantity p (m, n ). In this case the left
hand side of equation (32) can be calculated directly.
Generally, tensor operators Tk1/2 f2 8 can only change
K quantum number by ± 2 1 and quantum number d
by - 1. In order to illustrate the procedure let us
calculate a typical matrix element

It is useful to note that the tensor operator
T - when sandwiched between the two MA states
can be replaced by a step -down operator u -1 (up to
a factor). Indeed, it follows from equation (14) that
only the first term of o, - 1 contributes in the matrix
element given above. Now, the factor (2 Ko + 1 )
(2 Lo + 1 ) acting to the right gives a c-number equal
to (2 K + 1 )2. Thus we have

Now, using equations (23), (24) and (28) we get
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On the other hand, we can use equation (32) directly
for K = A = -1,16 = -1, MK=ML=K and

2

M’ K = M’ L = K’ = K -1. Thus, we can determine2
the- reduced matrix element

for K’ = K -1 1 and d’ = d -1. We can repeat thefor K’ 2 and d’ == d - 1. We can repeat the
calculation for all possible non-vanishing matrix

elements K’ = K ± 1, d’ = d ± 1 and substitute2 
them into equation (32). The results for the non-
vanishing matrix elements of all the tensors T.1121/2+1 1
are given below

and

where sgn K and sgn A denote the signs of K and A,
respectively. Matrix elements of the tensor TK ’12 A 1/2 - 1
can be obtained from the above formulae by Hermi-
tian conjugation (cf. Eq. (6)).

7. Relation to the Gel’fand Tsetlin basis.

Another possible decomposition of the SO(6) ir-
reducible representations is offered by the well-
known Gel’fand Tsetlin method [3]. It is related to
the chain

S0(6) :D SO (5 ) z) SO (4 ) &#x3E; SO (3 ) &#x3E; SO(2) . (37)

The symmetric representations of SO(6) can be
labelled [4] by a single column of 5 numbers the first
of which (n) characterizes the representation while
the remaining 4 numbers (A, Sm, S and So) determine
the states of the basis. It seems convenient to define
the SO(3) subgroup of the chain (37) as a total
quasispin

where K and L have been already defined in the
preceding sections. Then the irreducible symmetric
representations of the SO(4) may be defined by the
maximum possible value of S (i.e. Sm =

(K + L )L = K = 2 K). Finally, A may characterize
the irreducible symmetric representations of the

subgroup SO(5) (where 8m  A -- D). The matrix
elements of all the Sd(6) group generators can be
calculated relatively easily with the method used in
the case of symmetric representation (see Ref. [4]).
However, as already mentioned in the introduc-

tion, there exist some physical problems where it is
more convenient to have J56 as a good quantum
number. This is not the case in the Gel’fand Tsetlin

scheme [3]. Thus in this type of problem it is

necessary to diagonalize the operator J56 explicitly in
the latter basis. We thus arrive at the transformation

where columns with parentheses denote the original
Gel’fand Tsetlin representation basis while those
with square brackets denote the new basis in which
the operator (- J56 ) is diagonal with eigenvalue d. It
follows from the Gel’fand Tsetlin rules that the

operator J56 does not change the quantum numbers
Sm, S and So. Thus the summation in equation (39)
extends only over A. The eigenvalues occurring in
the diagonalisation are d = 0, ± 1, ± 2... It has been
also our numerical experience that they fulfil rela-
tions equivalent to inequalities (25) and that d

changes in steps of 2 for given K (i.e. Sm and d are
both even numbers or else both odd numbers,
simultaneously). The transformation coefficients

C J( n, Sm ) have also to be determined numerically.
All these properties become clear when we notice
that there exists a simple relation

connecting the new representation (39) with that
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used throughout this paper (cf. Eqs. (8) and (9)).
Nevertheless, the latter is much more convenient for
practical calculations.

8. An example of physical application.

The decomposition of the symmetric irreducible

representation discussed in this paper has been
found [5] in the course of the calculation devoted to
the coupled beta and gamma vibrations in deformed
nuclei in the framework of an exactly solvable

microscopic model. The model involves two degener-
ate single-particle levels with the degeneracy 2 n for
each level with pairing and quadrupole forces. The
model Hamiltonian used in [5] can be expressed by
the generators of SO(6) in a straightforward way

The first term describes the single-particle splitting
between the two levels, the second term is a pairing
force while the third and fourth terms correspond to
the (À,JL)= (2, 0) and (À,JL)= (2, ± 2) compo-
nents of the quadrupole force, respectively. It is easy
to see that both J56 and J12 are good quantum
numbers i.e. they commute with the Hamiltonian.
Thus, their values can be fixed, a priori, and the
dimensions of submatrices to be diagonalized are
considerably reduced as compared to the number
given by equation (27). In fact the dimensions of the
submatrices become of the order of n 2 instead of the
n 4 dependence following from equation (27). The
explicit formulae for the dimensions are given in [5].
We have performed the diagonalisation of the

Hamiltonian (41) in two ways. First, by employing
the Gel’fand Tsetlin method with the preliminary
diagonalization of J56 followed by the diagonalisation
of H. The other method consisted in using the
representation discussed in this paper (cf. Sect. 3 to
5) with the explicit expressions for the matrix
elements given in equations (35) and (36). The
numerical results obtained for the energy eigenvalues
and matrix elements of physical interest (i.e. quad-
rupole moments, transition probabilities etc.) were
of course identical for both methods. However, the

latter has proved to be definitely superior in the
numerical computations.

9. Conclusions.

We have demonstrated a new decomposition chain
for the symmetric irreducible representations of the
group SO(6) which differs essentially from that of
the Wigner supermultiplet scheme. It has turned out
to be possible to construct explicitly the representa-
tion basis and to calculate the matrix elements of the

group generators in a closed and, in fact, very simple
form. The scheme can, for example, be applied to
the exact solution of the microscopic treatment of
the pairing plus quadrupole two-level model in the
case of the coupled beta and gamma vibrations in
deformed nuclei [5]. The generalization of the above
procedure into the case of arbitrary (i.e. not neces-
sarily symmetric) irreducible representations of

SO(6) seems to be also possible.
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Appendix.

Instead of giving a full derivation for the calculation
of the norm (28) and the resulting recursion relation
(30) we shall only outline the main idea of the proof.
We shall follow essentially an analogous calculation
given by Hecht [18] for the simpler chain SO(5) =)
SU(2) x SU(2). We start with equation (28) for the
arguments (m + 1, n )

Now the operator ul acts to the right (and in fact to
the left, as well) on an MA state and consequently
can be reduced to only one term T+ + multiplied
from the left by (2 Ko + 1) (2 Lo + 1) which reduces
to a number (cf. an analogous trick used already in
the example given in Sect. 6). Thus :

The last part of this equation is, of course, an

identity. Let us call the first and second terms of the
last part in equation (A.2) (I) and (II), respectively.

Calculating the commutator appearing in (II) and
neglecting what vanishes when sandwiched in be-
tween two MA states we can express it by the
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Casimir operator C of the SO(6) group and some
additional terms that we discuss below. The Casimir

operator C is defined as

It has an eigenvalue n (n + 4). The additional
terms following from the calculation of the com-
mutator in (II) are either simple functions of

J12, J34 and J56 and are thus diagonal or else form an
expression

that is to be sandwiched between the MA states as
indicated by equation (A.2). We can now express (I)
as well as both contributions coming from (A.4) by
using the same trick as in section 6 and by observing
that

and

with proportionality coefficients depending on

N (m, n) and N (m - 1, n ), or N (m, n ) and

N (m, n -1 ), respectively. Taking all the terms

together we finally arrive at a recursion relation

Using relation (A.7) and its analogous for

N (m, n + 1 ) one can calculate the first values of the
norms. Further, by induction, one may easily show
that

Now, using the definition (29) of p (m, n ) (observe
that p (m, n ) # p (n, m )) one can easily derive the
recursion relations (30).
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