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Résumé. 2014 Dans un article récent nous avons montré qu’en appliquant des méthodes raffinées de resommation au
développement en 03B5 de Wilson-Fisher, nous pouvions obtenir, à partir des termes des séries disponibles actuellement,
des valeurs précises pour les exposants critiques du modèle de Heisenberg classique avec symétrie 0 ( n ) : ces
valeurs sont en excellent accord avec les résultats tirés de calculs de Groupe de Renormalisation à 3 dimensions, ainsi
qu’avec les résultats exacts du modèle d’Ising à 2 dimensions. Récemment divers auteurs ont suggéré qu’il était
possible d’utiliser des réseaux fractals pour interpoler les réseaux réguliers en dimension non entière. Des calculs
numériques ont été faits pour le modèle d’Ising. De façon à permettre une comparaison directe avec les valeurs du
Groupe de Renormalisation, nous présentons ici nos résultats pour les exposants critiques pour des dimensions d non
entières (1  d ~ 4) . En imposant les valeurs exactes du modèle d’Ising à d = 2, nous améliorons également les
valeurs à d = 3. Finalement nous remarquons que les valeurs des exposants extrapolés pour d  2 ne sont pas en

désaccord avec les valeurs tirées du modèle d’interface presque plat.

Abstract. 2014 In a recent article we have shown that, by applying sophisticated summation methods to Wilson-Fisher’s
03B5-expansion, it is possible from the presently known terms of the series to obtain accurate values of critical exponents
for the 0 ( n ) symmetric n-vector model : these values are consistent with the best estimates obtained from three-
dimensional Renormalization Group calculations and, in the case of Ising-like systems, with the exactly known two-
dimensional values of the Ising model. The controversial conjecture has been recently formulated that some fractal
lattices could interpolate regular lattices in non-integer dimensions. Numerical calculations have been done for the
Ising model. To allow for direct comparison with Renormalization Group values, we present here estimates for
exponents in non-integer dimensions d(1 d ~4). By imposing the exactly known 2 d values, we at the same time
improve the previous 3 d estimates. Finally we find indications that for 1  d  2 the Renormalization Group values
are consistent with those obtained from the near planar interface model.
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1. Introduction.

Calculation of critical exponents [1] for the n-vector

model using Renormalization Group method [2] has
first been done following a suggestion by Parisi [3] from
perturbation series at fixed dimensions

( d = 2 or d = 3 ) because many terms in the series

had been calculated by Nickel [4] (6 consecutive terms
for d = 3). However, recently several groups [5] have
extended the Wilson-Fisher E = 4 - d expansion [6],
and we have shown [7] that the same summation
methods which had allowed us [1] to obtain accurate
values for critical exponents from fixed dimension

perturbative calculations, could also be used with the E-
expansion. The exponents obtained in this way are

consistent in three dimensions with the standard Renor-

malization Group values : the apparent error is larger

by a factor 2 typically, which is consistent with the

smaller length of the series. These exponents are

therefore also consistent with the best high temperature
series results [8]. In two dimensions the values for the
exponents agree remarkably well with the exactly
known Ising model values (although the problem of the
identification of the correction exponent w remains).
The popularity of fractal lattices has lead to the

controversial conjecture that some fractal lattices could
interpolate standard regular lattices in non-integer
dimensions, although it seems that fractal lattices

cannot be characterized in general by only one dimen-
sion.

In particular, numerical calculations have been done
for the Ising model [9-11]. To allow a direct comparison
with Renormalization Group values, we have calculated
from the e-expansion critical exponents for arbitrary
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values of the dimension d for 1  d , 4 for Ising-like
systems.

Since we had shown [7] elsewhere that the agreement
between exact 2 d values and Renormalization Group
estimates was remarkably good, we have imposed the
exact 2 d values.
As a consequence, with of course the additional very

weak conjecture that the ~4 field theory and the Ising
model belong to the same universality class, we have
also obtained more accurate 3 d values.

Finally, we have been able to add some elements to
another controversial issue : the relation between the

near planar interface model of Wallace and Zia [12]
and the bulk phase transition of the Ising model. We
have compared our results with the expansion for the
exponent v in powers of ( d -1 ) of this near planar
interface model. A further extension of this model, the

droplet model [13], also yields an asymptotic form for
the exponent p. This allows then a comparison with our
results for all exponents.
The set up of this article is the following : in section 2

we recall briefly how we sum Renormalization Group
series to extract values for physical quantities. In

section 3 we present our new results and compare them
with the other existing data mentioned above.

2. Numerical calculations.

Since the method has been described in detail
elsewhere [1, 7], we shall here only recall the main
points.

Starting from the E-expansion for an exponent
E(£) :

we introduce a Borel transform B ( t ) of E ( E ) , which
depends on the free parameter p :

The series (1) for E ( e ) transforms into a series

expansion for B ( t ) :

We know the large order behaviour of Ek [14, 15] :

with :

a = - 1/3, b = 7/2 for 11, b = 9/2 for 1/ v . (5)

This translate into a large order behavior for the series
expansion of B ( t ) :

The Borel transform B ( t ) is therefore analytic at least

in a circle. The singularity closest to the origin is
located at the point - 1/a and is of the form

(1 + at ) P - b -1, except when ( p - b ) is an integer
in which case the singularity is logarithmic.
We have consistently assumed that actually B ( t ) is

analytic in the maximal domain possible, i.e. a cut-

plane, and therefore mapped the cut-plane onto a circle
of radius 1 by :

With this hypothesis, after mapping, the Taylor series is
convergent on the whole domain of integration of the
Borel transformation (2), except at infinity which

corresponds to u = 1. To possibly weaken the singulari-
ty of B ( t ( u ) ) at u = 1, we have multiplied the
function by ( 1- u) U obtaining the expansion :

and therefore :

The conditions for the convergence of such an ex-

pression have been considered in references [1, 15]. In
the absence of any rigorous proof, we study numerically
the apparent convergence of this expansion with the
five terms [5] of the E-expansion available. Actually,
and this is a difference [16] between the treatment of
the fixed dimension perturbation series and the E-

expansion, we have in the latter case introduced an
additional parameter A and performed the homographic
transformation in the £-complex plane :

before Borel transformation to send away’ a possible
singularity on the real positive E axis. For the Ising
system the interface model [12] for example predicts a
singularity at d = 1, i.e. E = 3. Since we do not know
the location of the singularities of the function
E ( c) in the complex plane, we have kept À as a free
parameter.

All three parameters A, p, 03C3 have been moved freely
in a reasonable range and chosen to improve the

apparent convergence of expansion (9).
Finally, since we had previously [7] verified that the

results for d = 2 were remarkably consistent with the
exactly known 2 d Ising values (see Table I), we have
imposed these exact values setting

and performed all the manipulations described above
on E(s).
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Table I. - Estimates [7] (A) of Ising critical expo-
nents for the dimension d = 2 from the E-expansion,
compared with the exactly known 2d 1 sing values (B).

3. Results.

3.1 IMPROVED ESTIMATES IN d = 3 DIMENSION. -

Since we have imposed to the sums of the series to yield
the values of the exponents of the Ising model for
d = 2, we expect a decrease in the apparent error at
d = 3 for the various exponents. This is exactly what
happens as can be seen in table II where Renormaliza-
tion Group values coming from fixed dimension pertur-
bation series [1], E-expansion without the d = 2 infor-
mation [7], our present results, and some recent high
temperature results [8], are compared.
The apparent error is approximately decreased by a

factor two, and the new results are now as accurate as
the standard Renormalization Group values. It is

satisfactory that the results are still quite consistent.
One observes however some small deviations which

may be significant. The largest one concerns the

exponent q for which the agreement is now marginal.
Note also that these new values are even closer to the

present best high temperature series estimates than the
old Renormalization Group values.

3.2 RESULTS FOR ARBITRARY DIMENSIONS AND COM-
PARISON WITH FRACTAL ESTIMATES. - Between 4 and
2 dimensions we obtain very accurate results, since for
example the apparent errors for y and v remain always

Table II. - Estimates of Ising critical exponents for
the dimension d = 3 : (A) Renormalization Group
values from fixed dimension perturbation series [1];
(B) £-expansion without the d = 2 information [7] ;
(C) our present results ; (D) some recent high tempe-
rature series results [8]. The notation + X indicates the
error on the last digit.

smaller than 1 %. Below two dimensions the apparent
errors increase very rapidly as expected. However, up
to d = 1.5 y and v are estimated at better than about
10 %.

Table III and figures 1 and 2 present our results for
various values of the dimension between 1 and 4.

In a recent paper, Bhanot et al. [10] have measured
the critical exponent y of the Ising model on a fractal
lattice of the Sierpinsky carpet type. They interpreted
their results in terms of a dimension d’ defined from the

average number of nearest neighbours of an active site,
and different from the Hausdorf dimension dH.
Figure 3 reports both their results for y ( d’ ) and our
present results for y ( d ) , assuming that d’ is the same
as our dimension d. The agreement appears quite
reasonable and compatible with their conclusion that
such fractals can be used to interpolate between integer

Table III. - Estimates of Ising critical exponents for various values of the dimension d between 1 and 4. The
notation + X indicates the error on the last digit. Values for d = 1 are those predicted by the near planar interface
model [12] and the droplet model [13].



22

Fig.1. - Our present results giving the dimension d versus
the Ising critical exponent y.

Fig. 2. - Our present results giving the dimension d versus
the Ising critical exponent v.

dimensions to study the critical behaviour of statistical
systems.

In an earlier paper, Bhanot et al. [9] report a

measure of y and v for a fractal of Hausdorf dimension

dH = 1.86 :

Fig. 3. - Comparison between our present results for

y ( d ) [continuous line ; error bars indicated by vertical
segments ] and the results y ( d’ ) of Bhanot et al.

[10] [vertical ’2013’2013’], assuming that d’ is the same as our
dimension d.

Such values are consistent with our results with a

dimension d of a regular lattice :

On the other hand, Bhanot et al., assuming that the
system at criticality is governed by a single dimension
dc’ get through hyperscaling relations :

It seems then that such a scheme is compatible with
dc = d.
However, preliminary results of Bonnier et al. [11]

seem to question this interpretation. They study the
Ising model on two fractal lattices of the Sierpinsky
carpet type : one (i) with dH == 1. 8 and d’ = 1.5, and
the other (ii) with dH =-- 1.9 and = 1.6.
On the one hand, their results for y :

compared to our results give for the central value :

and correspond to :

These results are compatible with the possibility that
the critical behaviour on the fractal would be governed
by the dimension d’ being equal to d.



Their results for v are less precise :

and compared to our results give for the central value :

and correspond to :

These results seem also to favour d’ = d.
On the other hand, however, Bonnier et al. [11]

found, as a preliminary result for the fractal lattice (i),
that the hyperscaling relation :

seems to involve on the contrary a dimension dc, such
that :

suggesting de = dH = 1.8.
It remains therefore unclear whether values for

critical exponents on these fractal lattices can be

interpreted as arising from regular lattices at a non-

integer effective dimension.

3.3 THE NEAR PLANAR INTERFACE MODEL. - Wallace
and Zia [12] have calculated the critical exponent v of
the near planar interface model in an e = d - 1

expansion. In addition they have argued that this model
should have the same critical behaviour as the Ising
model, at least in the sense of the e’-expansion.
As can be seen in figures 4 and 5, our results seem to

indicate that such an identification might be correct.
We compare in figure 4 our estimates for v with the

E’ = d - 1 expansion [12, 17] at first, second, and third
leading order [18] :

In figure 5 we present our estimates for

( v - E,-’), which is indeed negative and becomes

compatible with -1 as d decreases towards 1.2

Although our estimates become very. poor near one
dimension and the E’ = d - 1 expansion obviously
cannot be trusted near two dimensions, there seems
definitively to exist a region in which both agree in a
significant way.
From an extension of this model, the droplet model

[13], a second independent exponent, p, can be calcu-
lated as 8’ = d - 1 tends to 0 :

where C = 0.577... is Euler’ constant.

Fig. 4. - Comparison between our present results
v = vo ± A v and the successive predictions for v of the e’ =
d - 1 expansion [12, 17] for the near planar interface model :

Fig. 5. - Our present estimates for (v - E,-’) with e’ =

d - 1, for various dimension d between 1 and 2.

Such an exponential form cannot possibly be repro-
duced by our approximants, which by construction
yield only smooth or power law behaviours. Maybe this
is related with the fact that the values we obtain for 13
have a tendency of becoming negative for d close to 1,
which is clearly inconsistent, instead of dropping very
rapidly to zero as predicted by expression (31).
The significant results are however that our 13 is small

and our q increases to become compatible with 1 for d
close to 1 as predicted.
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