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Résumé. — On décrit un cadre général pour résoudre les problémes de transmission d’ondes a travers un milieu
désordonné. En utilisant une approche de plongement invariant, on démontre des équations différentielles vérifiées
par les coefficients de réflexion et de transmission. En général, le probleme de la transmission (probléme aux valeurs
limites) se réduit & un probléme de Cauchy (2 valeur initiale). Des résultats connus retrouvés et des nouvelles
équations sont obtenues pour les problémes multicanaux et les milieux dépendant du temps. L’extension de cette
approche a d’autres situations est décrite bri¢vement, ainsi qu’une approche systématique pour étudier les équations
stochastiques obtenues. Le cas d’un seul canal est utilisé comme exemple d’illustration.

Abstract. — A unified framework for solving the problems of wave transmission across a random medium is
outlined. Using an invariant imbedding approach, differential equations are derived for the reflection and
transmission coefficients. In general, the transmission problem, viewed as a boundary-value problem, can be reduced
to an initial-value Cauchy equation, relative to the imbedding parameters. Known results are recovered and new
equations pertaining to muitichannel problems, time-dependent medium, etc., are obtained. The extension of this
approach to other cases is outlined. A systematic method for the investigation of the stochastic differential equations
so obtained is described. The case of one-dimensional linear media is used as an illustrative example.

1. Introduction.

The classical theory of transport focuses attention on
the fluxes inside the transporting material and ends up
with Boltzmann equation or linear response theory.
Another point of view has been advanced by Land-
auer [1] where one is mainly concerned with external
quantities such as reflected and transmitted currents.
Both approaches start from first principles. The second
approach has been used extensively during the recent
years for the study of Anderson localization [1-6]. For
instance, the electrical conductance g of a random
medium can be expressed simply [1] in terms of the
reflection and transmission amplitudes across the con-
sidered random medium.

For some specific cases, such as tight binding models
describing linear media, it is possible to obtain explicit
expressions [6] for g in terms of Green’s functions,
associated with the model at hand. The extension of
such techniques which are mainly based on the transfer
matrix method seems to be very hard. For instance,
when non linearities are present in the random

medium, the transfer matrix technique seems to fail
completely. In this case, there is no simple way to
handle the corresponding transmission problem.

The main object of this paper, the first in a series, is
to present a natural framework for the implementation
of Landauer’s programme. The first idea is the use of
the invariant imbedding equations. An interesting and
recent account of this method, which has been used
since the time of Stokes[7], can be found in re-
ference [8]. The general principle of the invariant
imbedding method is to address directly the emergent
quantities ; the reflection and transmission coefficients.
this can be done through the reduction of the initial
(boundary-value) problem to a Cauchy (initial-value)
problem, relative to the imbedding parameters. The
reflection and transmission coefficients are then de-
scribed by a closed set of non-linear differential
equations.

Having the appropriate equations for the relevant
quantities, one can adopt the point of view of dynamical
systems where the imbedding parameters play the role
of time. In such a case the known perturbation techni-
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ques of dynamical systems can be used to derive some
useful results. Furthermore, when randomness is pre-
sent, one can use the stochastic differential equations
obtained from the invariant imbedding approach, in
order to derive directly Fokker-Planck equations for
the probability distributions of the emergent quantities.

The emphasis of this paper is to show the full
generality of this methodology for the study of wave
transmission across a random medium. To our know-
ledge, only the one-channel problem in one-dimension-
al linear medium [9] has been worked according to
~ these lines of ideas. In the next papers of this series,
new problems will be addressed following this scheme.
This paper is self-contained (no prior knowledge of the
invariant imbedding ideas is required) and organized as
follows. In section 2, we derive the basic equations for
linear problems. Two different methods are used to
establish and interpret the invariant imbedding equa-
tions in the case of one channel in 1D linear medium.
The multichannel transmission problems as well as the
time dependent media case are then shown to give rise
to matrix Riccati equations. A formal solution, ob-
tained from the « linearization » of this set of equations
is given at the end of this section. Section 3 is devoted
to non-linear media, where the non-linearities are
assumed to be a function of the wave field intensity. A
detailed account of the results obtained for the trans-
mission across non-linear random media will be found
in reference [10]. Illustrative examples are discussed in
section 4. In addition to some new results, a large
number of known results are derived in a systematic
way. The possible extensions of this approach are
briefly discussed in the conclusion.

2. Linear problems.

In this section we shall derive the basic equations of the
Invariant Imbedding approach to the transmission
problems. In some particular cases, such as the one-
channel problems, the same results can be obtained
otherwise, using the notion of impedance for instance
[11]. Here we try to be as general as possible and this in
order to allow for natural extensions.

2.1 ONE-DIMENSIONAL PROBLEMS.— In order to
illustrate the main steps of the Invariant Imbedding
approach, let us consider the case of a plane layered
medium which occupies part of the space 0 <x =< L.
The complex amplitude of the field is assumed to be a
solution of :

2.1)

where V (x) is a given potential and V (x) = 0 outside
the layer. Here one is interested in the stationary
regime, corresponding to solutions of (2.1) of the type
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Y(x,t)= eik’t ¢(x). This leads to the following
equation for ¢ (x):

d2
d—x‘-’;—+k2[1+n(x)]¢=0

2.2)
where 7 (x) = — V (x)/k>

Let a plane wave ¢4(x) = ¢'*(L = %) pe incident on the
layer at the right. The physical quantities of main
interest are the complex reflection R; and transmission
T, coefficients across the layer. The main idea for the
calculation of R; and T; is a follows. Instead of
considering the spectrum of (2.2), it is sufficient to have
a direct access to R; and T;. Such a task is actually
possible, because R; and T; can be shown to be the
solutions of ordinary differential equations, with respect
to the « imbedding » parameter L. Indeed, to the right
and left of the layer, the wave field has the form

¢ (x) = explik(L —x)] + R, explik(x — L)]

¢ (x) = T exp(- ikx). (2.3)

From the boundary conditions (continuity of ¢ (x)

and %x(ﬂ) on the layer boundaries, one gets from (2.2) :

e(L) =1+R,,
¢'(L) = —ik(1 - Ry) = —ik(2 - ¢ (L))
e0) =T, 2.4)

¢'(0) = —ikT, = —ike(0).

Equations (2.2)-(2.4) define a very well posed problem
and our goal is the calculation of R; and T;. Before
going into details, let us mention that (2.2) may
describe different situations such as optical problems
where 1+ 1(x)=1- V (x)/k? plays the role of the
optical index n?(x). In the present notation 7 (x) can
be considered as the dielectric constant.

The main first step is to transform the boundary
value problem into an integral equation

plrs L) = kL0 4

ik L 1 ik|x—x'| ' "L 2.5
+70dxe n(x) e ;L) (2.5)

where we have used the notation ¢ (x; L)= ¢ (x).
This is the first step in the invariant Imbedding method.
Starting from (2.5) the main equations for R; and
T, considered now as functions of L, can be derived
using two different methods : analytical and graphical.

2.1.1 Analytical derivation. — Differentiation of (2.5)
with respect to L leads to

e (;L L aWyee;L)+BGx;L) @6)

where
A(L) = ik+’-2’fn(L). oL, ¢L=e¢(x=L;L)
@7
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and

. L . )
B(x;L) =525J dr’ k151 (x )MXL_L)
0

—A(L)—j dx %1 () o (x5 L). (28)

Now, it is not difficult to see that (2.8) can also be
written as

ik L 1 ik x—x'| '
B(x;L)=? dx'e nx') x
0

do(x'; L)
“ [ aL

—A(L)«p(x',L)]

and using (2.6)

. ik L 1 Nik|x—x"| ’ ’
B(x,L)=—2— dx'e nx').Bx',L).
0
(2.9)

This shows in particular that B(x, L) satisfies the
same equation (2.5) as ¢ (x ; L) but without the source
term. This implies that B(x ; L) =0 and then the
following equation for the field ¢ (x; L) inside the
layer :

do (x5 L)

o —AW@L) e(x;L)

(2.10)
with the boundary conditions ¢ (x ; L)|;_, = ¢, and
¢ (L ; L) = ¢;. Taking now the derivative of ¢; with
respect to L :

9¢L  de(x;L)
oL ax

dp(x; L)
o Y

=—ik2-¢ )+A(L) ¢,

x=L_

and using the boundary conditions, (2.4) and (2.10) one
gets (pr=1+Ry)

dR, ik
— =2 —n(L). A +R),
i 2lkRL+2n( ). 1+ Ly
R, =0 at L=0 (2.11)

which is an autonomous equation for the reflection
coefficient R;.

Similarly by taking (2.10) at x = 0, one obtains the
following equation for the transmission coefficient
TL H

T;
= lkTL +

i K@) A+R)T,,

T,=1 at L=0. (2.12)
These two equations for R; and T} provide a complete
solution of the present problem. In fact (2.11) is a
Riccati equation and has a well defined solution
(Cauchy problem). When R; is known, (2.12) gives the
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solution for T;. More generally, the wave field can be
calculated from (2.10) :

e(x;L)= ¢xexp[ik(L—x)+%Jdey n@). (py].

(2.13)

The intensity of the wave field within the medium can
be expressed in terms of |Rx|2. Taking x = 0, one

obtains the expression of |TL|2 as a function of the

reflection coefficient. For real 7, this reduces to the
conservation law |R|%*+ |T|? =1, as its should be.

2.1.2 Graphical derivation. — The previous equa-
tions (2.11) and (2.12) can be derived in another way,
which allows for a straighforward extension to more
complicated cases. The basic idea is the interpretation
of the integral equation (2.5) in terms of two elementary
scattering events :

i 0
¢(x, L)dx = e'k(L“)dx+J

— 0

[eiklx—x’| ] x

x [%n(x’)dx] e, L)dx']. (2.14)

Equation (2.14) admits the following interpretation.
The amplitude (to be) at dx around x is the sum of two
terms : the first one corresponds to the amplitude at
dx without scattering, whereas the second term repre-
sents the sum over x’' of the amplitudes at dx after
scattering at x’'. Each term in the second part is the
product of three amplitudes: i) the amplitude at
dx’, ii) the amplitude of scattering at x’ and iii) the
amplitude of free propagation from x’ to x. The two
elementary processes are therefore : e*%* ~1 4 ik dx

(free propagation) and & n (dx) x (scattering).

We compare now the reflection coefficients R(L)
and R(L — dL) corresponding respectively to the pre-
sent problem with a potential 7 (x) and that associated
with a cut off 1 (x) at L — dL. The difference between

these two coefficients is represented, to first order in
dL, in figure 1 :

R(L) = [1+ikdL]R(L - dL)[1 + ik dL] +
+ [%n(L)dL]
+ [i—lfn(L)dL]R(L—dL). [1+ikdL]
+[1+ikdL]R(L - dL)[ n(L)dL]

+R(L - dL)[ . n(L)dL]R(L dL)[1 +ikdL].
(2.15)
Expanding to first order in dL, one gets the following
equation for R(L)
drR
dL
which is identical to (2.11).

_szR+——n(L) (1 +R)
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L-dL

(1

) -

1
]

* i (2)
H

(3)

(39

Y . W
Yy

(4)

\UA

Fig. 1. — The different elementary processes leading to a
non vanishing contribution to the reflection coefficient
R,. Scattering events are represented by crosses.

With the aid of figure 2, one obtains in a similar
way :

T(L) = [1+ikdL] T(L — dL) +
+ [% n(L)dL]T(L _dL)
+[L+ikdL].R(L - dL)
x [%n(L)dL] LT(L-dL). (2.16)

8]

4

(2)

A
X

S

(3)

Fig. 2. — Same notation as in figure 1 for the transmission
coefficient T}.

Expanding to first order in dL, one gets similarly,

ar _ 'k.T+‘—2’fn(1 +R)T.

7 (2.12)

This rapid derivation of (2.11) and (2.12) shows in
particular the physical origin of the non-linear terms
R?and R.T.: the backscattering mechanism. In addi-
tion to its relative simplicity, the present derivation has
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the main advantage, over the analytical approach, of its
simple extension to more general cases.

Before using the Invariant Imbedding ideas in other
problems, let us summarize the «logarithm » of this
approach :

i) The differential equation of the wave field is first
transformed into an integral form. This first step can
always be performed. What we need here is just the
expression of the Green functions in the regions outside
the layer.

ii) Analytical approach : use the boundary conditions
to relate the field at the boundary to R and T.
Successive derivatives of the integral equation with
respect to the Imbedding parameters lead to the
desired equations.

Graphical approach : a simple interpretation of the
integral equation, in terms of some elementary scat-
tering events, is to be done first. By comparing the two
problems differing just by an infinitesimal change of the
Imbedding parameters, one obtains the main equations
for R and T.

It is clear that the above algorithm is not limited to
1D problems and can be extended to other boundary-
value problems. The main advantage is to provide a
direct access to the physical quantities of main interest,
through an initial value equation (Cauchy problem).

2.2 MULTICHANNEL TRANSMISSION PROBLEMS. —
As a typical multichannel transmission problem we
consider the following model [12]. N coupled dis-
ordered chains, of common length L, are described by
the following Hamiltonian ) X,,, where

n,m

1 &
- m‘az*' V,,(X):l Spp +

+ t(sn—l,n’ + 6n+1,n’) . (217)

R = [—E

Equation (2.17) corresponds to a free propagation
along the chains (1 < n < N) where the potential in the
n-th chain is given by V,(x). The coupling constant ¢ is
the binding energy between the chains, and describe a
tight binding on the perpendicular direction. There are
different manners of paking the chains into a wire and
this corresponds to different boundary conditions [12].
The eigenvalues problem, associated to (2.17), can bé
written as

Z Ko ¥nr(x) =0 (2.18)

where ¢,(x) is the wave field of the n-th chain and
E =k?/2m is the corresponding energy. In what
follows we assume a free boundary condition on the
transverse direction: ¢ = ¢y .1 = 0. The transmis-
sion problem can be defined in an identical way as in
the one channel case (see Fig. 3).

In order to derive the Invariant Imbedding equations,
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=

Fig. 3. — Notation for the multichannel problem.

it is convenient to diagonalize the Hamiltonian of
(2.17), with respect to the transverse direction. This
leads to a new basis where the channels are very well
defined. The new states are given by

) """(x)'( N1 )lnsin(";_r:l )
| 2.19)

and the Hamiltonian becomes

1 &
(—E'l'b'"—maz

~

8w = ) 8y + Vo (x) (2.20)

where

~ 2 . n
VM:—§V,,0(x)-N—_|_181n(7rrlON+1 )X
n'

-

xsin('rrnoN+ ) 2.21)

and
g, =2tcos [wn/(N +1)].

Therefore, outside the layer [0, L], the eigenstates are
plane waves, of wave vectors k,, given by
K2 —k?
2m

=2tcos(i7r—1), lsa<N. (222

N +

Each k, defines a channel for the incident wave to the
right of the layer. Using the channel basis, the integral
version of (2.18) becomes :

2m
2ik,

lTl,,(x, L) = An eik"(L—X)

X
x r dx’ e l* =l [z V(¥ . G0 (x, L)]. (2.23)
0 n'

Defining the group velocity v, = k,/m in channel n,
(2.23) can also be written as :

dr. g, (x;L)= A, E " ay 4

© . , - ‘7 x!
+ J etk,,lx—x | <Z LVnn (x )dx>
- n Un

X (e () dx') . (2.24)
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Let us now consider the reflexion (R,,) and transmis-
sion (T,,) coefficients: n refers to the incidence

channel and m to the scattering channel. Proceeding in
exactly the same manner as for the one channel
problem, one obtains

Ry,(L) = (1 +ik,dL) . Ryy(L —dL). (1 + k,, dL) +

_iv
+[ ! "'"dL]
vm
“iv
+3 [ ZE2dL). (@ +iky dL) . Ryp(L - dL)
1 i
i
+z( :lmdL>.(1+ik,,dL).R,,,(L—dL)
1 m

+ (1 +ik,dL)- Y Ry(L —dL)
L

-iVy .
x< dL).R,,,,,(L—dL).(1+zkmdL).

v
(2.25)

The sums in (2.25) are taken over the intermediate
channels / and /'. Expanding up to first order in
dL, one obtains :

~

<V
-1 ;v—lle—

nm . _ivnm
T—-l(kn'ka)an"‘ v,

~

Vi Vi
~i Y Ry——i Y Ry—Ry'py. (2.26)
1 v w v

The physical meaning of the different terms is obvious
and corresponds to scattering from channel to channel.
Introducing the matrices N x N :

Xaﬂ=-"7aﬁ/vﬁ’ Auﬂ=Xaﬂ+ka aaﬁy

one deduces

9R iy +i(RA+AR)+iRxR, R(L=0)=0

L 2.27)

which is a matrix differential equation for the matrix R.
Another form for this equation is

%%=i(IK.R+:R.IK)+i(1 +R)x(1+R) (2.28)
where we have defined the matrix I as : I, = k, 8,5
(1 is N x N identity matrix).

A similar equation can be obtained for the transmis-
sion matrix 7. Indeed, following the same procedure,
one has :

Tom(L) = (1 + ik, dL) T, (L — dL) +

1‘7,‘1
+;( - dL).T,,,,(L—dL)

+ (1 +ik,dL)- ¥ Ry(L —dL)

—-iVy
x;< vz'l dl)T,.,,,(L—dL) (2.29)
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and then
dT .
EE—:T.(A+)(.:R) (2.30)
or
dinT/dL =il +ix(1+R). (2.31)

It is not difficult to check that (2.28) and (2.30) reduce
to (2.11) and (2.12) in the limit N=1:9(L)=
—V(L)/E and E = k?/2 m. Note furthermore that &
is a symmetric matrix R,z = Rg, because of the time
reversal invariance of the medium.

The correspondence with the generaley used notation
[5] is given by :

Ba=Y |Tga |2 : transmission in channel a
6

Ra =Y |Rap |2 : reflection in channel a .
B

For real potentials (lossless media), the conservation
law becomes : )" R, = Y (1 — G, ) and the generalized

Landauer formula for the reduced conductance is
written as

g= <§:‘Ga> <;v;‘>/§vgl(l +Rp—Bp).

Finally note that for a uniform medium, where
V,,(x) is independent of the channel index o, one has :

1
Vi =V (%) 8 Xaﬁ=_av(x) 8ap -

This corresponds to a complete decoupling between
channels and the one-channel equations are recovered.

2.3 TIME-DEPENDENT MEDIA. — Up to now, we have
considered the case of time independent media. In this
section we show how the invariant imbedding ideas can
be used in the case of time-dependent potentials. In
order to illustrate this approach, we consider the
following model [13] :

2
i i"’_g’;_‘) - [- %2+ Vo(x) + V4 (x) cos wt] v, 1)

(2.32)

where V;(x) and V,(x) are static potentials, which are
zero for x<0 or x= L and ¢ is time. The only time
dependence is harmonic of frequency w. A planar wave
is incident to the layer at the right. The general solution
of (2.32) can be written as

Y@= Y b@e i (23)

n=-a
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and this leads to :

d’¢,

En d’n = "_de+ VO(x) ¢n(x)+

SIVIE) (Gaor + 1) 234)
ie.

2
(%ﬁkﬁ)% = Vo(®) a + 2 Vi) $n_1 + byl

Here E, = E + no = k2 define an infinite set of chan-

nels — 0 <n < oo and E is the energy of the incident
wave.

The last equation can be transformed into an integral
equation :

é,(x, L) = A, @1

1 L ik x-x
7ik, L dx'e %

% [Vol) 43 Vi) (@ni1@) + 6,16) -
(2.35)

It is convenient to write the last term as
Y Vanw(x') é,(x") because this allows the identifica-

tion of (2.35) with (2.24). Here, v, =2k, and the
matrix V. (of infinite order) is :

Vnn‘ = ann’ VO + an, n+l Vl/2 . (236)
According to the results of the previous section, the
reflection and transmission matrices & and T satisfy
(2.27) and (2.30), with :
. 1 ~

1
Xaﬁz_zkﬁvaﬁ and Aaﬁ=ka8aﬂ_2kpvaﬁ’

—o=<a,B=swo. (2.37)

The transmission coefficient across the medium is
=Y |T..|°
=2 | Toa| ™
n

It appears that the presence of a time dependent
term in the wave field equation (Eq. (2.32)) gives rise
to an infinite set of coupled equations, instead of just
one. Therefore, allowing for inelastic scattering « adds
a new dimension » in the problem : the channel axis.

2.4 MATRIX RICCATI EQUATIONS. — The purpose of
this last section is to derive a formal solution -of the
matrix Riccati equation, obtained above for R :

dR _ix +i(4R + RA) +iRxR.

5T (2.38)

This non-linear equation can actually be « linearized »,
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because (2.38) can be shown to be equivalent to the
linear system [14]
du . .
a—E_tAU+sz , U@)=0
v (2.39)
—E=1XU+14V , VO)=m=
where R is related to U and Vby : ® = UV ~! (V non-
singular).
This linearization scheme may be used to find a
formal solution of (2.38). The flow defined by (2.30)
can also be written as

dx .
a—_—tﬂ)X+3$X (2.40)
where
U -K 0
X = , D=
|4 0 K
and
X X
B =i .
-X —X

The solutions of equation (2.40) are of the form
X(L)=e "L Y(L), where Y(L) is the solution of

0
dY
HZ_C(L)'Y’ Y(L=0)= .
where
C(L)=e2Lp(L)e 'L,
Therefore, :
L Gy Gp
Y(L)=exp(J‘ C(L’)dL’)Y(O)_=_ Y(0)
0 Gy Gy

and then
R(L)=WG, Gn'W, W=ekl,

In general the information in the potential is contained
in the matrix and this allows us to follow the variations
of R (L) with this potential. As a check, it is easy to see
that for X =0:C =0 and Gll = Gzz= 1, Gz] =
G, =0 and then R = 0.

3. Non-linear media.

Up to now, we have limited our approach to linear
media. In this section we show how the problem of
wave transmission across a non-linear medium [15] can
also be worked out using the invariant-imbedding
ideas. An analytical proof of the main equations is
given in Appendix A. Here, the same results are
obtained using the graphical method.

INVARIANT IMBEDDING. 1
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We consider systems described by the generalized
non-linear Schrédinger equation :

2
i vy af(e) .. (B
ox
Here, ¢(x,t) is the complex amplitude of the wave
field, ¢ is time and V (x) is a real (or complex) regular
(or random) potential. The non-linear term f(| ¢ |?) is
an arbitrary function of the intensity | ¢ | 2. Examples of
physical phenomena where (3.1) occurs are : non-linear
optics [16] (Kerr effect), plasma physics [17], con-
densed matter physics [18] and astrophysics [19]. We
consider (3.1) for a one-dimensional case, correspond-
ing to a plane-layered medium, which occupies the
region 0 < x < L. Outside this region, V (x) = 0 and
f = 0 identically. In the following, we consider only the
stationary regime, corresponding to solutions of (3.1)
of the form : ¢ (x, 1) = €*"! ¢ (x), where k% = E is the
wave energy. This leads to the following equation for
e(x):
de

etk nleMe=0. 32

Here, the function 7 (x, | ¢ |?) is given by
n(x (@) = [-V@E) +af(le|))/k. (3.3)

Let now a plane wave ¢o(x) = A ¢*¢ ~*) be incident
on the layer from the right. Then, the solution of (3.2)
can be represented in the form ¢ (x) = A . u(x), where
u(x) satisfies a similar equation, involving the intensity
w = |A|? of the incident wave and |u(x)|% On the
right and left of the layer, the wave field has the form :

u(x) =e*C-» L R(L,w)e**-1) | x=L

u(x) = T(L, w) el G4

x<0.

Here R(L,w) and T(L, w) are the complex reflec-
tion and transmission coefficients respectively. The
wave number k is assumed to be the same inside and
outside the layer. This restriction corresponds to an
approximation where the creation of other harmonics is
neglected. In what follows we show the possibility of
reducing the calculation of R(L, w) to an initial-value
Cauchy problem, relative to the Imbedding par-
ameters : L and w. The field at the boundary will be
shown to be described by a closed non-linear partial
differential equation (Eq. (3.7) below). We transform
first (3.2) into an integral equation

ikL-x) ik [® ik|x—x'|
u(x; L,w)=¢ + = dx'e X
2 — o
xnx,wl(x')].u@x';L,w). (3.5)
The interpretation of (3.5) in terms of elementary
scattering events is identical to that described in

section 2, for the linear problems. Using the diagrams
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shown in figure 1, the same approach can be used here,
to follow the variation of R when L is changed to
L —dL. The presencI:. of a w dependence of the
i
2
(1) and (2). However, during the processes (3), (3') and
(4), the incident wave intensity is modified and this
leads to a modification of the reflection coefficient
R(L, w). For these processes, the wave field amplitude
is given by

scattering amplitude — 7 does not alter the diagrams

A.[1+ﬁn.(l+R)]

2 (3.6)

and the corresponding intensity is :
[1 +%‘m . (R—R*)] .

This leads in particular to an additional contribution

to %, which can be written as

aR ik .

Thus, one gets finally the following partial differential
equation for R(L, w)

R . ik ,
E_szR+?n(L,wI(L)).(1+R)2
oR ik -

R(L=0,w)=0. (3.7)

Similarly, one obtains the following equation for the
transmission coefficient :

T _ 'k.T+%n(L,wI(L)). (1+R)T

aL
aT ik
T ik (L, . (R-R*),
+waw 2'n(L wI(L)). ( )

T(L=0,w)=1. (3.8)
In (3.7) and (3.8), I(L) is given by I(L) = |u|*=

(1 +R)(1 + R*). To our knowledge these equations
were first derived in reference [20] : a short summary of
this analytical derivation is given in Appendix A. Let us
conclude this section with two remarks. In the limit
w =0, R does not depend on w and (3.7) reduces to
(2.11) as it should be. The same remark also holds for
(3.8). The main difference between the linear case and
that worked in this section is probably the following
one. The linear problems give rise to ordinary differen-
tial equations : the only imbedding parameter is L. In
contrast, non-linearities lead to partial differential
equations, which can be viewed as infinite sets of
ordinary differential equations. This new feature origi-
nates in the fact that both L and w are relevant
imbedding parameters. In this way, the present case is
actually similar to a multichannel transmission problem,
where w plays the role of the channel axis. This formal
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distinction between linear and non-linear cases is at the
origin of different physical behaviours of T as a
function of L. A detailed study of the transmission
across a non-linear random will be reported in the
second paper of this series [10].

4. Illustrative examples.

The formulation of the transmission problems as initial-
value (Cauchy) equations allows for a unified treatment
of disordered media. The basic idea is the observation
that the differential equation satisfied by R describes a
dynamical system subjected to random perturbation
coming from the potential V(L). The coordinate
L =0 plays the role of time in (2.1). The relevant
equations of motion are non-linear, in contrast with the
original field equations. However, the main advantage
of the dynamical system point of view is actually a
direct approach to the main physical quantities: R,
T, ..., etc.

In this section we shall illustrate this general approach
of the simplest case : the one-channel problem. Some
of the results obtained below are known and have been
obtained by different authors, using somewhat different
formalisms. The extension of this approach to non-
linear field equations is the object of the next paper in
this series [10]. While the calculations presented here
are mainly performed for Gaussian white noise poten-
tials, a straightforward extension to correlated poten-
tials will be discussed at the end of this section.

Before the description of the present treatment, let
us consider the phase portrait of the dynamical system
at hand. The equation of motion for the complex
reflection coefficient R(L) is given by (Eq. (2.11))

dR

E=2ikR+i'2'fn(L). (1+RYP, R(0)=0. (4.1)

Here n(L)= — V(L)/k? refers to the random poten-
tial. The phase space is given by |R| <1. Assuming
that n (L) = 7 is independent of L, two kinds of fixed
points R, can appear. For n=<-1, Ry=

—(1+2/'r))i:%i(—1—1r')1’2 are located on the

boundary of the unit disc, i.e. |R |2 = 1. In this case,

the fixed points are attractive. In the other sector,
2

n=-1, Ry=-— (1+;)+%(1+n)"2 is the
centre of a periodic orbit : the fixed points are located
on the interval [- 1, + 1] and the fixed point is reached
only at n =0.

The above phase portrait reproduces in rather simple
terms the known physical picture : exponential damping
at 7 <-1 and free propagation at n = — 1. Indeed,
the solution of (4.1) can be written as :

R(0) =R,

m= C_aL +§ (1 + e"“")(R(O) - ch) )

(4.2)
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with a =2ik +ikn(1 + R, ) and b = —ikn /2. This
leads in particular to the following expression for the
period of the orbits (n =1):

L*=im/a=Rk+kn(1+R,)I",

i.e. rapid revolution at 7 >1 and slow motion at
n<l.

In the situations where n (L) is random, the rep-
resentative point R(L) undergoes a random motion
and this results in a diffusion-like motion inside the unit
disc. The nature of this motion can be described by an
equation for the probability density of R(L).

4.1 PROBABILITY DISTRIBUTION OF THE REFLEC-
TION COEFFICIENT. — Equation (4.1) can also be
viewed as a stochastic differential equation, giving the
«time» (L) evolution of the stochastic process
R(L) under the action of the noise term =m(L). In
general, it is difficult to solve such a non-linear problem
for an arbitrary n (L). Using the Liouville Theorem, it
is actually not difficult to «linearize » the present
problem, as usually done for stochastic differential
equations [21]. The main idea is to consider the
probability density of R for which it is possible to write
down a Fokker-Planck equation, giving full information
about the statistics of R. For tlns, it is useful to use the
polar coordinates : R = r'?e’®, where 0<r(L)<1
and 0 < 0(L) =<2 m are the new random variables.
Accordingly, (4.1) becomes :

dr

_ 1201 _ 2\
E—kn(L).r (1-r)sin @
4.3)
gz_2k+ (LR + (2 + r- ) cos 0] .

As usual, we introduce the density Q(r, 8 ; L) of
points (r, 8) in phase space. This density is a solution
of the Liouville equation [21] :

Q 9 dr 9 de
=% |9 | Q@] @9
where the derivatives of r and 6 are given by (4.3). The
equation for Q can be written as
Y

L -ksino[in(L)Qrma —r)]

—2k—% Q —ag(nQ)

~X e 2 (n0). .5)

The last equation is a very general one and holds for an
arbitrary random potential n(L)= -V (L)/k% In
order to go further, it is necessary to make specific
assumptions on the statistical properties of n(L). For
the sake of simplicity, n will be assumed to be a
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Gaussian random function with zero mean

(n(L)) =0 and a white-noise spectrum :

(n(L)n(L')) =g5(L-L').

Within this class of models, the average of (4.5) over
the realizations of 7 can be performed without difficul-
ties : this can be simply done, by using Novikov’s
formula (see Appendix B). What we need is just the
average (1 Q) and this can be calculated, using :

8_Q_=_ksmo [0t - )] - k——Q—
én
_’5‘(—"2“ ) o[Qcos()]. (4.6)

Denoting by W(r, 0 ; L)= (Q(r, 0 ; L)), the aver-
aged probability density, one arrives at

ad
or

21 -r)+ aao +

1 -1
Y +')ao

9 cos o] W, 031). (4.7)

Here, we have used the notation ! = L/¢, where
¢! gk2 is the inverse of the localization length.

The above equation is an exact one, subjected to the
boundary condition W(r, 6 ;1 =0) = 8(r)/2 =, be-
cause 6 is uniformly distributed at L = 0. Further
simplifications of (4.7) can occur in the limit of weak
potentials or large energies. In that limit the angular
variations of W can be neglected, because 6 can be
taken as a uniformly distributed random variable over
[0, 2 7 ]. More precisely, this condition is satisfied when :
£ > 1/k, i.e. the localization length is much larger than
the wavelength 2 = /k of the incident wave. Within this
limit, the average over 6leads to the following evolution
equation of W(r, )= (W(r,0;1)),:

aa‘;V_Z(Zr—l)W+(1—r)(1—5r)—+
d

+r(1—r)2;2—=5

[ra—r (1= ry W] (4.8)
with W(r,! = 0) = 8(r) as an initial condition.

The so obtained equation can be cast into a more
familiar form, by considering the probability distribu-
tion of the new variable p =r/(1 —r). A straightfor-

ward algebra leads the following equation for
W(p,1)= (1+p)2W(r,1):

- ZLleasn TR,

al " ap
W(e,1=0)=5(p).

(4.9)

The above equations for W(r) and W(p ) are very well
known and have been derived by many authors [9, 22,
23] in the past. Furthermore, the exact solutions for
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W’s are known and we direct the reader to the relevant
literature. Another derivation of (4.9) will be given in
the next sections.

The procedure outlined here can also be used to
derive the probability distribution of the impedance
Z(L) defined by [11]

lk+Z

R(L) =2

Using the variable Z instead of R, one obtains a
stochastic differential equation for Z, where the random
term n (L) enters as an additive term. This kind of
Langevin-like equation can be worked as above, and
leads to the same equation for W(r; /).

It is clear that from (4.8) and (4.9) one can deduce
the behaviour of the moments of r and t =1—r. In
particular, if p, = (p"), one has [22, 23]: p;(/) =
%(e” —1), py(l) =il'i Q2% —6¢? +4),.
pp=e""*t/(nt1)!, n> 1.

and

4.2 MOMENTS EQUATIONS. — As a second illustration
of (4.1) we shall derive the recursion equations for the
moments of R and 7. For this, the random potential
will be assumed to be a Gaussian white noise :

M) ') =g8(x—-x"), (n(x)) =0. (4.10)
Using the differential equations for R and R*:
dR 2
aL _2sz+ 'q(L) (1+R)
dR* _ (4.11)
- * _ °v *)2
T —2ikR n(L)(l + R*)*.
One deduces
8R zk 8R* ik 12
i +RY, -5 (L+R*’. (412)

Let fp, ,= (R"R*') and K,, , = (nR™R*"). Using
Novikov’s formula (Appendix B), one obtains a closed

set of equations for f,, ,(= f,) and K,, ,(= K} ,,):
Afm,n
i =2ik(m—n)fp, .+
ik
+2m[Km 1n+2Kmn+Km+ln]
-izﬁn[K:_l,,,,+2K,;f +Koa] (413)
ik
m,n="2_g[m(fm—l,n+2fm,n+fm+1,n)_
_n(fm,.n—l+2fm,n+fm,n+l)]' (414)

From (4.13) and (4.14), it is clear that for weak
disorder or large energy, all the terms f, , with
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particular to :

drn _ gk?
aL =2

8,, n- This leads in

n2(ry_1—27,+7s,1), n=0 (4.15)

where
r=RR* and r,=f,,= (r").

The above result for the moments 7, of the reflection
coefficient is well known and has been previously
derived by different authors [23, 24]. In particular, it is
not difficult to show that (4.15) describes the moment
equations for the probability distribution W(/ ; r) obey-
ing the following differential equation (0<r=<1),
which is identical to (4.8)

1’%:% [r%(l—r)ZW] , WA =0,r)=3(r).
(4.16)

2
Here [ = L%E L€, where £ is the localization

length.

Without solving (4.16) for the full probability dis-
tribution, the exponential decay of 1 — (r) at large /,
can be deduced from (4.15). Following [25], one can
define the Laplace transform

W(o,r)= f et w(;r)d
0

of W(l, r) and transform (4.15) for

l ~
C,(o)= J'O r*drW(o,r). 4.17)

A straightforward algebra leads to the following recur-
sion equation :

Co(0) =1/0,0C,(0) = n*(C,_1(0) -
=2C,(0) + Cpyi(0)) (418)

* which gives a continued fraction representation for the

ratio y, = C, ,1(0')/Co(c):
+2 1
Yo 1—1/(" L yn)s . (@4.19)
n an_ n

The only singularities of this continued fraction are
given by the roots of: a?=4, iie. o=0 and
o = — 1/4. This implies in particular the desired result :
1— )y ~e % atl>1.

As for R, similar equations can be derived for the
moments g,, , = (T™ T*"), where T denotes the trans-

mission coefficient. Indeed, starting from

dT
8T ik
%_—(1 +R)T (4.20)
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one deduces

dgpm,
dL

ik
+5 [m(nRT™ T*")

. k m psn
= zk(m—n)g,,,,,,+7(m-n)(nT T*) +

—n{(nT"T* R*)]. (4.21)
Keeping only the terms with m = n, and using the
conservation relation (7 real) : RR* + TT* =1, one
deduces, after a rather cumbersome algebra :

A9, m

dl =—=MYGy m+ mz(gm,n - (4'22)

gm+1,m+l)-

Denoting T,, ,= ((TT*)") = (t™) =1,,, one finally

obtains :
de,,

_=m(m_

dl l)tm—-mztm+1.

(4.23)

Besides the above moment equations, the differential
equations for T and R can be used in general to extract
other information about the transmission problems.
We give here two examples: transmission in the
presence of dissipation and the correlation functions of
the reflection coefficients.

4.2.1 Transmission in the presence of dissipation. —
Assuming that m(x) is the sum of two terms:
n(x) =n,(x)+in,, where m,(x) represents, as
above, a Gaussian white noise potential and 7, corres-
ponds to a dissipation mechanism. The equations for R
and T become respectively

dR _ 5 ikR +— (y(L) +in,)(1 + RY,

dL
R(L=0)=0 (4.24)
daT
aL - = ikT+ ("71(L) +iny) (1+R). T,
T(L=0)=1. (4.25)
Using the polar coordinates: R =R, +iR, =

e T=T,+iT, =/t €, one deduces the fol-
lowing differential equation for In ¢:

din¢

T k[ny(L) Ry + m,(1 + Ry)]. (4.26)
The average over 71,(L) leads to ((R{) = (R3)):
2
<d_dl%£>=—kn2—k2—g (4.27)
and then
(Int) ~exp(— L/& — L/&g) (4.28)

where &4 =1/kn, and £ has been defined above.

4.2.2 Correlation functions of the reflection coef-
ficients. — In some physical problems [26] one has to
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consider the correlation functions of R or T at two
different energies k, and k,, but for the same potential
1 (x). Denoting by R, (resp. R,) the associated reflec-
tion coefficients, the following quantities: ¢, ,=
<R§"R ) may enter in different physical express1ons
Other correlation functions [26] such as (77" T}") may
also be of some interest. In what follows, we shall
consider ¢, , only, and we derive a recursion equation
for ¢, ,. The two stochastic ordinary differential
equations for R, and R, can be written as

dR, ik,
dR, ik, ,
o “2ik R+ n(L)A+ R . (430)

Here k; and k, correspond to the two incident wave
vectors. Repeating the same calculation as before, one
obtains

de . .
%:21k1mtpm,n—21k2n¢m,n+

+—m[<nR'" 'R"™)

+2 (MRT'R#") + (nRT"* ' R3") |

ik
——n [(nRPR#""1)
+2 <nR{"R2*"> + (nR{" Rz""'*l) . (4.31)
Similarly, K, ,= (an R} ) can be expressed in

terms of ¢,,’s and this leads to a closed set of
differential equations for ¢,,,’s. Neglecting terms with
m # n, one deduces the following equation for ¢, =
Pn,n = <R? R2*n>:

dy,
dL

= 2in(k ~ ko) Y + 5 9K Ky P2+ Y1)

~ I Bk -2k) + kGl —2k)]n* 4.
(4.32)

This equation is valid at large k or small g. Assuming
ki=k+Ak and k,=k - Ak, (4.32) reduces, at
Ak <k, to:

dy,

=" Wn1 =205+ ¥ _1) +iBnY,,

¥.(l =0)=25(n,0) (4.33)

where [ =L/¢, and B =4 £ Ak<1. As expected
(4.33) reduces to (4.15) at B = 0. In principle (4.33)
allows for the calculation of ¢, as a function of /. A
perturbation calculation of ¢,(B) at B < 1 is presented
in Appendix C. In this limit the exponential decay of
1 — (1) is shown to be controlled by

£*=¢.In (112 £ . Ak)
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which is much larger than £ at B <1. The physical
meaning of this new length scale is as follows. Let us
denote by 0,;, the phase difference between the two
incident waves. 0,; = 0 at x = 0, but increases with the
travelled distance. For length scales L ~ &, 0,, ~ 0 or
a multiple of 2 m, whereas for L ~ ¢*, 0, ~ 7.
0, reaches a value ~ 7 at £* > £ because the same
defects in the medium are visited at different instants.
£* can also be viewed as the length scale for which the
overlap between two localized states is of the order of
the energy difference. In fact, for a dispersion relation
¢ = e(k), the group velocity is given by v, = d¢/dk
and to Ak is associated an energy difference
Ae~v,.Ak. The overlap Ae~exp(—§*/§) bet-
ween two localized states u;(x)~e */¢ and
uy(x) ~e~ ®-£¢9/¢ Jeads to the expression of &*

obtained above.

4.3 PARAMETRIC RESONANCE : RAPID VERSUS SLOW
VARIATIONS. — In this section we will show that the
results previously obtained for the probability distribu-
tion of r can also be obtained by a different method.
The basic ideas are as follows. First, not all the
harmonics of the potential n (x) play the same role. In
fact, following the dynamic system analogy, we can
assume that only Fourier harmonics of n(x) at 0,
+2k have a significant effect on the orbits. This
assumption is similar to that made in the theory of
parametric resonance and is valid only for weak random
potentials m (x). Therefore, we retain the following
form for the potential 1 (x) = — V (x)/k%:

V(x) =V, (x)+ Vyx) % + VF(x)e 2 (4.34)

where V;(x) and V,(x) are assumed to be Gaussian
white noise processes :

(Vi) =0, (V,(x)) =0,
Vi) Vix')) =g 8@x—-x'),

(Va@x) VEE')) = (VFE) Vo)) =g, 8(x —x')
(4.35)

The.remaining correlators are assumed equal to zero.

Secondly, before performing the average over
V (x), rapidly varying variables can be eliminated. Such
a procedure is valid to first order in g and this level of
accuracy is sufficient for our purpose. In the following
we shall describe this procedure of elimination of rapid
variations. In order to do so, we start with the basic
equations for the reflection coefficient R :

dR .
E—ZlkR—

V() 2
——= (1 +R)".

7ik LR

Let us introduce the polar representation R = e~ =,
p=0,0<sp=<2mw
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g_z =—-——V§(L)sin¢.sinhp

v i) (4.36)
de _v(L)
ir =2k A [1 +coshp.cos ¢].

A natural change of variables is the following :
¢ = 0 +2kL. The phases 0(L) and p (L) are slowly
varying quantities. Then replacing V (x) in the equa-
tions of p and 6, and retaining only resonance terms, we
obtain the following system of equations for 6 and p:

- kg—z —V,(L)+k.coshp.g(8) (437a)

dp  sinhp

Im (V,(L)e *®)= —sinh p . g'(9)
(4.37b)

dL k

where g(0) = 21_k [Voae i + Vel

The next step is to use a formal solution of (4.37a) in
(4.32b). Indeed, the integration of (4.37a) leads to :

L
0(L)- 6y = —%J' dx’[Vl(x’)+%coshp X
0

x (Vo )e "+ V;(x')e""")] .

Here 6, is the initial value of 6 and independent of
V (x < L). Using this expression in (4.37b) we deduce

. . L
[Im Vye '%, (1 +;—€ jo dx’[...])}.

(4.38)

dp _ _sinhp
TR

Here we have just retained the first terms in the
expansion of exp(f — 6,). Denoting by W(L) =

V(L) e %, one obtains :

sinh p

do _ _SiOhp p yy, -
k2

L= A ImiW, x

L
x J dx’ [V,(x) + % cosh p (W, + Wz*)]. (4.38 bis)
0

The second term in (4.38 bis) can be replaced by its
average value over 0 (x) and this results in the following
dynamic equation for p:
dp &

dL——msinhpcoshp +1i

sinh
W - W1,

(4.39)

This is a non-linear Langevin equation, with a real
random term (multiplicative noise) :

v(x) =5 W - Wp),
of the same type, as W :

) =0, (@)Y =508 -x).
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Therefore, the original dynamical system is reduced to
a one random variable problem, p (L) described by a
stochastic differential equation (4.39). From (4.39) it is
straightforward to obtain the following Fokker-Planck
equation for P(p ; L):

aP 92

L 4k28 5 dpP(p;L)=1.

 (sinkp . P), j“’

0
(4.40)

The localization length is identical to that previously
defined: ¢~!=g,/4 k% Using the correspondence
r = RR* = e %, it is very easy to check that (4.40) is
identical to the Fokker-Planck equation (Eq. (4.8)),
derived previously for r:

W 2@ r—1)W+(1-r)(1-5r)x

ZW

x 21— )2a T I=L/E. (441)

Let us compare the two methods leading to (4.41). In
the previous section, (4.8) has been derived by perform-
ing an averaging over the rapidly varying variables
(phase of R). Such a method which is appropriate for
one-dimensional systems, has the disadvantage to
necessitate cumbersome calculations for performing
the averages. The m thod described in this section
allows the derivation of the same result (Eq. (4.41))
more rapidly. Actually the new procedure is based on
the fact that simplification is performed at the level of
the dynamic equations, i.e. at an earlier stage of the
calculation. Note that the range of validity of the above
calculation is the same as previously: &> 1/k, i.e.
(Vi(x)) /K> < 1.

4.4. CORRELATED RANDOM POTENTIALS. — In this
last section, we show how to generalize the previous
approach to more general random potentials, in particu-
lar for spatially correlated potentials. For this we
consider the case of a step-like potential n (L), de-
scribed by an Ornstein-Uhlenbeck stochastic process
n(L) == A with {(n(L)) =0,

(n(L)n(L")) = A’exp(—A|L-L'|).

Using polar coordinates R = r'?¢® and 0 = 2 kL + ¢,
one obtains the following differential system for r and
¢!

:_£= kr' (1 = r)sin (p +2kL). 1(L) =
= fi(r, ¢, L) n(L) (4.42)
‘;_I“:JE‘ 2+ (2 +r2) cos (¢ +2kL)] . n(L) =

= fz(", ‘P’L)' "I(L)-

Let us denote by Q(r, ¢, L) the probability density of

(4.43)
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the stochastic process (r, ¢ ). Q is a solution of the
Liouville equation :

1Y

2 (4.44)

a ad
=~ [Qf: ﬂ]—ﬁ [@f:n].
Taking the average over 7, one deduces (W = (Q)):

W__2 (0 —a—":,;fz<n'g>-

= (4.45)

Similarly, using the differentiation formula (Appen-
dix B), one obtains the following equation for W; =

(nQ):

";_T=_AW1 ( (—%le—%sz)>-
(4.46)

Taking into account the fact that (L) jumps between
+ A and — A with a rate A~ !, one deduces the following
closed set of coupled equations for W and W;:

ow a

a
AW - W 4.47
T~ Wi W (4.47)
oW, 2 9 2

Using the previous notation, one finally gets :

%:-ksmo [F2(1 = r) W] -
W,
—kW—-(”2 -1’2) [coso W] (4.49)
ow. A% 8 .
3()&—114)_+ W, = _Tk_ [sin 07121 — r) W] -
kA? oW kaA? -

The case of the Gaussian-white noise potential can be
recovered in the limit A —» o0, A2 0, A?/A =D
Indeed, to first order in A ~), the formal solution of
(4.50) can be written as

x sin 0r'2(1 —r) W + kDﬂ

+kTD(rm+r‘m) (cos 6 . W)] (4.51)

Let ! = k2 DL and substitute W, in (4.49) one obtains :

oW _[a ” 3 .1
W_[-é—smo r (1—r)+5§+2x

2
x (r~ 124t )aaocos 0] W (4.52)

which is identical to the equation obtained above for
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the Gaussian-white noise potential. For general values
of A and A no exact solution for W’s has been obtained.

Besides the previous equations for the probability
distributions, the moment equation can also be written
down. This allows us in particular to follow the
influence of a finite A on the localization length & In
order to do this, one can use the differentiation formula
(Appendix B) in order to derive the appropriate diffe-
rential equations for K,, , = (nR™R*") and f,, , =
(R™R*"). Following the same procedure as in sec-
tion 4.2, one obtains :

dfmn . ik
L =21k(m—n)f,,,,,,+7mx
X [Km—l,n+2Km,n+Km+1,n]
ik
—Tn[Km,n—1+2Km,n+Km,n+1] (453)
and
dK, ikA?

m,n _ . _
L +AK,, ,=2ik(m n)K,,,,,,+—2 m X

X [fm—l,n+2fm,n+fm+1,n]

i kA?
_lTn[fm,n—l +2fm,n+ fm,n+1]' (454)

For weak disorder or large energy, only the diagonal
terms are of order one and the non-diagonal terms can
be neglected. This leads in particular to the following
equation for r, = (R"R*") :

dr, -1 2
E:f (/\)n(f,,_1+rn+1—2rn) (4’55)
where
i) KA AP
2 2244k

The new length scale £(A) is the equivalent of the
localization length. In particular for A - o0,
A?%/X = D, the Gaussian-white noise limit is recovered.

The expression for £(A) thus obtained can be also
written as

EM)/EA =0 )=1+4KkYA2.  (4.56)

This shows in particular that the correlations of the
potential lead to an increase of the localization length
in comparison with an uncorrelated potential. Our
analytical expression for ¢ agrees with the results of
reference [27].

General correlated potentials which can be described
as a Markov chain can also be worked out following the
same procedure. For weak disorder, the ratio between
the inverse localization lengths with and without corre-
lations is given by the structure factor of the correlation

function (n(0) n(x)) :

£~ Y(corr) /¢ !(uncorr) =

=J°° dx(n(0) n(x)y cos2kx. (4.57)
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The above example is a special case of this general
relation which holds at high energies or small disorder.

5. Conclusion.

In this paper, we have shown how the Invariant
Imbedding ideas can be used to reduce the wave
transmission problems (boundary-values problems) to
initial-value Cauchy problems. We have limited our
exposition here to one-dimensional layered media.
However the basic algorithm, described in section 2, is
actually a very general one and can be generalized to
include other cases. In addition to non-trivial linear
problems (Multichannel transmission, time dependent
medium, etc.) the present approach appears as the only
systematic method for the study of non-linear random
media. In such a case, we have derived a partial
differential equation (PDE) for T and R and this
contrasts with a purely linear medium. In general, a
PDE can also be viewed as an infinite set of ordinary
differential equations and this indicates the profound
differences between linear and non-linear problems.
Furthermore, an infinite set of ordinary differential
equations has also been obtained for a linear time
dependent medium. This common feature must be
traced back to the occurrence in these two cases of a
new degree of freedom in the considered system. This
basic remark is at the origin of the modification of the
exponential transmission decay and this either in non-
linear random medium or in a time-dependent random
medium. The first case will be investigated in detail in
the second paper of this series [10]. A possible exten-
sion of the present approach will be the investigation of
non-stationary problems, e.g. non-linear, time-depen-
dent media, where the generation of harmonics may
become an important feature. Another direction for
future investigations is probably the study of the
discrete versions of the Invariant Imbedding equations
as well as the inclusion of new features such as external
fields (magnetic, electric, etc.).

Appendix A.

In this Appendix, we outline the analytical proof of the
invariant Imbedding equations, in the case of non-
linear media. As was shown in the main text (Eq. (3.5))
the integral equation of the wave field can be written as
follows :

u(x; L,w) = eL-» +% X

L , ,
X j dx' 15 =% e, wI(x')]. u(x', L,w). (A.1)
0

Here, n[x, wI(x')]= [- V(x) + af(|¢|?)]/k* w re-
fers to the intensity’ of the incident wave, and
I(x) = |u]>= | |*/w.
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Differentiation of (A.1) with respect to L gives :

g_]‘i =A(L,w)u(x,L;w)+B(x;L,w) (A2

where A(L,w) = ik + % (L, wI(L))uy (w)

up(w)=u(x=L;L,w). Taking the derivative of
(A.1) with respect to w, it is possible to connect

) du(x;L,w)
B(x o L, W) to —T-

and

as follows :

B(x;L,w):w[A(L,w)+A*(L,w)]Z—::. (A3)

As a consequence, u(x ; L, w) satisfies the following
equality :

du(x; L,w)
——r - =A(L,w)u(x;L,w)+

+ [A(L,w)+A*(L,w)] WML’—W).

o (A4)
Using now the boundary conditions :

w(L)=u; = [l +R(L,w)],
u(0) = T(L, w),

u(L)=—ik(2-u;)

u'(0) = —iku(0).
(A.S5)

One deduces immediately the equation for the reflec-
tion coefficient R(L, w) :

%: zikR+%n(L, wI(L)) x

R
x1+R;P+[A+A Iw—

(A.6)
which is identical to (3.7).

Similarly, if we set L = 0 in (A.4), then one obtains
the equation for T(L, w)

oT aT

ST=ALWT+A+AY WS (AT)

and this reproduces (3.8) as it should be.

Appendix B.

In order to perform the averages over the realizations
of the random potential, it is convenient to use the well
known Novikov theorem [28]. Random processes
7. (x) are assumed to be Gaussian with a mean value
equal to zero. The correlation functions are arbitrary :

Kop(x,y) = (na(x) ng(y)) where (...) indicate av-
eraging over an assembly of realizations of {7, (x)}
a=1,2,.

In its simplest form, Novikov’s theorem states that
for a functional ®[n] of {1}, one has the following
identity

6P
(ne) @ln1) = [ K,,B(x,y)< Mﬂ[(’;])>. (8.1)
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Here, 8@ /87 refers to the functional derivative of @
with respect to m. When (B.1) is used twice, the
following extension is obtained [29] :

(n(x) 2[n]) = (n*(x)) (PIn]) +

+ de J' dy’ K(x,y) K(x,y’)< R ELION

(B.2)

8’[n] >

The above formulae can be generalized [30] for the
mean of the product of the linear P[7n] and non-linear
R[n] functionals of the process n (x), with a zero mean
value

(P[n]R[n]) =
J j 8P [n]

5 n (y)

Formulae (B.1), (B.2) and (B.3) can be proved, for
example, by expanding the functional of n as a function-
al Taylor series, and represent a generalization of the
Wick theorem for the correlation of a Gaussian random
quantity with a function f(n) of n: (nf(n)) =
(n®{f'(n)), to include the case of continuous

fields. Detailed proofs of (B.1), (B.2) and (B.3) will be
found in the relevant references.

(P[n])(R[n]) +

5R[n] , ,
an(y') >K(y,y )dydy'. (B.3)

When the random process 7 (x) is not Gaussian but a
dichotomous or two step Markov process, similar
formuale can be derived. For instance, if {(n(x)) =0
and (n(x) n(x')) = A%exp(— A |x —x'|) (Ornstein-
Uhlenbeck process), then the following formula of
differentiation [31]

7 (M@ 2D = (1) % 2 @)]) -
“A @ @] (B4

can be derived for any functional ®[n] of 1. This
formula is also valid for other types of processes and we
direct the reader to [31] for further details. Note that
the white noise limit is recovered at A — 00 , 42— o0 ,
A?X~'= D = Const., where

(mx)n(x")) =2Dd(x-x").

Appendix C.

In order to calculate the correlation functions of the
reflection coefficient, we follow the same procedure as
in reference [22]. To first order in B, ¢, = (R} R#") is
the solution of the following difference-differential
equation

dy,
d/ = n2(¢n +1=

2¢n+wn+1)+iﬁn¢n s

Yl =0) = 8,0 (C.1)
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Equation (C.1) can be transformed into a differential
equation for the following generating function

v = T w5,

(C.2)

This leads to

a.p(x l)_tB—( l//)+——[x—(1—x)2¢] +1

(C.3)

with ¢ (x,/ =0) =0 and ¢ (x,!) regular at x = 0. In
terms of ¢ (x, /) one has

(RiREY = ¥1= 4 (0,1). (C4)

Making the change of variables: u =x/(1 —x) and
¥(x,1)=(1-x)2R(u,l), one obtains

R

a7 =1 +u)? +—u(u+1)—+

+iﬁa_u.u(u+1)R, Ru,l =0)=0. (C)5)

The solutions of (C.5) can be chosen of the form
R(u,1)=r(u) + Ry(u, 1), with

rw)= 1+u)y'+ip J du, (C.6)

(1+u)+u1

and R;(u,!) is the solution of :

a_Rl__[ u(u +1) = ]+zB—[u(u+1)R1]

ou
Ri(u,1 =0)=—-r(). (C7)

In order to solve (C.7), it is convenient to perform a
Laplace transform

[
Ri(u,s) = j e ' Ry(u,1)dl.
0

The function R;(u,s) is now the solution of the
following equation

a . 0
E[u(u+1) +tBa—ux

x [u(+1)Ry(u,s)] +sRy(u,s)=0.

dR;(u, s) J
as
(C.8)

The solutions of (C.8) are known [22] for B = 0, and
can be expressed as linear combinations of
hypergeometric functions

R(A)(u)=F.(%+i/\,%—i)\ ;1;—u) (C.9)

where s =%+ A2
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The set {R*)(u)} is a complete family of orthogonal
functions :

r du ROw)RMw)=AA)8(r —1") (C.10)
0

where A(A) = 1/2 A tanh (7A). Using the boundary
condition :

one deduces

Ry(u, A) = —2 A tanh wARM(u) x

X J'ao duy RM(uy)/ (1 +wy) .
0

The last integral is equal to
I'(12+iAx) I'(1/2—iA)="m/cosh wA
and then

o0 .
R =~ [T o 2rAdh o)
0

cosh? wA
—aay (1 1 L )
X e F(2+t)t,2 iA;l;—u).
This leads to
00 .
R, 1) = 1 _J 2 @A sinh wA
T+u [, cosh? wA
xe‘(“““z)’F<%+m,%—m;1;—u) (C.11)

and then

$:1()=R(O,1) =

©
=1—J da
0

which is nothing else than the average of the reflection
coefficient. (/) is dominated by A ~0 and then
L= ()~ exp(= /)

The spectrum R*)(u) can now be used to perform a
perturbation calculation at B < 1. For this it is sufficient

to calculate the correction to s®(A) = % +A% at

A~0. Let us define G(u,s) by Ry(u,s)=
e '#* G(u, s). Then (C.8) becomes :

2mAsinh mA - i+

C.12
cosh? wA (€12

_‘9_ E —iBu
e [u(u+1) 2 ]+

+s5e P“Gu,x)=0, B#0 (C.13a)

and

75 4@ ur1) RO )]+

+sOAYRMwW)=0, at B=0. (C.13b)
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We neglect the phase factor e~ ‘A* in the first term of
(C.13a) and find solutions G (u, s) of the form :

G(u,s)=GM(u) = fd)u e(A)YRM®@w). (C.14)

The unknown functions ¢ (A') give the expansion of
G(u, s) on the unperturbed basis R*"(«). We multiply
(C.13b) by ¢ (A') and integrate over A':

aG(A)
ou ]+

:_u [u(u+1)
+Jdk’s(°)(A’)R(")(u)(p()\')=0.

Comparison with (C.13a) leads to :

sc‘iﬁ“JdA’ e (A) RA(u) =
_ Jdws«’)()u)¢(A')R‘*"(u)~

Multiplying by R™®)(«) and integrating over u one
obtains :

) J dr @ (1) J du R®M(u) e~ FRA)(y) =
=sOM)AQN)e(1). (C.15

It is convenient to define the symmetrical kernel
K(A,A") as follows :

[+ o]
KA,A") = j du R®M(u) e PRA)(y) ,
0

Equation (C.15) becomes an integral equation for
¢(A'"), s being the unknown eigenvalue

) J dr e (A )KQA,A) =sOA)AM) e(1).

(C16)

Equation (C.16) will be solved by successive approx-
imations, starting from the known solution at B = 0.
For this, one needs the expression of the kernel
K(A,A')at B <1.

Note that KK(A,A')=A(A)8(A-A") at B =0.
For finite B, (A, A') can be written as

K, A') =

[e o]
= J due P P_1p ix(L+2u)P_1p 12 (1 +2u)
0

1[® _iB(z— '
='2'Jl dze i#C 1)/2P_1f2+iA(z)P-1/2+iA'(Z)-

Here we have used the following identity :

1 .. 1 . -
P—1/2+u(2)=F(§+M,§—M;1;12—2).
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The limiting behaviour of P_ 5 ,;,(z) is given by :
Poipiniz>1)=
r@ir)

I‘(%+iA)

P_ipiia(z<l)=1.

eiAanz

= Q2 mz) 12 +c.c.

and

Therefore, the integral giving KK (A, A') is dominated
by the contribution at z>1:

11| T@A)

KA, A ) =350 TGX +172)

2

X J'00 dz e PE-DR2 [f(A =22z /7 4 o ],
1

Only the interval Bu < 1 contributes to the integral and
1| TG@r) 2
47 |I'(A2 +i))

sin [(A —A")In (1+2/B)]
X2 A -2 :

K(A’)‘I)z

Finally, one gets :
K(A,A')zA(A)M

(A —A")
where a =In(1+2/B)>1. As it should be,

(A, A") reduces to A(A) (A —A") at B - 0. Com-
ing back to (C.16), one has to solve :

(C.17)

® ' ’ Sin A"— A’ ” ”
[T aveanTeQ A 00 o).
(C.18)
Replacing ¢(A’) by the zero order solution:

8(A —A') in the integral, one obtains the first-order

solution
" s sina (A" — A
@ ( A ) = a ( )

1/4+ A7 w(A"=1)

Using this solution in (C.18), one deduces the new
spectrum :

J"” da’ (sina().'—)\))z -1
S=Ta 7

and this leads to

s = (%+A2) X
. (A2-1/4)(1-e ®cos2ar)— |!
—2Asin2 aA
x |1+
a(A2+1/4)

In particular, for A ~0:

1 1\-1 1
s—-z(l—'-a—) o= —

4
This perturbed value of the spectrum edge governs the
decay of ¢,(/) at B < 1.

(1+1/In 2/B)].
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