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Résumé. 2014 On utilise une méthode de plongement invariant pour écrire une équation aux dérivées partielles
décrivant le coefficient de réflexion par un milieu désordonné non linéaire de longueur L. La méthode des
caractéristiques réduit cette équation à un système dynamique. On moyenne l’effet du désordre sur les orbites afin
d’étudier la loi de probabilité de R(L). Deux cas sont considérés: sortie fixée W0 (problème A) et entrée fixée
(problème B). Pour une grande classe de non-linéarités, le comportement générique pour le problème A est comme
suit: i) pour une faible non-linéarité, un changement de régime entre une décroissance exponentielle de la
transmission t&#x3E; ~ exp ( - L/4 03BE) à faible L, et une décroissance en loi de puissance à grand L, se produit à une
échelle de longueur L*= 03BE In (1/W0), ii) pour une forte non-linéarité, le comportement est une loi de puissance en
L. L’origine physique est attribuée au renforcement des non-linéarités par le désordre. Pour le problème B, le
comportement asymptotique est toujours une décroissance exponentielle. Les fluctuations associées aux différents
régimes sont étudiées. Le cas d’une non-linéarité aléatoire est considéré aussi, où un phénomène d’auto-répulsion est
mis en évidence, à une distance finie. L’importance de nos résultats pour des situations expérimentales est

brièvement discutée.

Abstract. 2014 By employing an invariant-imbedding method a partial differential equation is derived for the complex
reflection amplitude R (L ) of a one-dimensional non-linear random medium of length L. The method of
characteristics reduces this equation to a dynamical system. Averaging of the perturbation of orbits by weak disorder
is used to investigate the probability distribution of R (L). Two different situations are considered : fixed output
w0 (Problem A) and fixed input (Problem B). For a large class of non-linearities the generic behaviour for Problem A
is as follows : i) For weak non-linearities, a crossover between an exponential decay of transmission

t&#x3E; ~ exp(- L/4 03BE) at short L and a power law decay at large L is shown to take place at a length scale
L * = 03BE In (1/w0), ii) Strong non-linearities dominate the full behaviour and give rise to a power law decay. The
physical origin of this behaviour is traced back to the enhancement of non-linearities by disorder. For Problem B, the
asymptotic behaviour is shown to be always an exponential decay. The fluctuations associated with both regimes are
obtained. Random non-linearities are also investigated and shown to lead to a self-repelling phenomenon at finite
distances. The relevance of our results to experimental situations is briefly discussed.
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1. Introduction.

Up to now Anderson localization phenomena have
been studied mainly in linear random media [1]. A
natural question then arises : what happens in a

medium where both randomness and non-linearities
are relevant ? In the first paper (hereafter I) of this
series [2], the simplest form of this problem (wave
transmission across a non-linear medium) has been
addressed where the basic equations have been derived
using an invariant-imbedding method [3]. In this paper,
we analyze this problem, for a large class of non-

linearities, by looking at the possible modifications due
to the presence of non-linear terms in the wave field

equations. Our approach will be limited here to 1D
problems and we leave the extension of the results to
other cases for a future work.
We describe the system which we have studied by the

generalized non-linear Schr6dinger equation, for the
complex amplitude of the field qi (x, t ) :
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where f( I q, 2) is an arbitrary function of the intensity
14,12 with f(o ) = 0 ; t is time and V (x ) is a real (or
complex) regular (or random) potential. Examples of
physical phenomena described by equation (1.1) have
been discussed in I. We consider equation (1.1) for a
one-dimensional case, corresponding to a plane-
layered medium, which occupies the region 0  x -- L.
Outside this region, V (x ) = 0 and f = 0. As in I, we
only consider the stationary regime, corresponding to
solutions of (1.1) of the form : ci (x, t) = eik2t q&#x3E; (x),
where k2 = E is the wave energy. This leads to the
following equation for cp (x) :

Here, the function E is given by

Let now a plane wave lpo(x) = A e ik(L - x) be incident
on the layer from the right. Then the solution of (1.2)
can be represented in the form lp (x) = Au (x), where
u (x ) satisfies a similar equation, involving the intensity
w = A 2 of the incident wave and u(x)2. To the
right and left of the layer, the wave field has the form :

where R (L, w ) and T(L, w ) are the complex reflection
and transmission coefficients respectively. The wave
number k is assumed to be the same inside and outside
the layer. This restriction corresponds to an approxi-
mation where the creation of other harmonics is

neglected.
The main object of this paper is to answer the

following question : how can non-linearities modify the
usual [1] exponential decay of transmission (t) ~
exp (- L/4 ) due to the enhanced backscattering
mechanism induced by disorder ? To our knowledge,
such a question has never been studied before, except
in the recent work reported in [4, 5]. Due to the non-
linear terms in (1.2) all the techniques used in linear
problems (i.e. at f = 0) seem to fail completely in the
present case. Furthermore, in contrast with linear

problems where the superposition principle holds, the
transmission problem is no longer uniquely defined : in
a large number of cases, including the non-random
limit, ambiguities arise with possible bistability and
hysteresis phenomena [6]. Despite these intrinsic dif-
ficulties, there is one method to obtain a closed solution
for reflected field (i.e. reflection coefficient). For real
potentials V(x), R 2 + IT 12.= 1 holds and then infor-
mation on t - 1 TI can be deduced from 1 R 12 =
r =1- t. Making use of the invariant imbedding idea,
we have shown in I the possibility of reducing the
calculation of R (L, w) to an initial-value Cauchy
equation, relative to the imbedding parameters, namely

the position L of the right-hand layer boundary and the
intensity w of the incident wave. The field at the

boundary, 1 + R (L, w ) is described by a closed non-
linear partial differential equation (Eq. (2.1) below).
This is the basic equation of our approach and the
paper is organized as follows. In section 2, the main
steps of our approach : the method of characteristics
and the Hamiltonian formulation are described. We
show in particular that two problems are to be dis-
tinguished : transmission at fixed output (problem A)
and transmission at fixed input (problem B). Using a
dynamical system point of view, these two problems are
investigated in the weak disorder limit. In both cases,
the method of averaging the perturbation of orbits [7] is
used to obtain the behaviour of transmission as a

function of L and w. Problem A is worked out in
section 3 and problem B in section 4. In section 5, the
case of non-linear randomness is investigated. In the
final section 6, some remarks will-be given about the
generality of our results and the remaining open
problems.

2. Formalism and basic properties

In the previous paper [2], the following equation

has been derived for the complex reflection coefficient
R (L, w). Equation (2.1) is a quasi linear partial diffe-
rential equation, subject to the boundary condition
R (L = 0, w ) = 0, which allows for a complete solution
R (L, w). It is interesting to notice that (2.1) reduces to
a Riccati equation at w = 0. In this limit one recovers
the linear case, previously investigated [8] following the
same line of approach.
For a random potential V (x ), (2.1) can be viewed as

a stochastic equation, describing the evolution of the
« stochastic process » R(L, w ) under the action of the
« multiplicative noise » V (L ). We recall that in (2.1), e
refers to the function

where f(I (p 12 ) describes the non-linearities in the

wave field. Examples of f(u) which are of physical
interest are :

In the following sections, we limit our attention to
exemple i) and this for the sake of clarity. The
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remaining examples can be worked out following the
same lines of approach.

In contrast to an ordinary differential equation no
simple Liouville-like theorem can be used here as

usually done [9] for the probability density of the
process. Nevertheless, one can proceed otherwise, by
using the method of characteristics [10]. In this section,
we describe this approach in some detail.

2.1 LIOUVILLE THEOREM AND PARTIAL DIFFEREN-
TIAL EQUATIONS. - Let us first show that no simple
Liouville-like theorem can be written for the calculation
of the probability density of a dynamical variable
described by a partial differential equation (PDE). For
the sake of simplicity, we consider the case of one
dynamical variable «/J (x, y ) and assume that ci (x, y) is
the solution of the following quasi-linear PDE

In (2.3), x and y can be viewed as generalized « times »,
a and f are arbitrary functions and the initial values of 41
are known (Cauchy data). Let us denote by Q (t/J ; x, y )
the (probability) measure associated with the evolution
of ci (x, y ). For each instant (x, y) and point qi of the
phase space, one can define two currents : jx and

jy in x and y directions. Then (2.3) implies

One has :

and

which in comparison with (2.4)-(2.5) leads to

The last equation reduces, in the case where y is absent
for instance, to the well known Liouville equation [9].
However in the general case, where more than one
« time axis » is present, there are additional drift terms,
coming from the flow in the other directions. In fact the
current cannot be related to the density in a simple
way. Therefore in contrast to dynamical systems de-
scribed by ordinary differential equations, (2.7) cannot
be closed and then no Liouville-like theorem can be
used here.

2.2 THE METHOD OF CHARACTERISTICS. -

Equation (2.1) is actually a quasi-linear PDE for the
complex amplitude of reflection R (L, w). Taking the

real and imaginary parts (V (x ) is real) and
R = R1 + iR2, one obtains a system of two PDEs :

This differential system is subject to the boundary
conditions : Rl (L = 0, w ) = R2 (L = 0, w ) = 0. The
set of equations (2.8) can be shown [10] to be equivalent
to a set of three ordinary differential equations :

The first (2.9a) gives the equation of the characteristics
w(L ) and (2.9b, c) are the so-called relations on the
characteristics. The boundary conditions are (Cauchy
data) : R1 (L = 0, w) = R2 (L = 0, w ) = 0. The above
equations allow for a complete solution R (w, L ) for a
given form of the function E. In the following, we focus
our study to the cases described by (2.2). In these cases,
a and 11 (L) = - V (L)/k2 will be scaled so that
k = 1. Note however that more general situations

including the case of random a can also be treated
following the same approach as that described below.
For the sake of simplicity, the random potential
V (x) used in the next sections is assumed to be a
Gaussian white-noise :

and

Here ...&#x3E; denotes the average of the random poten-
tial. Within this class of models, the expression of the
function e in (2.9) becomes :

A straightforward algebra shows that (2.9) imply a
remarkable equation for the characteristic curves:

where r = R12 + R2. Here w(0 ) = wo refers to the initial
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value of w at the origin L = 0. As will become clear
below, (2.10) is the key to understand the qualitative
behaviour of transmission. Note further that for random

17 (L ), w (L ) are actually random curves (Fig. 1).

Fig. 1. - A typical characteristic (w, L), obtained by
numerical integration of (2.9) (wo = 0.1 ) for f(u) = u and
with a white-noise potential V (x ), corresponding to a localiza-
tion length § = 45. The insert shows some orbits of the

dynamical system : (a) wo = 1, (b) wo =10 in the absence of
disorder and (c) a perturbed orbit by randomness.

Using polar coordinates, R1 = r 1/2 cos 0, R2 =
r1/2 sin 0, 0 -- 0 -- 2 7r, r::-- 0, one deduces from (2.9) :

Another interesting property of (2.11) is provided by
the existence of an invariant of motion. Indeed, let us
consider the « time » evolution of r and 6, viewed as
dynamical variables (L being the « time »), on a given
characteristics w (L ) of origin w (0 ) = wo. Let us denote
by :F (u ) a primitive of the function f(u) :
f(u) = dY(u)ldu. Then, using (2.10)-(2.11), it is easy
to verify that

is actually an invariant of the motion, i. e. dF/dL = 0,

in the absence of the potential 17 (L). More generally,
for a constant potential TJ (L) = q,

is an invariant of the motion.

The existence of the invariant F(r, 0) has a simple
physical meaning (see below) and allows for a simple
description of the dynamics [11]. Remembering that for
real q (L ), 1- r = t is nothing else than the transmis-
sion coefficient, two different problems are to be

distinguished. The first (problem A) corresponds to the
transmission at fixed output wo, which arises if one
needs a fixed power at the end x = 0 of the layer. In
that case, one follows the influence of the potential
n (L) on just one characteristics. The linear problems
belong to this category : the characteristic curve being
w (L ) = 0. The second one (problem B) corresponds to
a fixed input wand one has to perform the calculation
of R (L, w ) by considering all the characteristics passing
through the chosen point (L, w ). In the next sections,
both problems will be investigated and the correspond-
ing results are different.

2.3 INVARIANTS AND HAMILTONIAN FORMU-

LATION. - The existence of the invariant F can be
traced back to the second-order differential equation
describing the wave field inside the medium. The wave
field is actually a complex number, and there are two
first integrals. The first one is the current and the
second is simply the energy : F is actually just the ratio
of these two quantities. To see that, it is useful to use
the impedance [12]

In terms of Z, the reflection coefficient R = R1 + iR2 is
given by R = (i - Z (L ) )/ (i + Z(L)). The real (a)
and imaginary (1/b) parts of Z are given by

It is easy to see that the current expression (wo) is :

In particular this implies I q, 12 = bwo and similarly one
has I aqllax 12 = 14112 1 Z 1 2 = bwo(a 2+ llb 2). For

the class of potentials considered here, the wave field
equation can actually be derived from a « Hamil-
tonian », which assumes the following expression :
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Using the above notation, it is very easy to check that
F (r, 0 ) is nothing else than the ratio of this invariant to
the current, up to a factor 1/2 and an additive constant
term.

The previous remarks allow us to write down a
Hamiltonian formulation in terms of the variables a and
b. Indeed, in the absence of the potential n, the

equations of motion for a and b are given by :

where 2 F is given by (2.12). For instance, for

f(u) = un, F (a, b ) assumes the following simple form

More generally, in the presence of the potential
V (x ), Hamilton’s equations (2.15) become

The equation of motion of F, in the presence of

V (x), is also simple and can be written as :

It is interesting to notice that the use of the conjugate
variables a and b leads to a simplified dynamical
system, rather than the apparently complicated set of
initial equations. However, (2.17), (2.18) are still
stochastic differential equations, with an additive noise
for (2.17) and a multiplicative noise for (2.18).

3. Transmission at fixed output.

In this section we investigate the behaviour of the
transmission coefficient for a fixed output wo. A
familiar example of this problem is given by the fixed
point wo = 0, which corresponds to the linear case [1] :
(t) ~ exp (- L /4 § ), where prefers to the localization
length. The approach used here is that of dynamical
systems. Indeed, in the absence of disorder, the rep-
resentative point (r, 0) exhibits a periodic motion on
closed orbits. The effect of a small disorder can then be
considered as a perturbation of the orbital motion. This
results in a random perturbation calculation ’of the
orbits and the net effect can be followed on the
Poincar6 [7] sections, on the real axis for instance,
r (o ) and r(ir). It turns out that at large L, r(O)
approaches the attractive point r = 1, 0 = ’Tr. In this

limit, the orbital motion exhibits a slowing down near

0 cz:: 7T and a rapid revolution elsewhere. The main
contribution of disorder comes however from the

regions where 8 # 7T. The appropriate method to

handle this perturbed orbital motion is provided by the
well known [7] averaging of the perturbation over each
period. The main object of the next subsections is a
rather detailed exposition of this approach.

3.1 ANALYSIS OF THE UNPERTURBED MOTION. -
The analysis of the phase space portrait is facilitated by
the existence, in the absence of disorder, of the

following invariant of motion

In the present case, the boundary condition r(L =
0 ) = 0 gives : F(r, 6) = 2 + aWö/2(n + 1) which al-
lows for a detailed description of the orbits r(o ).

Consider, for instance, the limit Wo = 00 . The orbital

motion reduces to : rll2 = - cos o , §  o  3 27r , and
the corresponding trajectory is given by the circle of
radius 1/2, centred at ( - 1/2, 0) (see Fig. 2).

Fig. 2. - Typical orbits (7?i, R2) in the absence of the random
potential, at wo = 00 (a) and wo &#x3E; 1 (b) respectively.

3.1.1 Large wo limit. - For large wo &#x3E; 1, the trajec-
tories are strongly modified near r = 1 and 0 = w. In
fact, in that region, 2/(1 - r) in (3.1) becomes

dominant, and a net deviation from the circular orbit
results. Indeed, for large wo, the circular motion is
followed in a large angular sector: J; = - cos (J,
7T/2 -- 0 ,- 7T - ;T, but in the remaining sector

,7r - iT  (J :s:: ir, the first term in (3.1) dominates, and
the trajectory is described by : 1 - r = 4(n + 1)lwon.
Here § denotes a small number given by
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The fixed points associated to the dynamical system
are located on the negative real axis 0=0 and are
given by the solutions of d61dL = 0 : 

In particular, for wo &#x3E; I : rl/2  1 - 2(1/wö)1/(n + 2),
o = 0 gives the fixed points of the dynamics. In terms
of w = wo/ (1 - r), this corresponds to : 1- r1/2 ~
w- n/2(n + 1). Some examples of the orbital motion are
shown in figure 3.

Fig. 3. - Orbital motion in the phase space (r, 0),
0 -- r -- 1.

The period of motion LP on the closed trajectories
can be calculated from the angular velocity expression
(k =1 ).

Therefore

The main contribution to Lp is given by the sector

r - p , 9 , r and then L 
1 w- n/2 In the remain-w - §  o  7T’ and then k o In the remain-

ing sector, the contribution to Lp is comparatively small
and can then be neglected. Note that Lp becomes
smaller and smaller at large wo and this in contrast with
the other limit wo  1, discussed below. In particular
this implies a rapid revolution of (r, 0 ) at large
wo.
The above analysis of the orbital motion can be used

to follow the pattern of characteristics and then the
surface r(L, w). A typical characteristic (w, L) is
shown in figure 4, where the periodic motion on the
orbits is shown to induce a periodic oscillation of the
characteristics. The slowing down of the orbital motion
at 0 =z ir results in a flat behaviour, at w = wl =

Fig. 4. - Oscillatory behaviour of the characteristic (w, L ) of
origin wo.

These remarks are actually very useful in solving
problem B (see Sect. 4). In fact, in this case, w is fixed
and we have to solve the implicit equation
w = wol (1 - r (L, wo ) ) for wo. This means that, for a
fixed level w, all the characteristics starting at wo and
satisfying this equation must be taken into account.
From the above analysis, the relevant wo are given by :
[4 (n + 1 ) w ] I / (n + 1) -.- wo , w. Furthermore, for fixed
w, 0  r  rmax, where

Therefore, the procedure to be used for the calculation
of r(L, w) at fixed w is the following one. Each
characteristic of origin wo, wo  w  w, generates a
sequence of points r(L, w ) which is periodic in L. The
union of all these sequences provides the desired
solution r(L, w), which defines the reflection coeffi-
cient at the chosen wand L. It is important to notice
that the period in L is not the same for all the

sequences. In fact each characteristic exhibits a large
number of folds (see Fig. 5) which becomes important
at large L. The period of the maxima (8 = 7T) is given
by: À [4(n + 1) w]- n/2(n + 1) whereas the period of
minima is : À W- n/2. This folding leads in particular to
the following multiplicity of folds :

which increases with both L and w. As will be shown in
section 4, this behaviour of the degeneracy of folds is
not altered by the presence of disorder.

Fig. 5. - Folding of the characteristic (w, L) as a function of
L. L. and LM are the periods of minima and maxima :
Lm ~ aw-n/2, LM w-n/(2n+2)
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3.1.2 Small wo limit. - In this limit, r remains in the
vicinity of the origin and F = 2 + a wfl/2 (n + 1 ). This
leads to the following equation for the orbits : r lt2 =
- a wo cos 0 /2. The corresponding trajectories are

simple circles of radius : a wô/4. The fixed points are
given by the centres of these circles. The angular
velocity on the orbits becomes

In particular, (3.5) yields the following expression for
the period (k = 1)

As before, the characteristics are periodic in L :

w (L) oscillates between wo and w1 = wol (1 - wo2nl4).
Therefore, at fixed w, r oscillates between 0 and

w2n/4. The period of minima is associated with the
characteristics starting at wo = w : the corresponding

period in L is given by 1 + wn/2 . Similarly, the period1 + wn/2
of maxima corresponds to the characteristics starting at
WO = w (1- w2n/4 ) : the corresponding period is

Finally, the proliferation of folds can be measured with
the multiplicity of folding :

The degeneracy increases linearly with L, but much
more slowly with w in comparison with the large w
limit.

3.2 PERTURBATION OF THE ORBITAL MOTION BY

DISORDER. - In this section, the effect of a small
disorder (i. e. potential q (L)) on the orbital motion is
investigated. A more systematic study of the influence
of disorder will be found in the next section. Here we
limit our investigation to the large L limit, where
1- r = t is vanishing.
Let us first consider the behaviour of the orbits. To

the lowest order in t, (3.1) gives the following ex-
pression for F(r, 0)

Similarly, the angular velocity becomes

Assuming that t = to at 0 = w before the random
perturbation is turned on, (3.7) shows that the equation
of motion can be then simplified as follows

«(J = ’IT - cp ).

and

Here, (p 
* denotes the extension of the angular sector

where the second term in (3.7) dominates :

Performing the same sort of analysis for (3.8), one
obtains the following behaviour for the angular vel-
ocity :

and

The two angular sectors are matched at 0 = ff - cp *.
Equation (3.11) shows that, as long as 0 is close to w,
the angular velocity can be expressed as a function of
the reduced variable cp I cp * . The contribution

n/2(n + 1 )
to 

n/2(n + 1) 
of this sector to the period in

w0
L dominates that of the second sector, which is

proportional to (tolwo)n/(n + 1). This leads in particular
to the following expression of the period : Const.

(tolwo)n/2(n + 1). Here the constant in front refers to an
n-dependent prefactor.

3.2.1 Averaged perturbation method. - In order to
follow the effect of a small disorder on the transmission

coefficient, we consider the dynamical system giving
the « time » evolution of r and 0:

In the absence of q (L), the orbital motion correspond-
ing to these equations has been studied in the previous
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section 3.1. In the limit considered here : 1- r  1,
(3.12) and (3.13) reduce to :

The presence of q (L) generates fluctuations around
the closed orbits described above. The main contri-
bution of q (L) comes from the sector where 0 :0 1T,
because q (L) enters the equations of motion via the
combinations (1 + cos 0 ) q (L ) and sin 0 , q (L). This
results in a diffusion-like motion of the Poincard section

points. To the first order in q, the average of the

perturbation Ar, integrated over each revolution period
(0 -- 0 ---- 2 1T), vanishes. In fact, using (3.14) and

(3.15), one deduces

The average over n (  n &#x3E; = 0 ) gives no contribution to
(1 - r). To the second order, one obtains

The average over q leads to :

Therefore, the net effect of disorder can be cast as
follows

The different contributions to the integral in (3.18) can
be separated and the final result is =- cp *3. However,
the period of motion is proportional to cp * and this
leads to

Due to the persistence of a quasi-orbital motion in the

presence of the perturbation, a non-monotonic be-
haviour of t = 1 - r is obtained on each characteristics

w(L). The typical values as given by (3.19) are

respectively : t.i.(L) = L- (n + 1)/n (at 0 = ff ) and

tmax(L) ~ L -1ln (at 0 = 0). The average value of t :
tmin(L) t(L) -- tma.(L) is therefore no longer an

exponential function of L, but a power law. This
behaviour contrasts with the well known exponential
decay in the linear case (i.e. at wo = 0). The power laws
tmin (L ) and tmax (L ) must be viewed actually as the
lower and upper envelops of the true  t (L » . A similar
behaviour has been obtained in [4], for n = 1 and
another derivation of this result will be given below.

3.2.2 Fluctuations and self-averaging properties. - It is
well known [1] that at wo = 0, i.e. in the linear case, the
fluctuations of t, r, ..., etc., are very significant and the
full probability distribution of t is of importance. In
order to follow the influence of non-linearities on the
statistical distribution of t, we shall use the approxi-
mated equations for the unperturbed orbital motion

The corresponding angular velocity in the three angular
sectors is given by

As will be shown below, there are two sources of
fluctuations : the first is due of course to disorder, and
the second comes from the orbital motion. Actually,
the averaging procedure over the closed orbits gener-
ates « fluctuations » which dominate at large wo, where
non-linearities govern the behaviour of t. Here we shall

investigate this second source of fluctuations.

3.2.2.1 Average and fluctuation of 1/t (L ). - Follow-
ing the definition of the average over each period, one
has ( [... ] denotes the average over orbits) :
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The sector 0 # 7r does not contribute to the integrals,
because t and also (dO/dL) are large in this sector. The
main contribution to the numerator is =- cp */to,
whereas the period (denominator) is = cp*. This implies
in particular that [1/t] = Const. l/to.
The same argument also holds for 1/t2 and [1 /t2 =

Const. 1 /t2 . This leads in particular to the relative

fluctuation

This « self-similar » behaviour of the fluctuation of

llt originates from the following fact. The angular
sector contributing to the average of 1/t has the same
scale cp 

* as that contributing to the period.

3.2.2.2 Average and fluctuation of t. - According to
(3.20) and (3.21), t increases in the sectors where

d6/dL increases. Therefore the fluctuations of t should
be large. Using a similar expression as (3.22) for t and

taking the ratio t de from (3.20), (3.21), onedL 
obtains (k =1 )

Note thatfor 0 =7r: t=to andfor 0 = 0 :

Equation (3.24) shows that [t]/wo is nothing else than
the geometrical mean of these two extreme values of
t/wo. This implies in particular a large fluctuation of t.
Indeed, the expression of [t2] assumes the following
form :

The resulting relative fluctuation behaves as

which diverges as to --* 0, at fixed wo.
3.2.2.3 Average and fluctuation of In t. - The average
of In t is dominated by the sector 0 = iT, because of the
slowing down of the angular velocity in this region.
Taking the main contributions to In 1/t and (In 1/t )2
into account one deduces that the relative fluctuation of
In 1/t, due to the orbital motion, vanishes at to -+ 0.

Anticipating the results of the next section, the above
results can then be summarized as follows :

1) (l/t) is dominated by tmin(L), (l/t) - Ll +l/n
and the distribution of 1/t becomes self-similar at large
L.

2) ( ln t ) is similarly dominated by tmin (L ) and the
relative fluctuation goes to zero at L = oo .

3) (t ) is given by the geometrical mean of tmin (L )
and tmax (L ) and decays to zero as a power law of L.

The physical origin of the power law decay comes
from the equation w = wo/ (1- r) of the character-
istics, which implies that non-linearities dominate defi-
nitely at large L. In fact, due to disorder, r(L)
approaches its asymptotic value (=1 ) and this en-

hances in a sensitive way the role of non-linear terms.

3.3 HAMILTONIAN APPROACH. - An equivalent app-
roach to the transmission problem A is provided by the
Hamiltonian formalism described in section 2. This

approach is facilitated by the existence of the invariant
F. Making the change of variables

the corresponding Hamiltonian is H = 2 F. The as-

sociated Hamilton’s equations, when q (L) is present,
are given by

It is important to notice that the perturbation q (L ) is
« time » dependent. The Hamiltonian formalism allows
us to write down a Fokker-Planck equation for

F (r, 0) and then to follow its probability distribution.
Recall that JC is given by the following expression
(k =1 )

In the presence of the potential q (L,) the « time »
evolution of F, as deduced from (3.27)-(3.28) is given
by :

Using Novikov’s theorem [9], the « time » evolution of
the moments (Fm) of F can be deduced from (3.29).
For instance, (F) and (F2) are the solutions of the

ordinary differential equations

Equation (3.30) permits us in particular to follow the
variation of F in the general case. In the weak disorder
limit, (b), (a2b2), (Fb), etc., can be approximated
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by their values corresponding to the motion on an
unperturbed orbit.

3.3.1 Large wo limit. - Before going to the calculation
of the moments of F and its probability distribution, let
us first consider the unperturbed orbital motion in the
phase space (a, b). In the new variables, the closed
orbits are invariant under a - - a and the ranges of
variations are : - oo , a -- oo , b -- 0. In the limit
r --+ 1, 0=0 corresponds to b = oo and 0 = 7T is
reached at b = 0.

In what follows, H will be written as

aWn bn+lwhere G(b) = b + l/b + awô -1 denotes the posi-n+1 
tive function shown in figure 6. The minimum of

Fig. 6. - Schematic plot of the function G (b ) used in the
text. The values bo and bl of b are associated with the position
of the turning points, of the periodic motion at a fixed level
2 F.

G (b ), which occurs at b = b * is actually the fixed point
of the dynamical system. In the limit of large wo,

The position of b * is close to bc corresponding to the
value of b, where the main terms: 1/b and

a wo’ b n "In + 1 become comparable :

at large wo. Two other special values of b are given by
the solutions of : H = G (b ). In the vicinity of the first
b = &#x26;o == 1/2 F, G (b ) ~ 1/b and

whereas for

and

In terms of the above notation, the period Lp in L takes
the following simple form

Actually, bo and b1 can be viewed as the turning points
for the periodic motion on the orbit corre-

sponding to the fixed level 2 F in figure 6. For an initial
condition r(L = 0 ) = 0, i.e. &#x26;i = 1, one has 2 F =
2 + a w’ (n + 1 ) &#x3E; 1 at large wo. This implies in par-
ticular that in (3.32), the dominant contribution is given
by the interval [bc, b1], bc  1 S b, and then

The constant factor C is given by

It is interesting to notice that (3.33) reproduces the
result Lp ~ (tolwo )n/2(n + 1) obtained previously at

to ~ 0, where F ~ 2/to. Note however that equation
(3.33) is more general and no assumption on to is used
here.

Following the procedure described before, we con-
sider now the « time » evolution of (F), (F2), ...
using the average perturbation, duet to disorder, on
each orbit. All the calculations are performed to the
second order in q (L).

First consider the « drift » of F, due to disorder.
Using (3.30), one obtains for weak disorder

The integral in (3.34) is dominated, at large wo, by the
contribution of the interval [bc, b1]. This yields in

particular :

and then, when (âF) is divided by Lp :

Here where
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r (x) = gamma function. The integration of (3.36),
with the initial condition

at b =1, yields

Note that (3.37) is valid for all values of L, at large
wo. The result (F(L» -l/wo is obtained at large L.
Furthermore, wo/to appears as the scaling variable in
this regime. Under the action of disorder, F(L)
diffuses with a systematic « drift » towards larger
values. The associated diffusion in phase space is
illustrated in figure 7.

Fig. 7. - Diffusion-like motion, towards large F, under the
action of the random potential.

The same calculation can be repeated for (F2),
starting from (3.30). For weak disorder (a2 b2) and

(bF) can be replaced by their unperturbed values.
This leads to

Here again, [b,, bl] dominates the integral in (3.38),
and then

Comparing (3.39) and (3.37), one arrives at the follow-
ing conclusion. The relative fluctuation of F:

(F2) - (F)2 2 stabilizes at a constant value for large F,
(F)

i.e. large L. This behaviour of F will be termed « self-
similar » in the following.
The results so obtained for the moments of F are

confirmed by the « time » evolution of the probability
distribution W(F, L ) of the stochastic process F. The
Fokker-Planck equation satisfied by W(F, L) can be
written as [9]

The « drift » coefficient, in (3.40) is given by

Similarly, the diffusion coefficient is given, to first
order in g, by

Here

The resulting Fokker-Planck equation can then be
written :

A more familiar form for (3.43) can be obtained, by
making the following change of variables :

This change of scales leads to :

The normalized solution of (3.45) is
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for I &#x3E; 0 and W(I, M) = 0 for 1  0, where c(n) =
A (n) - 2 A (n) and d(n) = A (n) n 2 + n 1 
The obtained solution for W(I, M) permits the calcu-

lation of the moment (FP) of F :

In particular, the previous results for (F), (F2) and
the relative fluctuation

are recovered.
The solution (3.46) is actually valid for large L, such

that (F (L )) &#x3E; F (L = 0)= Fo is fulfilled. In order to
describe the other limit, we make the change of

variable : I’ = I - Io, where Io =1 corresponds to the

initial value Fo - 1 (n + 1 ) of F. The probability2 a won 
p Y

2 awô
distribution W’ for I’ is now the solution of the

following equation (valid for  I’ « 1).

Equation (3.48) shows that (3.46) is no longer valid for
I 1’1 :$ 1. Using (3.48), one deduces the Gaussian
distribution for I’ :

Equation (3.49) describes the region where I I’ 1 :5 1,
whereas (3.46) is valid at /’ 1. The difference be-
tween these two distributions can be seen on the
behaviour of the moments of I. For the exponential
distribution :

For the Gaussian distribution :

Note that g (n )  A (n ) and then

as it should be. Furthermore the only dependence of
the relative fluctuation of F on n is via À (n) and
JL (n).
Let us conclude this section by noting that (3.43) can

be used to support the approximation, used in the
derivation of (3.37), where the fluctuation of AF

(Eq. (3.35)) has been neglected. Indeed starting from
(3.43), one deduces, for large L :

and then

Repeating the same calculation fox (F2), one obtains
in a similar fashion :

The results so obtained support the previous ones, and
show that 2(n + 1) Flwon is actually the appropriate
scaling variable.

3.3.2 Small wo limit and linear-non linear crossover. -

In the previous section, we have considered the case of
strong non-linearities, i.e. large wo, where already at
L ~ 0, the whole behaviour is dominated by the non
linear terms. However, there are characteristics, start-
ing at vanishing wo, where disorder dominates first at
short length scales, and non-linearities govern at large
L. Such a crossover between a linear and a non-linear
behaviour takes place (for small wo) at a length scale
L *.
From the form of G (b ) as given by (3.31), it is clear

that three regimes can appear : G (b ) =1/b, G (b ) c= b
awn0 

n+1and G (b a Won_bn , according to the value of b.yt + 1
The crossover between the first two ones is art
b == 1, whereas the two other ones match at b2 =

1/nn + 1 /wo. Therefore a necessary condition fora 

the dynamics to be dominated by non-linearities is

given by : g(b2)  2 F. For small wo, b2 &#x3E; 1 and this

condition can be written : Fw 0 &#x3E; n + 1 lln In whata
follows we show that this condition is actually a

sufficient one. For the values of wo which violate this

requirement, the exponential decay of transmission will
be shown to take place.
Let us first consider the orbital motion in the absence
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of disorder. The dynamics can be approximated as

follows. In the interval, bo  b  1 where bo = 1/2 F

1 1BTone has G(6) ~ 1/b and then a = b 1 - 1 1/2 .-b 1 ( 1 b ) - ] 
1/2

one has G(b) ~ 1/b and then a = [6 bo - b 
In the second interval, 1  b  b2, G (b ) ~ b is linear in

[2 F 1/2
b and a = [2 F ] 1/2 Finally for b2  b  b1 whereb and a = 

b - 1 . Finally for b2 : b : b1 where

G (b ) can be written as

and

This leads to the following expression for the oscillation
period :

For small wo, b2  b, and the integral is dominated by
the contribution of [b2, b1] and then Lp == [bl/2 F]1I2,
which is the same behaviour as for large wo. Note
however that in the quasi-linear regime where

G (b2 ) &#x3E; 2 F, the interval [b2, b1] is no longer present.
In this limit, the period becomes independent of F as it
should be.

Following the same procedure as that used at large
wa, the « drift » of F, due to disorder (Eq. (3.34)) is

given by

The main contribution comes from [b2, b1] and then

Similarly, using (3.38), one obtains :

Note that in the quasi linear regime G (b2 ) &#x3E; 2 F,
(åF) period = F. However, Lp is independent of F in ,
that region. Therefore, an exponential decay of trans-
mission is expected. Equations (3.53) and (3.54) show
that beyond a crossover value of F, the large wo
behaviour is recovered. This crossover is given by

In particular for 0 = 7r, where F = 2/t, this corres-
ponds to a precise value of t and w :

aWp 4 n+1
Similarly, at 0 = 0 where F =.-- . W6 n t  theSimilarly, at (J = 0 where F 2 2(n + 1) t 

the

corresponding values are :

and

respectively, i.e. nearly the same values as 0 = 7r. One
therefore deduces the expression of the crossover

length (t) - e-L/4 in the linear regime)

The exponential decay regime ends up at L ~ L * and
this agrees with the intuitive picture described in the
introduction. Beyond L *, t decays as a power law of L
because of the enhancement of the non-linearities.
Note that L * diverges as we - 0 or a -+ 0. This means
that for vanishing non-linearities, the exponential decay
extends on a larger and larger length scale.
Beyond L *, F is given by an expression similar to

(3.37) :

This is consistent with the fact that

is the appropriate scaling variable.
In figure 7, the different behaviours are clearly

shown. Starting at small wo, we have periodic oscilla-
tions between two turning points in the « well »

G (b ) vs. b. Under the action of disorder, a diffusion-
like motion takes place, towards large F. As far as
G (b ) ~ b, we have an exponential decay of transmis-
sion. However for larger F, G (b ) changes over towards
G(b) - bn + 1, where non-linearities dominate. This

picture explains in a rather simple way the crossover
described above. For more general forms of non-
linearities, such a crossover always takes place and this
because of the modification of the form of G (b ) at
large b.

4. Transmission at fixed input.

In this case (Problem B) one is interested in transmis-
sion at fixed w and L. As explained above this requires
performing the averages over all characteristics. In the
limit of large L, the function w (L ) along a characteristic
curve oscillates strongly as a consequence (Eq. (2.10))
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of the oscillating behaviour of r(L). Furthermore, the
oscillation period depends on the initial value wo. As a
result, there is in general a large number of character-
istics which satisfy w (L ) = w (for a given w). This
multiplicity of solutions is indeed an important feature
of the propagation of waves in non-linear media, and
this occurs for each individual realization of the poten-
tial 7J (L). In the following we shall limit our attention
to the large w limit. In this case, the small L behaviour
is dominated by non-linearities. However, at large L
the wave intensity becomes smaller and smaller and an
exponential decay is recovered. The other limit,
W --+ 0, is definitely dominated by disorder and non-
linearities are irrelevant. This behaviour at fixed input
contrasts with the previous one (Sect. 3) at fixed

output.
Following the same procedure as that used in the

previous section, it is useful to follow the behaviour of
transmission at 0 = 0 and ir. For this, we recall the
expression of F:

and

and

where L* - 4 n 6 In ((n + 1)/a wo"). Assuming w &#x3E; 1,
n 

(( )/ o) g

we shall first find the characteristics leading to

w(L) = w at 0 = 0 and 0 = 1T respectively. The poss-
ible values of r(L) 1 - t (L ) are lying between two
limits r1 (L ) , r (L ) , r2 (L ). Here ri(L) (resp. r2 (L ))
are given by the characteristics of origin wo, such that
w(L) = w at 0 = ir (resp. 0 = 0).

4.1 RECOVERY OF AN EXPONENTIAL DECAY. - Let
us consider first the case 0 = 1T. In the limit w &#x3E; 1,
F = 2/t and w = Fwo/2. Using the expression of F
(Eq. (4.1.a), one has to solve for wo the following
equation

The corresponding solution can be written as

where we have defined the following length scale

Li:

Equation (4.3) leads in particular to the following
expression for the transmission coefficient t1 (L ) ;

which, at L = 0, reproduces the known result of a pure
non-linear medium :

The range of validity of the above expression is actually
much shorter than L1 (w), because we have used the

awn
expression of F corresponding to n + 1 &#x3E; 1. Indeed, asn+
L approaches Li(w), wo decreases, and the above
expression for t1 (L ) is no longer valid. Using the
obtained solution for wo, aw§/(n + I ) = I gives the
following range of validity :

and for large w, this range extends up to Ll (w ).
For length scales larger than L1 (w ), the relevant

characteristics originate at vanishing wo, where disorder
effects dominate. In this limit, the origin wo is given by
the solution of w = Fwo/2, F being given by (4.1.b) :

The solutions wo are given by the implicit equation
(w&#x3E;1): :

i.e.

Therefore, one obtains:
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We now turn to the other limit 0 = 0, where for large w
the following expression for F

holds. Using (4.1.a) one deduces the following equation
for wo :

and the corresponding solution leads to

Here,

and L2 (w ) = a (4 w )n/2 A (n ) gn respectively.
The range of validity of the above expressions for

a wo
t2(w) is fixed, as for t1(w), by n + 1 _1 :

For length scales beyond L2 (w ), one has to use (4.1.b)
for the calculation of wo. As for 0 = 7r, one finds the

following implicit equation for wo :

and then

The corresponding expression for the transmission
coefficient is therefore given by

It is important to notice that  L, (w)  L2 (W)
holds at large w. This means that these three length
scales are well separated at large (fixed) input w. The
curves rl (L ) =1- tl (L ) and r2 (L ) =1- t2 (L ), as

shown in figure 8, are actually the envelops of r(L),
which oscillate between them. The real r(L) exhibits a
large number of folds as L increases and this degeneracy
will be discussed below. It is important to realize that
an exponential decay is obtained here at large L. In fact
as L increases the origin wo of the relevant character-
istics decreases and then a crossover towards an expo-
nential decay is obtained for the transmission. The

corresponding crossover lengths are L1 (w ) ~
(awn)l/(n+l) and L2(W) - a Wn.  respectively.

Fig. 8. - Schematic behaviour of the upper and lower bounds
rl (L ) and r2 (L ) of the reflection coefficient.

This behaviour contrasts with problem A, where an
algebraic decay has been shown to take place. Physi-
cally, this originates in the initial damping of the wave
intensity, on a length scale given by L1 (w ) (or
L2 (w )) which are larger than at large w. This damping
allows the recovery of the linear-like behaviour, corre-
sponding to the fixed point w = 0.
The obtained behaviour for r(L) can actually be

understood by noticing that at 0 = 0 as well as

0 = Tr, W is a function of the scaling variable Fwo.
However, Fwo becomes independent of wo at large L
on each characteristics. This leads in particular to the
behaviour of the asymptotic envelops, shown in

figure 9. In fact, using (4.2) and (4.12) it is easy to see
that, at large w, w - L 1 + l/n at 0=,7r and w-

L l/n at 0 = 0 and then wo does not appear in the
equations of these asymptotic envelops.

Fig. 9. - The two dashed lines : w ~ L 1 + 1/11 and w - L 1/n
show the asymptotic envelops for the characteristics (w, L).

Note that the existence of such asymptotic envelops
(towards which the characteristic envelops converge) is
a very general property which holds for a large class of
non-linear models. This remarkable property is at the

origin of the existence of two well defined length scales
Li(w) and L2 (w ). To see this, we recall that the

transmission across a non-linear medium described by
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can be described in terms of the « Hamiltonian »
H = 2 F, where

where Y denotes a primitive of the function f. R
governs the evolution of a and b in the absence of
disorder. In the presence of disorder, one has the
following evolution equation for F (Eq. (3.10))

Furthermore, when non-linearities dominate,

and then

This equation for (Fwo) shows that Fwo is actually the
appropriate scaling variable in the problem described
by (4.17). For both 0 = 0 and 0 = 1T, w (L ) on a given
characteristics, becomes independent of wo. Note that
this remarkable result is a very general one and holds
for any non-saturating (f(oo )= oo ) positive function
f.

4.2 FOLDING AND DEGENERACY. - For a given
realization of q (L), the reflection coefficient r(L)
oscillates between rl (L ) and r2 (L ) as calculated above.
Furthermore, r(L) exhibits a large number of folds,
which are responsible for the hysteresis of r(L)
(Fig. 10). It appears that this degeneracy increases with
both w and L, and is independent of the strength of
disorder g.

Fig. 10. - Folds of a typical r(L).

To see this, let us define the degeneracy as follows.
The abscissas of the points where r(L) hits the lower
(resp. upper) envelop are ordered as follows: ao 
at : ... : an : ... (resp. bo : b1 : ... : bm : ... ).
For a fixed abscissa x, there are two different intervals

containing this value : bm  x  bm + 1, an  x  an + 1,

where m « n. The successive arcs of r(L), crossing the
vertical line at x, are of number 2 (n - m) - 1 :

The degeneracy of folding is then defined by

where 7r, (L’) (resp. 7r, (L’)) refers to the short

(resp. large) period of oscillation at L’, corresponding
to the lower (respectively upper) envelop.

It appears that, at large L, 7T, and 7T &#x3E; become

independent of L. More precisely,

where y denotes a constant number.
In fact, on the upper envelop, Fwo = 2 w and then

Similarly, on the lower envelop,

with f3 = 1 at r (L ) ~ 0 and f3 = 4 at r ~ 1. Therefore,

Using (4.21) and (4.22), one deduces

This result shows that the degeneracy of folding in-
creases linearly with L (at large L) and is independent
of 9 : only w is involved in the expression of deg (L).

5. Non-linear randomness.

In the previous sections we have focused our attention
to the cases where the random terms enter the field

equations additively. In this section, we shall consider
another case where a (x) is a random variable. This

implies that the non-linear term is a random variable
with a prescribed probability distribution. We only
consider the case where the potential V (x ) is absent
and only random non-linearities are present. In such a
situation, it is useful to consider first the case of a

negative constant a before going to the random case.

5.1 CASE OF NEGATIVE a. - Using the same form of
non-linearities, one is interested in a wave field de-
scribed by

where a is a negative real number.



543

The invariant of motion is still defined, as before, by

and the equations of motion are

1 Won n+1 .

The function G(b) = b + b + a n + 1 b is shown in
figure 11 for I a I --c 1 and a &#x3E; 1 respectively. In the
limit of small non-linearities, there is a non-trivial fixed
point b *, which is unstable. Qualitatively, the dynamics

Fig. 11. - Schematic picture of the function G(b) (as in
Fig. 6) for small (I a  « 1 ) and large (I a &#x3E; 1 ) non

linearities. Here b * refers to the unstable fixed point and
bmin is the initial value of b.

in the phase space is modified : the trajectory reaches
the point b = oo in a finite «time» LIM. Indeed

Z.oo is given by (db/dL = 2 ab )

On the other hand, one has

and then

The limiting point a = b = oo corresponds to r = 1

and 0 = 7r. This point is not a fixed point however : the
phase is still running over the interval [0, 2 iT ]. The
phase trajectories are shown in figure 12, for weak and
strong non-linearities respectively. A qualitative modifi-
cation of the dynamics occurs at a critical value of

Fig. 12. - Orbital motion in the phase space (r, 8),
0 , r -- 1, for negative values of a (compare with Fig. 3).

(a wö) corresponding to the disappearance of the

unstable fixed point b *.
In the present case, the reflection coefficient reaches

the value r = 1 at a finite distance Loo and this

corresponds to a « self repelling » of the incident wave.
This phenomenon occurs at F, large enough, thus

allowing the maximum of G (b ) to be reached at small
a ; and for any value of F when there is no maximum

(large a).

5.2 RANDOM a (x ) CASE. - Assume that a is the sum
of two terms : a positive constant a and a random term
Q (x ). In the following, 13 (x) is assumed to be a

Gaussian white-noise : (B (x ) ) = 0, (13 (x ) B (x’)) =
g8 (x - x’ ). The equations of motion are now given by

and differ from the pure case by the presence of an
additional term for da/dx. Here F is given, as above,
by (5.2).
As for the additive noise, the equation of motion of F

can be used to follow the influence of disorder. In the

present case, we have

Using Novikov’s [9] theorem, one deduces

In particular, for weak disorder one obtains :

In comparison with the additive noise case, there is an
additional term wo2nb2n.
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The same analysis can actually be repeated and the
following results are obtained. The average rate of
variation over one period becomes

where A’(n) denotes a constant given by

Neglecting the fluctuations of F, one obtains

and then for F (L = 0) = Fo :

Equation (5.15) shows in particular that (F) diverges
at a finite length and this expression makes sense below
this length scale. The above approximation is actually
valid either at large wo or at small wo but at values of L
such that f (L ) has reached large values (beyond the
region where G (b ) ~ b). This behaviour of F (L ) can
be explained as follows. The random term a + B (x ) is
actually a white-noise, so that this sum can assume
negative values and this situation has been analysed in
the previous section. In fact for negative a + 13 (x ) and
large F, the point r = 1, 0 = ir is reached by all orbits.
This implies that F increases very rapidly. Therefore,
(F) can diverge at a finite length. Beyond this length,
the random variable F is described by a singular
probability distribution, for which (F), (F2), ... di-

verge. Such a behaviour would correspond to a com-
plete self-repelling of the incident wave.
The above picture becomes more precise by working

out the Fokker-Planck equation describing the evolu-
tion of F. Using (5.9), the rate of variation of the
fluctuations of F, calculated over one period, is given
by

where

The probability distribution W(F ; L ) of F is then the
solution of the following Fokker-Planck equation

From this equation, one deduces

This result shows that (5.15) gives actually a lower
bound for (F). In particular this implies that (F)
diverges at a length L  L’ , where L’ is given by

In particular, at large wo, where Fo = aWö/2(n + 1 ),
L’ assumes the following simple form

This means that (F) diverges more and more rapidly
either at large g (strong disorder) or at large wo (large
power). Furthermore, (Fm) diverges at finite L for
every integer m &#x3E; 0, and this because

Let us now assume that beyond this length L’ ,
W(F, L) reaches (if any) a stationary distribution.
Then (5.17) leads to the following behaviour for this
distribution
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at large F and large L. This means that the stationary
distribution does not exist. All the moments (as well as
their derivatives) diverge : in particular such a distribu-
tion is not normalizable.

6. Conclusion.

The main results of this paper have been summarized in
the abstract and the introduction. In this final section
we discuss some general features of our results and a
number of open problems.

1. It is clear that the formalism we have used here

permits us to investigate a large class of problems,
where non-linearities enter through the intensity of the
wave field. We have limited our attention to a simple
form f(u) = un of non-linear terms in the wave field
equation, but the derived results are actually very
general and hold for different distributions of disorder.
The generic behaviour of transmission can be under-
stood from (2.10) : w (L ) = w (0 )/ (1- r(L)). Due to
the random potential, the reflection coefficient in-
creases and this results in a sensible enhancement of the
non-linear terms. For instance, in the case of fixed

output, the usual exponential decay will dominate only

at short distances or for very weak non-linearities. At

large length scales non-linear terms dominate the

transmission behaviour and this can be viewed as a
breakdown of the backscattering mechanism. The abs-
ence of a superposition principle is actually at the origin
of this behaviour.

2. Neglecting the generation of harmonics is not a
serious limitation to our results : a higher group velocity
corresponds to a larger localization length C and then a
weaker sensitivity to disorder. This approximation can
be expressed in terms of a length scale condition for the
range of applications of the results.

3. The problems worked out in this paper are

relative to the stationary regime. The stability of such a
regime has not been addressed here and is still a

completely open question.
4. Transmission through optical fibers are probably

potential candidates for an experimental realization of
the systems investigated in this paper.

Acknowledgments.
The authors are grateful to Dr. B. Souillard for sending
a preprint of references [4 and 5] prior to publication.

References

[1] ANDERSON, P. W., Phys. Rev. B 109 (1958) 1492.
MOTT, N. F. and TWOSE, W. D., Adv. Phys. 10

(1961) 107.
LANDAUER, R., Philos. Mag. 21 (1970) 863.
For a recent review, see SOUILLARD, B., Phys. Rep.

103 (1984) 41.
[2] DOUCOT, B. and RAMMAL, R., to J. Physique

(1986).
[3] BELLMAN, R. and WING, G. M., An Introduction to

invariant Imbedding (Wiley, New York) 1976.
[4] DEVILLARD, P. and SOUILLARD, B., J. Stat. Phys. 43

(1986) 423.
[5] DEVILLARD, P., Thesis Troisième Cycle (Univ. Paris)

1986, unpublished.
[6] See for instance KAPLAN, A. E., Sov. Phys. JETP 45

(1977) 896.

[7] ARNOLD, V. I., Geometrical Methods in the theory of
ordinary differential equations (Springer, New
York) 1983.

[8] LANG, R. H., J. Math. Phys. 14 (1973) 1291 ;
KUMAR, N., Phys. Rev. B 31 (1985) 5513.
See also HEINRICH, J., Phys. Rev. B 33 (1986) 5261,

and references therein.

[9] See e.g., VAN KAMPEN, N. G., Stochastic processes in
Physics and Chemistry (North-Holland, Amster-
dam) 1981.

[10] COURANT, R. and HILBERT, D., Methods of
mathematical physics, Vol. II (New York, Inters-
cience Publ.) 1962, p. 139.

[11] A similar invariant has been used in references [4, 5].
[12] SULEM, P. L., Physica 70 (1973) 190. See also

reference [4] above.


