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Critical exponents for Ising-like systems on Sierpinski carpets
B. Bonnier, Y. Leroyer and C. Meyers

Laboratoire de Physique Théorique (*), Université de Bordeaux I, rue du Solarium,
33170 Gradignan, France

Résumé. 2014 Les propriétés critiques du modèle d’Ising sur divers réseaux fractals du type tapis de Sierpinski
sont étudiées par simulation numdrique. On observe les lois d’échelle et on mesure les exposants 03B3 et 03BD dont les

valeurs sont comparées à celles qui ont été récemment obtenues en dimension quelconque par resommation de
la série en 03B5 de Wilson-Fisher. Il apparaÎt que pour décrire les propriétés critiques dans le cas général, une
dimension effective s’avère nécessaire, en plus de la dimension d’Hausdorf. Lorsque ces deux dimensions sont
égales, nos résultats sont compatibles avec la conjecture selon laquelle le réseau fractal interpole les réseaux
réguliers en dimension non entière.

Abstract. 2014 The critical properties of Ising models on various fractal lattices of the Sierpinski carpet type are
studied using numerical simulations. We observe scaling and measure the exponents 03B3 and 03BD which are then
compared to the values which have been recently extrapolated from the Wilson-Fisher 03B5-expansion in non
integer dimensions. It appears that in the general case an effective dimension, in addition to the Hausdorf
dimension, is needed to describe the critical behaviour. When these dimensions are equal, our results are then
compatible with the conjecture that the fractal lattice could interpolate regular lattices in non integer
dimensions.
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1. Introduction.

The critical behaviour of Ising-like models on fractal
lattices of the Sierpinski carpet type has been studied
by means of real space renormalization group
methods (RSRG) [1, 2], and more recently by
computer simulations on finite lattices [3, 4].

Interest in such systems has been stimulated by
the conjecture that they may belong to the universali-
ty class of 04 at some non integer dimension d,
where the fractal thus implements the « analytic
continuation » of hypercubical lattices. This

hypothesis, suggested by the RSRG results of re-
ference [2] in the range d = 1 + E, requires that a
single dimension governs the critical behaviour,
which remains poorly known. On one hand, the
RSRG study of reference [1] shows for the exponeht
v a dependence on the Hausdorf dimension dH, but
also on other topological factors needed to charac-
terize the fractal. On’the other hand, the numerical
simulation of reference [3] shows that scaling laws
between exponents can be fulfilled with a single
dimension, which seems, however, to be distinct
from dH. This point is not investigated in the

simulation of reference [4], but it is suggested that

(*) Unitd associde au CNRS UA 764.

the critical temperature and exponent y vary, when
the fractal parameters change, in a way best de-
scribed by an effective dimension ds. This dimension,
defined as the average number of nearest neighbours
of an active site, is usually different from dH.
On the other hand, an accurate determination of

the Ising-like exponents yI (d ) and vI (d ) in non-
integer dimensions d, 1  d  4, has been recently
done [5] in the framework of the e-expansion
resummation. This allows a direct comparison be-
tween extrapolated 04 and fractal lattices, such as
the one we intend to present here in order to

complete our preliminary investigation of re-

ference [6].
We consider various Sierpinski lattices, each

choice corresponding to fixed values (below 2) of the
pair ds and dH : these dimensions change with the
topology of the fractal or with the way of implement-
ing an Ising model on it. Numerical simulations of
the system are performed on such lattices of finite
size, corresponding to 2 or 3 iterations of the fractal
decimation. A standard analysis of the data (a fit to
the temperature dependence of the susceptibility
and finite size scaling laws) leads to a scaling law and
to the exponents y and v, which are then compared
to the extrapolated values of reference [5]. To
summarize our results, we find that two dimensions
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ds and dH are needed to describe the critical be-
haviour of such models in the general case, which
thus appears to be outside the 04 universality class.
However, when the parameters ds and dH are fixed
at some common value d, ds = dH = d, the corre-
sponding fractal is a good candidate to extrapolate
04 at the non-integer dimension d.
In section 2, we recall the description of the model

and the definition of the dimensions dH and

ds. We also give the principles of our analysis in
order to find the critical parameters, and illustrate it
on an example. Results for the 7 lattices we consider
are gathered in section 3, where they are compared
with the values extrapolated in reference [5] by Le
Guillou and Zinn-Justin.

2. The Sierpinski lattices. Definitions and measu-

rements.

A Sierpinski carpet is characterized by two integers
b and I, with I  1  b - 2. An initial square is
divided in b 2 subsquares and a central area of
12 subsquares is rejected. This procedure is repeated
k times and at each step the carpet is rescaled in
order that the smaller cells remain of unit area. We
denote by (b, l, k) a carpet at the k-th stage of the

subdivision (the fractal is the limit as k --+ oo ) which
counts Nc = (b2 - 12)k cells embedded in a square of
N 2 area, with N = b k. Introducing the fractal (Haus-
dorf) dimension dH,

with

one finds

Two different rules have been already introduced
to implement an Ising model on a (b, l, k) carpet,
and we have used both since they allow some

flexibility in addition to that which arises from

varying the parameters b and 1. The first rule

(Method I, Ref. [4]) is to put an Ising spin at the
center of each unit cell of the carpet, and no spin
where cells have been deleted. The second one

(Method II, Refs. [1-3]) is to put the spins at the
corners of the non eliminated cells. In all cases

interactions are restricted to nearest neighbours and
periodic boundary conditions assumed.

For a given value of dH, these two different
definitions correspond to different values of the
effective dimension ds, as can be seen from the

following counting rules for the numbers of spins
(Ns ) and links (NL ) :

and thus, in the k infinite limit

The critical parameters are determined from the
standard observable quantities ; defining

and

and taking statistical averages with respect to the
usual partition function Z = Tr exp (- (3E) we

measure :

- the specific heat

- the magnetization

- the susceptibility

- its Q derivative

- the 4-site correlation

which have, respectively, a, (3’, y, y + 1 and

y4 as critical exponents. Notice that the correlation

length is not measured, since it is a too complicated
object on such a lattice, but that its exponent v is
expected to appear through finite size scaling laws,
as explained later (relation (2.7)).
Our simulation deals with the lattices depicted in

table II (the first three examples correspond to the
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rule I, the remaining cases 4 to 7 corresponding to
the rule II) which have maximal size 642. It has been
performed on a VAX 11/750 (- 700 h) using a

multispin coding technique, similar to that of re-
ference [7] but adapted to this kind of lattices where
spins have been decimated in a definite way.
We now describe the analysis of the data we

perform in order to estimate the values of the critical
parameters. The method is essentially standard and
follows reference [4], with some modifications im-
plied by two kinds of difficulties which must be
stressed. The first difficulty is that of locating
precisely the critical coupling Bc, since the usual
signals (peaks of the specific heat, sharp rise of the
magnetization) are broadened in our case where
dimensions are less than 2 (a is negative and

,6’ small). Moreover, as y and v increase at low
dimension, the « critical slowing down » phenome-
non is enhanced, and for practical reasons this study
is limited to lattices of maximal sizes 642. We thus
encounter here the other difficulty, linked to the
fractal nature of the lattices : within such a maximal

size, only the first few iterations (1 -- k -- kM,
kM = 2 or 3) can be numerically simulated. The
application of the finite size scaling laws

in the form

Table I. - Values of some critical parameters as

given by the method of Section 2 on some two-dimen-
sional lattices as examples. Numbers in parentheses are
absolute errors on the last digit.

is then quite delicate. We therefore compute this
ratio p, for k = kM and q = kM -1, in two different
ways. First at fixed f3 (f3 k = f3 q = f3 c) and denote it
by -Z (13c)’ and second at values of f3 which are k-

v

dependent and converge to Bc, such as the extrema
of C or K’ (we denote it by y (C )). Assuming for

v

these sequences a behaviour reminiscent of the two
dimensional case, as can be seen in the table I, we

expect that

and thus proceed in the following way :

i) The critical coupling Bc must lie in the range

where f3 1 is the location of the maximum of
K’ for the (b, l , kM ) iteration (this is a clear signal,
B 1 increases with k and reaches f3 c as k = + (0) and
f32 saturates equation (2.9), i.e.

ii) The exponent y is given by a linear fit to

In K [b, I, kM ; /3] in the variable In (1 - p /.B,),
over the range /3  13 C. This gives y as a function of
13 C. Inserting this value in relation (2.9) yields in turn
an estimate for the range of variation of v. We want
to stress that in that way the true y cannot be smaller
than the smallest value we give : this comes from the
fact that y (,B,) increases with 13 c’ and 8, -- p i. This
is relevant for the analysis of section 3, because a
lower bound on y indicates an upper bound on the
value of the dimension.

iii) The scaling law we consider is linked to the 4-
site correlation and is written so as to define a
dimension D through

where y4 (13,) is computed as y (13 c) and where K is
v v

replaced by K4 in relation (2.8). The other scaling
law involving the magnetization exponent B’ gives a
dimension compatible with D within numerical un-
certainties.

Proceeding along these lines, the analysis has been
performed on 7 kinds of lattices, which are depicted
in the table II, where results can be found. In

column 3 we give the admissible range (Eq. (2.10))
for 13 c, in columns 4 and 5 the values of 1. (13 c) and

v

y (C ), in column 6 the fitted y (13 c), the correspond-
v

ing range for v in column 7 and D, equation (2.12),
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Table II. - Values of some critical parameters for 7 examples of Ising systems on Sierpinski lattices with dimen-
sions dH and ds (column 2). The geometrical parameter (b, l) and the maximal iteration kM are listed in the first
column. Numbers in parentheses are absolute errors on the last digit.

is given in the last column. The table I, with an
analogous content, is devoted to the illustration of
this method of analysis on some two-dimensional
examples, when only 2 iterates of size 52 and
252 are used. Example 1 is simply the homogeneous
case. Examples 2 and 3 have the same first iteration
(5, 1, 1) with spin rule I but the second iteration is in
each case a « false fractal », since it is the union of
five first iterations (example 2) and a dilatation by a
factor 5 of the first iteration (example 3). These

examples show how the dimension 2 can be found
(D and v especially) and they have to be compared
with the example 3, table II, where a new scale

really appears at each step of the iteration.

3. Results and conclusions.

The table II shows our estimates for the critical

parameters of various lattices (examples 1 to 7). The

examples 1 and 2 have been already studied in the
reference [6]. (In this work, the analysis of example 2
involves preliminary data of the fourth iterate -
which have not been confirmed - which lead to

slightly higher values of y [and v, since y/v is

unchanged] than those given Table II. ) The other
cases 3 to 7 have been chosen as to examplify the
role of the parameters ds and dH. The examples 1, 2
and 3 are such that there is a significant difference
between the values of dH and ds. On the contrary
examples 5, 6 and 7 are chosen so as to realize

ds ~ dH. It is also instructive to compare pairs of
such lattices : four example cases 3 and 7 have
almost the same ds, with different dH. Examples 6
and 7 realize in a different geometrical way compar-
able values for ds and dH. Confronting these results
among themselves and with the extrapolated values
yI (d ) and vI (d ) of reference [5], we can make the
following comments :
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i) From the first three examples, if D agrees with
one of the dimensions ds or dH, one finds

rather than D = ds. On the other, hand from examp-
les 3 and 7 it seems that the exponents y and v
depend more on ds than on dH : if the exponents are
to be considered as functions of one single dimen-
sion, it is more probably ds. This is confirmed by
comparing y and v of examples 1 and 2 with

y I and v, they are in agreement with yI (d = ds)
and v I (d = ds ), but not with the extrapolated values
at d = dH = D, as shown in the figures 1 and 2. On
these figures we plot our estimates for y and v as
functions of ds, in all our examples, compared to the
extrapolated values from the e-expansion : according
to the reference [5], the admissible range lies be-
tween the lines yI and vI. From this we conclude
that in the general case, where ds # dH and where
both ds and dH play some role, the universality
hypothesis of the Sierpinski fractal is not supported
by the data.

Fig. 1. - Range of values of y as given by table II for
various lattices. They are plotted as functions of ds. The
lines y j delimit the admissible extrapolated values as

given in reference [5].

Fig. 2. - Range of values of v as given by table II for
various lattices, plotted as functions of ds. The lines

vt delimit the admissible values as given in reference [5].

ii) The conflicting dimensions ds and dH are

adjusted to almost the same value in examples 4 to
7. In fact dH is fixed by the geometry and ds by the
geometry and the spin rule ; one can imagine more
complicated spin rules which lead to an exact

equality ds = dH without changing our semi-quan-
titative conclusion for such systems : they can be
considered as good candidates for interpolating
hypercubical lattices at the non integer dimension
d = D = ds = dH, as can been checked in the

figures 1 and 2.

iii) The value of the critical coupling B c is often
imprecise but nonetheless is sufficient to confirm the
results of reference [4] : examples 3, 6 and 7 on one
hand, and examples 2 and 6 on the other hand show
that f3c depends mainly on ds. Although it is not a
universal quantity, it is interesting to compare our
values to P HT (d) at d = ds, where (3 HT (d) is the

analytic continuation in d of some high temperature
series. We have thus constructed P HT (d) in the
following way : according to the arguments given in
reference [8], we form the [2/3] Padd approximant to
d/dv In G (v ) where v = tanh a and G (v ), linked to
the « true range of correlation », is given by a high
temperature series for generic hypercubical lattices
(as usual the coefficients are polynomials in d). The
reason for our choice is that such a Padd has the

property of being exact for d = 1 and d = 2 (see
Ref. [8]), i.e. in our range of interest. The extrapo-
lated f3HT(d) is then the pole of this Padd at any
value of d, and these values are drawn in the

figure 3, where we have also plotted our estimates of
Bc for d = ds. The agreement is generally good, in
contrast with the values predicted by the RSRG
methods of reference [1] which can be applied to
examples 4 to 7 and respectively give f3c = 0.802,
0.579, 0.196 and 0.322. These values can thus be

Fig. 3. - Range of values of 13c as given by table II for
various lattices, plotted as functions of ds. The curve
B HT represents the extrapolated value from high-tempera-
ture expansions as explained in Section 3. Stars indicate
the RSRG values computed from the method of re-

ference [1] (when they can be drawn in the figure).
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quite unrealistic and it is then doubtful to infer

general information from such methods. A last
comment on the values of y also is suggested by high
temperatures series on hypercubical lattices where
the relation y ~ 2 dJ3c(d) coming from the identifi-
cation

is a good approximation in integer dimensions : one
can check more generally from table II that

y -- 2 ds f3HT(ds), which confirms the results of our
previous analysis on its ds dependence.
As a conclusion, it appears that although our

results are not highly accurate, they are sufficient to
suggest a minimal condition (ds = dH ) which must
be fulfilled by Ising models on Sierpinski lattices in
order to be « universal » in the sense already ex-
plained. Only if such a constraint is satisfied will

improved numerical results (involving larger lattices)
have a good chance to confirm this conjecture.
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