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Résumé. - Nous discutons l’empilement de cylindres parallèles dont le rayon fluctue peu. Le sous-réseau des

contacts consiste en des structures arborescentes auto-similaires. L’expansion moyenne de l’empilement et la

distribution des distances entre cylindres sont aussi présentées.

Abstract. - We discuss the piling of parallel cylinders with weakly fluctuating radii. The network of contacts
consists of self-similar tree-like patterns. The mean expansion of the piling and the distribution of distances between
adjacent cylinders are also investigated.
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1. Introduction.

Granular, composite random materials and their
mechanical or electrical properties are of great practical
importance. Several theoretical models for the elastic
properties of diluted disordered systems have been
recently introduced ; see e.g. reference [1]. Experimen-
tally, one way to study a simplified model system is to
pack together many parallel cylinders of different
elastic modulus, to compress the system, and to meas-
ure the relation between pressure and contraction. In
such an experiment, a strongly non-linear relation was
observed [2] which differed drastically from the be-
haviour of an individual pair of cylinders (Hertz law
[3]). The aim of this and a companion article [4] is to
elucidate theoretically the possible reasons for this
behaviour. Reference [5] discusses analogous non-

linear effects in electrical disordered system.
In a simulation of disordered materials, one has to

take into account that real cylinders are not ideal ; they
may not be exactly circular in cross-section, their centre
line may not be entirely straight, their surface may be
rough, and their radii may not be all identical. In this
work and in the companion paper [4] we take into
account only this last effect since it suffices already to
give a macroscopic elastic behaviour drastically diffe-
rent from the microscopic law, in agreement with
experiment [2]. We do not claim that these radius
fluctuations are the only possible explanation for this
experimental observation.

When small cylinders of equal radii are packed
together orderly, they form a triangular lattice. When
their radii fluctuate slightly, the triangular lattice is also
distorted. To get the resulting expansion in the limit of
zero force is quite difficult both in experiments [2] and
in our computer simulations [4]. Thus the first part
describes a different attempt to calculate the purely
geometrical effects in zero force. This method of nearly
ordered packing is, of course, different from the

problem of strongly disordered packing (see e.g. Ref.
[6]) which is less relevant to our issue.

2. The algorithm.

Let us consider a pile of cylinders which have radii
0.5 + 8 inside a rectangular box, E is a random variable
sampled uniformly, for each cylinder independently
between - a and a, with a = 0.01. The pile is made the
following way: the first horizontal line of cylinders is
constructed so that neighbouring cylinders touch each
other. On top of it, the second horizontal line is filled
up in the same order : from left to right (Fig. la). Thus,
except for the border elements, every new cylinder has
three nearest neighbours already present in the packing.
Among these three possible contacts, only two will be
made. The probability that the three excluded volume
circles cross at the same point vanishes since our

distribution of E is continuous. Figure lb defines the
three directions A, B and C. Two cases are encountered
(Figs. lc and d). In case (d), the location of the center
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Fig. 1. - After having built a line of cylinders, the upper line
is constructed starting from the left and proceeding towards
the right (a). When one cylinder is added three of its

neighbours are already present: A, B and C (b). Their

excluded volume can show two possible configurations: (c)
and (d). The selected position (indicated by an arrow) is the
one which minimizes the height. In (c) A and B contacts are
established whereas in (d) A and C are selected.

of a new cylinder is given by the intersection of the
excluded volume circles of A and C. In case (c), two
choices are possible in principle : contacts with B and
C, or contacts with A and B. To remove the ambiguity,
we will consider an additional condition by introducing
an « infinitesimal &#x3E;&#x3E; gravity field in the vertical direction.
This will select only the contacts A and B, which
minimize the height of the new added cylinder. Thus,
the A contacts will always be made whereas one and
only one among B and C contacts will be made.

However, we emphasize the fact that this is the only
effect of gravity introduced in this study. The computer
implementation of this algorithm is straightforward.
The precise definition of the way the piling is built in

« time » is important. Not all directions are equivalent
(Fig. la). In a physically more realistic model for

piling, one could for example select at random the
initial locations of the cylinders and then adjust them
such as to obtain a stable situation. We believe however
that in such a more realistic model each layer of
cylinders will exhibit large domains of elements all of
them with A-contacts, separated by domains with B-
contacts ; within each domain we expect a situation
similar to the one we encounter in our model.

A triangular lattice structure (which would be the
non-random case E = 0) is always present, although
slightly altered, if the system is not too large. We define
the « contact network &#x3E;&#x3E; as the set of « bonds » of this

triangular lattice for which there are contacts between
cylinders.

3. The structure of the contact network.

Our problem can be decoupled in two directions : along
the X and the Y axis (Fig. lb). The contact network can
be described as the union of two independent networks,
one consisting of A-bonds and the other one being the
set of B and C contacts. Thus the position of each site in
these two networks is decomposed into two separate
problems.
The A-contacts can be easily treated : in the X

direction, the location of a cylinder is determined by
the sum of the radii of the cylinders below, which is

simply the sum of independent random variables. This
distribution tends towards a Gaussian when a large
number of A-contacts is added. In the contact network
all lines of bonds parallel to X will be present. If we
disregard these lines we are left with the B and C
contacts in the Y direction.
The distribution of B and C contacts is non-trivial

and exhibits interesting tree-like patterns (Fig. 2). In
the limit of small disorder (small width of the distribu-
tion of the E), we can neglect fluctuations in the angles
between the contact-bonds. The coordinate, Yi, of any
cylinder i in the Y direction, or more precisely, its

distance, Zi = Yi - Yf, to the corresponding site in the

Fig. 2. - The contact network of a small sample is shown (a).
When every line parallel to the X axis are removed, (b), we
see self-similar tree-like patterns « growing » from the bottom
line.
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perfect triangular lattice, Yf, can be calculated the
following way.
On the sublattice of the B and C bonds (which is a

tilted « oblique &#x3E;&#x3E; square lattice) each site i is given a
continuously distributed random number ei which

represents the fluctuation in radius of the cylinder
sitting on this site. Now we can compute Zi according
to :

where j and k are the B and C neighbouring sites of i.
The site, j or k, which has the larger argument in
equation (1) is in contact with i. We can therefore see
that every site will be connected to one and only one
bottom site on the left (B or C direction). Reciprocally,
from each site a tree of contact bonds initiates which

grows to the right and eventually dies off. The boundary
condition in our piling is determined by the bottom
row, which, as seen previously, assigns the value of a
sum of independent random variables to Zi. To under-
stand better this stochastic growth process we can

modify our boundary condition. If we assume that

Zi = 0 on one line in the A direction, the direction of
the growth is perpendicular to this basis line. In this
situation we see that as the height increases some trees
expand and others disappear until finally one tree spans
the whole width of the system. Now we can ask at what
rate do these trees grow, expand and die.
From a numerical simulation, we obtained a power-

law decay of the number of independent trees,

N (h ), as a function of height h, justified by the fact
that no length scale exists, except that of the lattice.
Namely (see Fig. 3)

where x = 0.62 ± 0.02. This result has been obtained
from an average over 1000 realisations of
200 x 200 samples.
An approximate solution to this problem can be

found in a simplified version : taking into account that
one and only one bond connects a site with its left or
left-down neighbour, but selecting these bonds at

random, redefines another model, close to the previous
one. (We neglect long-range correlations which come
from the previous cylinder location in equation (1). For
instance, if a large value of E has been chosen randomly
for the site i then the growth of the tree spanning from i
will be favoured in the original model). In the simplified
model, an exact answer is available : let us put one
particle on each of the sites of a line parallel to the basis
(itself parallel to the X axis) at a distance h (height of
the tree). Now, at one time step, every particle follows
exactly one bond toward the basis. Each particle will
thus accomplish a one-dimensional random walk in X-
direction, where the time direction is in the negative Y-
axis. Whenever two particles meet they stick forever

Fig. 3. - The growth of the trees as described through
equation (1) has been simulated on 200 x 200 lattices. The
direction of growth has been chosen perpendicular to the
basis. We have plotted here on a log-log scale, the number of
independent trees at a height h, vs. h. The data are averaged
over 1 000 samples.

and are regarded to be one single particle. The number
of « trees » at height h, N (h ), is equal to the number of
particles after a time t = h. Therefore the classical

properties of the random walk allow us to conclude that

until it crosses over to N (h ) =1 (for large h). A
numerical simulation performed in this model con-
firmed the scaling relation of equation (3).
We note that in the limiting case of vanishing

disorder E there is an abrupt change in the topological
arrangement of contacts (e.g. the coordination number
will jump from 4 when c &#x3E; 0 to 6 when E = 0).

4. Expansion of the lattice due to randomness.

We have seen that the distribution of locations of the
centers of the cylinders along the A direction tends
towards a Gaussian distribution. In Y direction one has
the algorithm given by equation (1). The use of « max »
functions selects biased values from the distribution of
E. Since E is uniformly distributed between - a and a,
the mean ex ansion of the total system height after h
steps is ( 3/2) ha. The numerical value of the last

expression depends upon the particular choice of the
distribution of E, but the basic feature is that the

expansion increases linearly with the height h even if
the average E is zero.
We point out that the trees form an angle w/6 with

the bottom line. Due to this inclination, the roots of the
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trees start from a « random walk &#x3E;&#x3E; distribution of Y

coordinates, since the close packing of the first line

gives the initial contribution in that direction. So, for a
given height, the mean vertical expansion increases as
JL where L is the width of the piling. Our numerical
results are shown in figure 4 and confirm this theoretical
prediction when L is large.

Fig. 4. - For the original piling problem, we show on a log-
log plot the mean vertical expansion as a function of the width
of the system, for a height of 5(X) and 11(0) and a uniform
distribution of E between - a and a. (a = 0.01). The symbol
(4) refers to a bimodal distribution : E = ± a with equal
probability 0.5 and a height of 5.

The fact that we obtain an ever increasing expansion
shows the limitations of our algorithm. At large dis-
tances from the origin there will be holes so large that
entire cylinders could fit into them. We cannot expect
that the underlying triangular lattice free of defects will
survive over very large distances. However we believe
that over intermediate length scales this model is

acceptable. We will see in the companion article [4]
that obtaining a piling by relaxing it to a zero-force limit
is a difficult task to perform (the computer time needed
is very long in this limit), but it gives more realistic
expansion factors on large scales.
Using the same program, we also computed the

distribution of distances separating two nearest neigh-
bours when there is no contact. We obtained an

exponential distribution as shown in figure 5.
Our problem resembles that of rigidity percolation [7]

if one replaces a contact by a central-force spring.
Moreover, in our piling, the fraction of contacts is

exactly 2/3 of the bonds of the triangular lattice, close

Fig. 5. - Distribution of the distances between adjacent
cylinders on a semi-log plot : log of the frequency (arbitrary
units) vs. distance. These data are obtained from 300 samples
of height 5 and width 200.

to the rigidity percolation threshold [8] 0.655 ± 0.005.
This agreement is not too surprising since the effective
medium approximation predicts also a threshold [9] of
2/3. The analogy with the rigidity percolation problem
is limited : our algorithm introduces correlations which
are absent in rigidity percolation. However, one com-
mon feature is the vector nature of both problems
(discussed in detail in Ref. [10] for rigidity percolation).

5. Conclusion.

Analysing the generated contact network, we found a
rich structure of self-similar tree-like patterns, as well
as strong effects depending on the system size. It would
be interesting to search experimentally for the existence
of such contacts and to try to find the range over which
our model describes correctly the situation. The limita-
tions of our model (and its natural extension) for very
large lattices and/or large E is the problem of strongly
disordered packing [6]. We also want to emphasize that
contact (bond), instead of composition (site), is prob-
ably the more relevant basic concept to analyse trans-
port and mechanical properties of a disordered packing
of objects.
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