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Résumé. 2014 Nous présentons des résultats expérimentaux et théoriques concernant les propriétés d’empile-
ments bidimensionnels de disques. Nous nous sommes particulièrement intéressés à l’étude des mélanges avec
distribution de taille des disques. Les propriétés moyennes, telles que compacité ou coordinance, ne
dépendent pas de la composition du mélange, contrairement à ce que l’on pourrait attendre au vu des
expériences à 3D. Nous montrons l’existence d’un ordre local dans la position relative de grains de tailles
différentes ; cet ordre local peut modifier les propriétés physiques de l’empilement. On donne une expression
théorique approchée pour la compacité d’empilement 2D compacts. Elle nécessite uniquement la connaissance
de l’aire moyenne des quadrilatères du réseau des contacts réels. Pour des empilements désordonnés compacts
de disques identiques, on obtient la limite c = 03C02/12 ~ 0,822.
Abstract. - We present experimental and theoretical results for geometrical properties of 2D packings of
disks. We were mainly interested in the study of mixtures with disk size distribution which are of more practical
interest than equal disks. Average geometrical properties, such as packing fraction or coordination number do
not depend on the composition of the mixture, contrary to what would be expected from 3D experiments. We
show the existence of a local order in the relative positions of grains with different sizes ; this local order may
modify the physical properties of the packing. An approximate theoretical expression for the packing fraction c
of 2D close packings is given. It implies the knowledge of the average area of quadrilaterals of the network
drawn from the real contacts only. For equal disk disordered packings, it yields the limit c = 03C02/12~ 0.822.
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Except by numerical simulations, it is difficult to
study the geometrical properties of hard sphere
packings, particularly if we consider the real contacts
between grains, which are important for transport or
mechanical properties of granular materials. There-
fore, besides its interest for structural modelling in
two dimensions, the study of hard disk packings on a
plane can be a good tool for easier approach and
understanding of the geometry of 3D packings. Such
a 2D study is especially interesting when the disk size
distribution forbids a regular pavement of the plane :
experimental equal disk packings, when they are
dense, exhibit ordered domains, then their structure
depends on the contruction mode. In this paper we
study the effect of disk size distribution on geometri-
cal and structural properties of 2D disordered

packings.

1. Order-disorder in 2D hard disk packings.
It is difficult to give a precise and formal definition
of a random packing as it would not easily take into

(+) Permanent address : C.E.N. Saclay, Service de
Physique Th6orique, 91191 Gif-sur-Yvette Cedex, France.

account the steric exclusions, which, for compact
packings, may lead to long range geometrical corre-
lations [1]. On the other hand, generating points
according to a Poissonian distribution law is not
difficult. Starting from this remark, Stillinger et al.
[2] have proposed an algorithm to construct a

random packing of 2D equal disks : a set of points
are randomly distributed on a plane ; then, conside-
ring these points as centres, equal disks are grown.
During the expansion process, any couple of overlap-
ping disks is shifted symmetrically along its axis so to
realize a tangential contact. Triplets and more

complicated overlappings are rearranged following a
similar procedure which minimizes the sum of the
squares of the displacements. According to these
authors, the final result should be a dense random
packing and not the dense ordered packing (triangu-
lar lattice).
On this basis, in a beautiful experiment, Quicken-

den and Tan [3] have built equal disk packings in
the following way : small disks are put at random on
a plane isotropically stretched rubber sheet, in very
loose packing. Then, one lets the rubber shrink and
a photograph is taken. The sheet is stretched again
and the process is repeated n times, the disks at the
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beginning of the ( n + 1 ) th cycle are placed at the
very place they occupied at the end of the nth cycle.
The packing fraction c (i.e. the ratio of the occupied
area to the total area) grows linearly with the
number of contraction sequences up to the critical
value 0.83 ± 0.015. Afterwards, it grows far more

slowly, up to 0.907 which is characteristic of the most
compact 2D ordered packing. The transition is also
marked by a change in the behaviour of the average
number z of true contacts per disk (the so called
coordinance or coordination number) : at the transi-
tion; z - 4. Quickenden and Tan consider that this
transition is like from dense liquid to solid, as the
structure remains essentially disordered before this
transition. Numerical simulations by Mason [4] using
an algorithm analogous to that of Stillinger et al.
yields results which are qualitatively similar to those
by Quickenden and Tan.
Using the radial distribution function at more

dilute concentrations, Berryman [5] also obtains by
extrapolation the value 0.82 ± 0.02 for this critical
packing fraction ; he characterizes it as being the
value after which the system necessarily becomes
ordered. We also proposed z = 4 as the coordination
number at this transition [6].
The experiment by Quickenden and Tan shows

that the structure of compact disk packings must be
studied in terms of order-disorder rather than in
terms of randomness. The topological order in solid
state physics is most often defined starting from the
nearest crystalline structure (the triangular regular
lattice here), which is also the most compact. It is
then useful to represent the disk packing by a
network. Starting from the set of points which are
the centres of the disks, one representation is the
Voronoi tesselation (Wigner Seitz cells) : one draws
the bisecting lines to the lines joining any two
centres ; then the smallest convex polygon surroun-
ding a given centre contains all points in the space
closest to this centre. The construction is unique and
fills the whole space. Another representation is the
dual one ; the vertices are the centres of the disks,
and they are connected by lines joining nearest

neighbours (defined in Voronoi sense). Figure 1
gives an illustration of such equal disk packings.
These representations have remarkable topological
properties, the most important of which being that
the average number of links at one vertex (or
average number of sides per polygon in Voronoi
tesselation) is constant and equal to 6. In this
formalism, Rubinstein and Nelson [1] have studied
the phase diagram of a packing of disks with radius
R1 as a function of the number of impurities (disks
with radius R2 =A Rl) and the ratio R2 Rl ; they show
the existence of a hexatic phase, characterized by an
orientation order, between the domain of existence
of the crystalline and amorphous phases. Then, a
maximum disorder packing presents no order

beyond the near neighbour cluster of a disk, the
word « near neighbours » must be understood in the
Voronoi sense.
Another network representation relies on the real

contacts : in the totally triangulated lattice above,

Fig. 1. - Equal disk packing and its triangular network
representation. The vertices, or sites, of the network are
the centres of the disks. Two neighbour disks are connec-
ted by a bond (---). The Voronoi tesselation (full line) is
the dual of the triangular network.

only lines going through real contacts are retained.
This new network consists mainly in polygons, but
may exhibit some isolated sites and dead ends : this
occurs in the experiment by Quickenden and Tan for
low compacities. The network is completely connec-
ted only when imposing to the system and to each
grain a stability criterion. This criterion may be
based on central interactions considerations [7-8] :
each disk must be blocked by its nearest neighbours ;
this implies at least 3 real contacts for each grain, the
angle between two links being less than 7r. Another
criterion considers that, in two dimensional systems,
each grain has at least 2 real contacts with its

neighbours (2 degrees of freedom) : it is true for the
disk packing constructed under gravity, or that

following the Bennett algorithm [9] (which is preci-
sely used by Rubinstein and Nelson) according to
which each new grain is placed, with at least two
contacts, at the nearest place to the centre of the
system. This last stability criterion prescribes a real
coordination number z = 4 for the disordered

packing realized grain after grain [6] : the packing is
isostatic [10]. In the case of a collective construction
process, a lower value may be obtained because of
local or global arching - collective equilibrium - in
the system. We have performed numerical simula-
tions on a regular triangular lattice submitted to
« gravity » along a direction which is not one of the
three axes of the lattice [11]. Bonds which are not
necessary for the equilibrium of the system and of
each individual grain are suppressed. These simula-
tions were done on lattices with 50 x 50 sites ; they
give a value 3.45 ± 0.45 for minimal coordinance.
This value is not far from the theoretical one (3.416)
derived by Uhler and Schilling [7], though the

stability criteria are not identical. One may conclude
that the contact coordination number for a stable
disordered packing lies between 3.40 and 4.
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A packing with a coordinance equal to or lower
than 4 is not necessarily a fully disordered one. As
already emphasized in the literature (see for example
the review by Berryman [5], packings may include
small zones with a regular triangular structure ; in
the distribution law for bond angles, this yields an
increase of the number of the 7T/3 angles. However,
an alternative definition of order for equal disks is by
reference to the square lattice, because of the
peculiar character of coordinance 4 [12]. Figure 2
shows such an example of a packing constructed
grain after grain under gravity starting from an
irregular wall (a) and its representation by a real
network (b), which looks like a distorted square
lattice. In such a system, angles between neighbou-
ring links are preferentially equal or near to

7T/2. For packings with coordinance close to 4 [12],
the average value of the angles is close to 7r/2, as
quadrilaterals are numerous in the network represen-
tation [13]. The angle distribution is then a parame-
ter which characterizes the kind of order of the
system. Equidistribution of the angles between

7T/3 and 2 7r/3 should provide a disordered

packing, whereas a distribution law favouring angles
vl3 or 2 7T/3 would indicate a triangular order (6th
fold axis), a distribution law favouring angles
7r/2 a quadratic one (4th fold axis).

Fig. 2. - a) Equal disk packing built disk after disk
under gravity, from a wall of arbitrary shape. b) Represen-
tation by a network based on real contacts.

The above constatations have been done mainly
by studying equal disk packings. The purpose of this
paper is to see how they are modified in mixtures

(Sect. 2). The packings with grain size distribution
- especially binary packings - may show noticeable
differences compared to equal size disk packings.
One could think that their mean geometrical parame-
ters, like packing fraction or mean coordination
number, vary with the form of the distribution, or
with the composition in binary mixtures. We have
performed a 2D study. Experimental results are

reported in subsection 2.1. They show that, contrary
to what would be expected, packing fraction and
coordination number are not or not much modified

by the grain size distribution. In binary mixtures,
this is true only when the ratio of the diameters is not
large enough to allow small disks to fit within the
cavities of the large grain packing. In subsection 2.2,
we give a theoretical expression for packing fraction
using only topological constraints. We show that it
agrees well with the experimental data (for equal
disks, it would lead to the limit c - iT2/12 = 0.822
which is nearly the same as Berryman value [5]).
As for local geometrical properties, like environ-

ment of one grain, the analysis is more subtle.

Actually, two kinds of disorder may appear. Let us
represent the system as a network with real contacts.
Either we do not distinguish between small and large
disks and the system is topologically disordered ;
this was shown by Rubinstein and Nelson [1].
Another possibility is that we distinguish between
the two types of centres of disks ; order may appear
in the relative positions of the two species, which can
be related to the substitution order in the alloys. We
shall discuss this further in section 3.

In the conclusion, we discuss how this 2D study
could be of use in 3D systems.

2. Packing fraction, coordinance.

This section is devoted to packing fraction and partly
to coordination number. The aim is twofold.

a) We first give experimental results for binary
mixtures of disks (subsection 2.1). These systems are
less studied in the literature though they have a
much broader range of practical interest than equal
disk packings. Both packing fraction and average
coordination number are constant in the whole

range of composition and for the studied values of
the ratio of large and small disk radii.

b) In subsection 2.2 we propose a theoretical
expression for packing fraction. This expression
involves some average over polygons of the real
contact network. Reasonable statistical assumptions
are discussed for equal disk packings. They are

supported by numerical experiment. The theoretical
formula for packing fraction is also tested for binary
mixtures

2.1 EXPERIMENTAL STUDY.

2.1.1 Experimental conditions. - Packings with
disk size distribution have not much been studied
though they intrinsically exhibit topological disorder
[1], contrary to equal disk packings. In most cases,
their physical properties cannot be described uni-
quely by means of their average geometrical parame-
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ters, like packing fraction or coordination number ;
they also depend on the local fluctuations of these
parameters, which may be important in case of disk
size distribution. Thus, we have performed a syste-
matic study of mixtures with 2 sizes of elements
(binary mixtures). The size ratio

is taken smaller than 5, in such a way that a small
disk cannot enter the cavity formed by three tangent
large disks. All our samples are made up of
1 000 disks. The construction recipe is similar to that
used by Dodds [14] : a fixed area is filled at random.
Then, the system is compressed and vibrated in all
directions up to blocking, to prevent anisotropy in
the contact directions [15]. These packings are

constructed on photographic paper ; we then obtain
a photograph « by contact » under indirect lighting,
to avoid shadow areas. By doing so, we have a better
appreciation of the existence of the contacts because
of the contrast between the grain and void phases, as
shown in figure 3. Each experimental value is the

average value over three packings with the same disk
distribution.

Fig. 3. - Binary mixture of hard disks.

2.1.2 Experimental results. - The packing fraction
c is a constant within experimental errors [16] for
any size ratio k * 5 and any composition

This value is a little higher than the theoretical one
(0.82) proposed in next subsection.
The average coordinance z = L ni Zi’ where

denotes the coordinance and ni the numerical frac-
tion of species i, is also a constant and is equal to

for any composition and ratio k ( -- 5 ) . This is
somewhat smaller than 4, essentially because of the

friction between disks and with the construction
surface, and not because of the finite size of the
samples [17] as value in (3) is obtained solely from
disks wich are not at the boundaries of the packings.
We have determined the coordination numbers

zi and z2 as a function of nl and k for binary
mixtures, always under the same experimental condi-
tions. In figure 4, we have plotted zl and z2 versus nl
for k = 4. The results agree rather well with those
one should get from Dodds statistical geometric
model [14] which can be defined by two assump-
tions :

a) the relative positions of the sites are at random,
b) compared to the totally triangulated lattice,

the missing lines (lack of contact between two disks)
of the actual packings have been taken away ran-
domly so as to lower the coordination number from
6 to the actual value.

Fig. 4. - Variation of the individual (mean) coordination
number of each species in a binary mixture vs. the
numerical fraction nl of large disks. · : experimental
points ; D : expression (4) ; - Dodds model.

We have proposed another expression for zi [11]
which takes into account not only geometrical consi-
derations but also the two contact stability criteria.
Generally, the average coordination number of one
disk in a packing depends on two contributions [18] :
- the equilibrium of the disk under stresses ; for

example, a minimum coordinance of 2 is required
for stability of disks under gravity (3 for spheres) ;
- the sterical hindrance of the grain.
The coordinance zi, for maximal disorder (as

defined in Sect. 1), may be rewritten as

where R = ¿ ni R; and z = ¿ ni zi are the average
radius and coordination number ; parameter a cor-
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responds to the (physical) limit of zi when Ri -+ 0,
which is defined by the equilibrium of the grain only.
In the simple case of packings built under gravity,
this limit is 2, and is identical to the (geometrical)
limit in Dodds model which is not the case for 3 d
packing [19] : geometry in 2 dimensions requires a
minimal coordinance 3 for a disk with Ri  R in a
totally triangulated packing. This leads to a real
minimal coordinance 2 for a disk in a system with a
mean coordinance 4. More generally, parameter a
depends on the way the samples are built. In our
case, they are constructed on a horizontal plane, and
we find a = 1.75, value which is comparable to the
geometrical limit in Dodds model (1.875) for a

packing with a mean coordinance 3.75. So, the
relative coordinance zi remarkably coincides with
the experimental value (see Fig. 4).
The same study was carried out with more compli-

cated samples with 10 classes of disks following a
truncated lognormal distribution. The ratio k
between the radii of the largest and smallest disks
was chosen to be less than 5 again. We get the same
results as for binary mixtures

i) the packing fraction is equal to 0.84 ± 0.02,
ii) the average coordination number is close to

z = 3.75,
iii) the dependence of the individual coordinance

zi on Ri is linear, and agrees with equation (4) with
a = 1.75.

2.2 THEORETICAL EXPRESSION FOR PACKING FRAC-
TION. - In this subsection, we derive a theoretical
expression for packing fraction and propose a simple
approximation to it (Eqs. (12)-(13)). It is tested on

equal disk packings, then on mixtures. We recover
the experimental independance on the mixture

composition and get for c the value 0.84 ± 0.02. The
important point is that the proof requires only the 3
nearly obvious topological relations which describe
the real contact lattice, equation (5). This would not
work in three dimensions.

2.2.1 General formula. - We consider the partitio-
ning of the plane based on real contacts ; stability (at
least 2 contacts) implies a fully connected network.
The differences with Voronoi tesselation was empha-
sized in section 1 : z (~ 4) polygons around a site,
predominance of triangles and quadrilaterals, fixed
length of the edges (sum of the radii of the disks),
possibility of non-convex polygons...
The proof is similar to that by Rivier and Lissowski

[20] for tissues and froths in the Voronoi representa-
tion. Let us denote by N the number of disks,
Pn the number of polygons with n sides (n -- 3), An
their average area and E the number of edges. When
neglecting the finize size effects, we have the topolo-
gical constraints 

’

The average coordinance z is defined by

The packing fraction

where the brackets ( ) stand for the average on all species of disks.
In terms of the probability

of finding a polygon with n sides and by eliminating E, we can replace the above relations (5) to (7) by
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and

where the r.h.s. of the second equation (9) is negligible when N --+ oo and Ao is now the average area of a
polygon. Eliminating P3, P4 in equations (9), we get for Ao and c respectively the expressions

Up to now, no assumptions have been made about
the distributions pn of the polygons, or of their
angles ; thus relations (11)-(12) are quite general. In
our experimental work, pn has a maximum value for
n = 3 or 4 and then decreases, while An grows
approximately linearly with n as polygons of higher
order are rather stretched (see below). The summa-
tions in equations (11)-(12) may be neglected as a
first approximation. Moreover, as z is not far from 4
(z - 3.75 in our experimental work [16]) and

A4 - 2 A3 is small, a simple approximation to

packing fraction is

where only quadrilaterals appear (though P3 is not
zero).
2.2.2 Packing fraction of equal disk packings. - We
first study the packings of disks with equal radius R.
In the real contact representation, the polygons have
sides of definite length 2 R. Consequently, there are
only (n - 3) independent angles in a polygon of
order n. The most frequent polygons are (equilate-

ral) triangles, rhombii (with angle a,  a 2 w /3)
and pentagons which are necessarily convex.

Statistical assumptions.
We now assume that the angles of the rhombii are
equally distributed in the interval (’IT /3, 2 1T13).
This seems reasonable for disordered packings with
z  4. As can be seen from the numerical test below,
this is nearly true for z - 4.
For a rhombus, the average area is

with

and we get for compacity

which fits remarkably experimental results [16]. We
shall see that the terms neglected in (12) give a
positive contribution (mainly because A4 - 2 A3 &#x3E; 0

as can be easily checked for equal disks), then
expression (14) is an upper bound for the packing
fraction of completely disordered packing for which
the upper bound of z is 4 [3, 6]. This limit, obtained
with the 2 contact stability criterion is presumably
general [5].
We have tried to see how the lV topological

constraints

around the N sites could modify this result. We have
listed all possible configurations with 3, 4, 5 polygons
around one given site, one of them at least being a
rhombus : there are two configurations with 3 poly-
gons (2 rhombii + 1 pentagon, 2 pentagons + 1

rhombus), 10 with four polygons, 14 with five

polygons. We calculated the average area of the
rhombus for each configuration and for a uniform
distribution law for the angles. We found that

(sin a ) for a given configuration remains equal to
3/ 7T in almost all cases with 3 or 4 polygons or is
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slightly altered [for 4 rhombii, and 3 rhom-

bii + 1 pentagon we got respectively 3 x 1.0047 andg p ’IT
3 x 1.0019]. The greatest differences appear where
n

there are five polygons around a site, when there is
at most one triangle. In that case, the difference
does not exceed 5 %. Actually, these configurations
are rare, because they imply important ordered
domains. We have omitted the possibility of having
hexagons, heptagons... but the constraint (15) for
the angles restricts them to a definition domain
which is the same as for polygons of lower order and
the results would not be different.
Numerical justifications.
The realization of a real analog experiment with
equal disks is very difficult. So, we have verified our
assumptions by generating a close packing of 2 361
equal disks through a Bennett algorithm [9]. As the
packing is constructed disk after disk, there is more
order than in an actual experiment. However, we
have minimized this drawback by performing the
growth around an initial seed of larger diameter
which favours the disorder [12]. Thus the coordi-
nance is a bit greater than 4 (actually 4.1) and
packing fraction c = 0.83 is higher than the announ-

Fig. 5. - Representation by a network of a numerical
packing of 2 361 equal disks built according to Bennett
algorithm.

ced value ; in the network, we get many equilateral
triangles (Fig. 5). -

The histogram of angles is given in figure 6. We
have omitted the 100 first disks and those near the
boundary. Except for the predictable peaks at
a = 7T/3 and 2 7r/3 arising because of the great
number of triangles, the distribution is nearly
constant. From the values of pn given in table I, we
can see that the contributions of polygons of order
larger-than 4 is weak. So the distribution of angles of
rhombii is also nearly constant in a large range
around 7T /2.

Fig. 6. - Distribution of the angles between two adjacent
bonds for the packing of figure 5. In the range 60-120°, the
main contribution comes from rhombii. Angles larger than
120° come from higher order polygons.

Finally, we have estimated the frequency of occur-
rence of the different configurations around one site.
For N’ = 2 000, the results are the following :

i) There are 186 sites with 3 polygons, 1 432 with
four polygons, 382 with 5 polygons;

ii) When there are five polygons around a site,
there is at least one triangle ; there are at most
59 sites with one triangle only (Le. for 3 % of the
sites). This is an upper estimate : uncertainty arises
because of the impossibility of deciding for 17 sites
whether they have one or two triangles. Because of
the algorithm itself, configurations with two or more
triangles are certainly overestimated as explained
above. Nevertheless, the occurrence of situations
where (sin a &#x3E; deviates too much from 3/ 7r should
remain minimal.

It remains to be proven that, under the statistical
assumptions discussed above, we may drop in expres-
sion (12) for compacity all terms but A4, so that
c - ff2/12.

Table I. - Analysis of the packing of equal disks obtained through the Bennett algorithm ; n is the number of sides
of a polygon,Pn its percentage and An its mean area (see Sect. 2 . 2).
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First as A3 = R J3, A4=7T R , it is easy to seen

that

so that the first neglected term is always small and
less than 1 % for equal sized disks.
The estimate of the sum

is less obvious. From the numerical experiment, we
have estimated average areas An within an error of
1 % with the help of a digitizer.

Results are reported in table I. Ratio

A4-2A3 
2 A4 

0.0508 is not very far from the theoreti-
4

cal value. The probabilities pn decrease very quickly
for n , 6 and area An increases roughly linearly with

n ; then the sum 1: yields to A4 a positive
n=-5

correction of the order of 0.44 % and may be
neglected. Thus, approximate expression (13) for c
is justified, at least for equal disk packings. As a by-
product, let us notice that the pn do not follow the
Rivier-Lissowski law [20]. This proves that other

constraints, of sterical nature exist. However, their
knowledge is not necessary for the calculation of c
because the topological constraints are very strong.
2.2.3 Compacity of binary mixtures. - From equa-
tion (7) the compacity is

where ni is the numerical proportion of disks of

species i £ n; =1 , Ri its radius ; Ao is the

average area of a polygon. As for equal disks, we

assume 
z-2 
... i.e.assume ---z-Ao - A4 Le.0

and that the average value of A4 may be calculated
by considering that angles are equally distributed
within an interval which depends on the length of
each side of the quadrilateral.

Starting with a binary packing, we have 6 kinds of
quadrilaterals (see Fig. 7). Quadrilateral Q1112 may
be concave when R1/Rz&#x3E; J2 + 1 = 2.4142 as a

small disk may enter the cavity between four big
disks forming a square.

Fig. 7. - Different types of triangles and quadrilaterals
in a binary mixture of disks.

We have calculated the average area of each kind
of quadrilateral, taking care that the measure which
provides entropy invariance [21] is not da, but

(da + d/3 ) (where a, f3 are opposite angles). The
theoretical formula is given in table II. We now
attribute its correct weight to each configuration. A
first idea is to choose the weight related to the
numerical proportion ni of each species, i.e. the

binomial coefficients nl, 4 ni n2, 2n 2 n2, 4n 2 n2
4 nl n2, n2 respectively. The packing fraction is then
too large (of the order of 0.94 for k = 2 when
ni - 0.5). The reason is that the number of contacts
2-2 between two small disks is over-estimated. The

ability to have contacts is actually measured by the
relative coordinance

which is a function both of the relative sizes and the

proportions of the two species in the mixture (Dodds
random model). The weights are now

Results are given in table III for k = 2 and 4. The
packing fraction is remarkably constant and close to
its experimental value. Assuming c to be constant
and equal to 7Tz/12, we get zilz as a function of ni.
The curve fits well the experimental results of

figure 4. Finally, we calculated the fractions pn of
polygons of order n. As for equal disks, we see that
pn decreases rapidly for n -- 5 so that again approxi-
mation (13)-(16) is justified. Again, the pn do not
follow the Rivier-Lissowski law, which implies that
other sterical constraints exist. The same study was
done with mixtures of disks of several sizes, both
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Table II. - General expression for the area A4 of a quadrilateral generated by four disks with radii R, R’, R ", R "’.
Centres of the disks with radius R, R "’ are opposite sites of the quadrilateral.

with

Table III. - Theoretical packing fraction for diflerent proportions in the binary packing (experimental value
0.84 + 0.02). a) k = 2; b) k = 4.

when radii have a constant or a lognormal distribu-
tion (but truncated in such a way that k  5).
Conclusions for packing fraction are unchanged.

3. Order in binary mixtures.

From the agreement with Dodds model for zl and z2,
we could deduce that in our samples, the relative
position of the disks of each species are randomly
distributed. But Zl and z2 are mean parameters, i.e.
the mean number of contacts around each species. It
seems interesting to study experimentally the percen-
tages of the three kinds of bonds t12, til and t22
which, in binary alloy theory are the basic ingredients
for the definition of a local order parameter (for
example Bethe parameter) and may give better
information on the structure of the packing than
zl and z2.

In particular, the theoretical value for 1-2 bonds in
a random packing (in Dodds sense) would be [16]
ti2 = 2 xl X2’ Xi = n; z; /z being the probability that a
i-site is the extremity of a bond (def 17). In fact, the

experimental values tl2 are very different. The ratio
12- varies with the mixture composition as is shown in
t12 

p st s

figure 8, and the maximum value of that ratio is for a
composition close to that for which t 2 is maximum.
We see that our packings are sterically restricted,
even if we can consider that they have no topological
order when they are described exclusively by an
irregular network with bonds between sites. The
order we put into evidence by that analysis of hybrid
bonds is rather substitution like in this representa-
tion.

Going on with the study of one disk environment,
we find that the percentages of hybrid triangles and
quadrilaterals are greater than would be expected in
a random packing. On table V, we have plotted the
occurrence frequencies of the different triangles and
quadrilaterals (according to the nomenclature of

Fig. 7), measured from analog binary samples with
k = 2 for three different proportions in the mixture.
The numbers in parentheses are the percentages in
Dodds model. It clearly shows a structural difference
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Fig. 8. - Variation of the ratio tl2ltl*2 of the measured
and theoretical (from Dodds model) percentages of 1-
2 bonds in binary mixtures, vs. the numerical fraction of
large disks.. k=2;. k = 4.

Table IV. - Percentage of polygons with n sides in a
binary mixture with k = 2, for three compositions of
the mixture.

between analog and random (like Dodds) packings.
The contradiction between that behaviour and the

agreement of the zl’s values with random Dodds
model is only apparent : this local order results from
slight collective slips in the lattice, due to the
construction mode. We are led to consider that, at
least for the ratios k we have studied, the addition of
a bond of the i - j type to a disk of species i
modifies, by exclusion effect, the environment of
this disk : this trends to the suppression of another
contact, generally an i - i bond - the coordination
number being left constant. Binary mixtures
constructed disk after disk under gravity by numeri-
cal simulations [22] do not have this local order, as
can be seen from inspection of the tijg up to k = 4.
The fact that the mean packing fraction does not

seem to be affected by these local displacements is
more troublesome. Indeed, one may think that - at
least for a size ratio greater than ours, especially
greater than the critical kc = 6.46 [6] - this local
order leads to a « quasi Appolonian » situation ;
small disks go freely into the holes of large disk
packings. One should then probably observe a

variation of packing fraction as a function of the
mixture composition, with a pronounced maximum
for a critical composition, like the well-known peak
observed in 3D-mixtures [23].

Table V gives also the values for A4, calculated
with the experimental and random weights (last
column). The two values are very close to each
other, which explains the very good agreement in
spite of the structural differences of the two kinds of
packings.

Table V. - Occurrence frequencies - normalized to 100 - for triangles and quadrilaterals in a binary packing
for several proportions of the mixture. a) Triangles; b) quadrilaterals. In that case we indicate too the average
area A4 calculated from the experimental and random weights.
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One open question is to know if that « substitutio-
nal » order is uniquely local. For our packings,
which are nearly random before compression, and in
which compression leads only to local displacement,
we think that long range effects, if they exist, will be
weak. Our systems are essentially static. It would be
interesting to study the same packings under shearing
where a longer range order may appear.

4. Conclusion.

The expression we propose for the packing fraction
of disordered close packings of hard disks remarka-
bly fits numerical and experimental results, even for
packing with grain size distributions. We think that
the value 72/12 we give for the compacity of
completely disordered packings of equal disks, is
very close to exact value. The corresponding value,
for the same order-disorder transition in a 3D

packing of equal spheres [5] is close to 0.64. Unfortu-
nately it is not possible to generalize the method of
sec 2 to 3D systems since the topological constraints
are weaker, and no theoretical expression may be
proposed for c in 3D.
Our experimental study indicates a local order in

the relative positions of the two species in 2D binary
mixtures. This local order does not alter too much
the average geometrical parameters, coordinance
and packing fraction. But its effects can be important
in the physical properties of the system. We shall
show in a forthcoming paper that for binary mixtures
of disks, it gives rise to variations of’the percolation

threshold in both cases, when the conducting proba-
bility is the same for the two species, and when only
one species is conducting.

In 3D packing, for very large ratios of diameters

k :::- k, ) this kind of local substitutional order
becomes segregation when the small grains, if they
are in weak concentration, fall at the bottom of the
packing, because the void space is connected. But
for not too large ratios ( k, , k , 1 , we do not
have segregation, but only local « order », which
may play an important role in the physical or

chemical properties, both in the grain and the void
spaces. In the grain space, for binary mixtures when
the two species have different properties, especially
when contacts 1-2 are an essential parameter (solid-
solid reaction for example) the effects of that local
order can be very important. Even if each species of
grains has the same physical properties, local modifi-
cations of the connectivity of the system occur both
in the grain and void spaces. Perhaps a more

important consequence of this local order is to

modify the distribution of the distances between

grains, which is not studied in this paper. This
distribution can be a very critical parameter, as in
« Swiss cheese » models for example [24].
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