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Résumé. — Cet article présente des résultats expérimentaux obtenus par diffusion quasi-¢lastique de la lumicre
pour différentes solutions micellaires chargées. Le comportement du coefficient de diffusion mutuel D,,, aux grandes
concentrations provient des interactions hydrodynamiques a plusieurs corps. Ces interactions sont prises en
compte via ’équation semi empirique Navier-Stokes écrantée. Le tenseur effectif 2 deux corps a été calculé jusqu’au
termeen r ~ 7 (r est la distance entre les deux particules), a I'aide du formalisme de Mazur et van Saarloos. Ce tenseur
n’est pas « écranté », en ce sens que son comportement aux longues distances est en puissance inverse de r et non
pas en exponentielle décroissante. Une constante « d’écrantage » K est proposée ne dépendant de la fraction
volumique ¢ que par un seul paramétre ajustable. L’évolution de D,, avec la concentration micellaire est bien
reproduite en utilisant la méme valeur de K pour les différentes forces ioniques. Aux grandes fractions volumiques
les interactions hydrodynamiques sont essentiellement dominées par les répulsions de type sphére dure. Cette
observation est confirmée par la simulation du coefficient de diffusion mutuelle et self pour une solution de sphéres
dures en utilisant la méme valeur pour K. Cette constante peut s’écrire : Ka ~ ¢ ou a est le rayon des particules,
ce qui est en accord avec les conclusions d’Adelman.

Abstract. — We present experimental results of quasi-elastic light scattering for different charged micellar solutions.
The characteristic concentration dependence of the mutual diffusion coefficient D, at large volume fraction arises
from the many-body hydrodynamic interactions. These interactions are introduced through the quasi-empirical
screened Navier-Stokes equation. The effective pair mobility tensor has been calculated for terms up to r =7 (r is
the inter-particle distance) with the formalism of Mazur and van Saarloos. The tensor is-not « screened » in the
sense that its long distance behaviour is as an inverse power of r, rather than exponential. A single « screening »
constant K is proposed which is volume fraction dependent with only one adjustable parameter. The evolution
of D,,, with the micellar concentration has been well reproduced by the same value of K at various ionic strengths.
At large volume fraction ¢ the hydrodynamic interactions are essentially dominated by uncharged hard-sphere
repulsions. This observation is confirmed by the fit of the dynamics of concentrated hard-sphere solutions. The
behaviour of the self and mutual diffusion coefficients is described by using the same « screening » constant. This
can be written as Ka ~ ¢ where a is the particle radius, which is in agreement with the results previously derived
by Adelman.

1. Introduction.

The dynamic properties of micellar or colloidal
solutions, as manifested in the mutual diffusion
coefficient, measured by dynamic light scattering
experiments, are governed by direct thermodynamic
and indirect (particle-solvent-particle) hydrodynamic
interactions. The formers are well known, and can be
calculated over a large range of concentrations. On
the other hand, the hydrodynamic interactions are
much more difficult to account for, except for dilute
solutions where they are restricted to two-body
interactions. The pair mobility tensor was first
calculated as a power series of r~! (r is the inter-
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particle distance) by Batchelor [1-2] and Felderhof
[3-4]. Using a statistical mechanics approach for this
tensor and for the pair distribution function we can
calculate the mutual and self diffusion coefficients
of dilute colloidal solutions.

For more concentrated solutions, the n-particles
contributions to the mobility tensor become important
and cannot be neglected. Mazur and Van Saarloos [5]
have explicitly calculated the three and four-body
mobility tensors by developing them as a series in r ™"
However, because these tensors require integration
with multiple particle distribution functions which
are not presently available, they have not been used
to calculate the diffusion constants [6, 7). Even if
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these functions are approximated they lead to multiple-
integrals which are quickly prohibitive in computation
time.

Another approach developed by Beenakker and
Mazur [8, 9] consists of evaluating the diffusion
coefficient as an expansion of correlation functions of
increasing order, and then algebraically resumming the
many-sphere hydrodynamic contributions using a
special class of correlation functions, known as « ring-
selfcorrelations ». This method gives a renormalized
tensor which describes the hydrodynamically interact-
ing particles via the suspension rather than via the
solvent. It gives results in relative correct agreement
with experiment [8, 9] for hard sphere systems but has
the inconvenience that the expression for D is not a
virial development and that its extension to charged
systems is not immediate.

A further approach, more empirical, consists of
directly defining an effective Navier-Stokes equation
which describes the solution rather than the solvent :
in this paper we have used the well known screened
Navier-Stokes equation [10, 11]. This equation is
correct for porous media. It has been recently used
in the case of Brownian particles but it is important
to note that its application to such solution is based on
severe approximations [11].

Here, we do not intend to present a new and exact
treatment of the hydrodynamic interactions, but
rather to try to obtain a quantitative agreement
between numerous experimental data in various
systems and a simple model using only one adjustable
parameter which is independent of the physical
parameters. At the moment, such a treatment requires
the use of the screened Navier-Stokes equation.
The « screened » constant in this equation is obtained
in an empirical manner.

The solution of this equation gives an effective pair
mobility tensor which describes the particle-solution-
particle hydrodynamic interactions. It is important
to note that the « screened » term — which supposes
that the hydrodynamic interactions decrease rapidly
when the inter-particle spacing goes to infinity
(typical behaviour in e~ X*) — is in this case partially
inexact, since it is shown that the long range behaviour
of the effective mobility tensor is not exponential but
in inverse power of r (see expressions (2.10), (2.12)).

The development of the effective pair mobility
tensor was first calculated by Adelman [10] at the
Oseen level, and then by Snook et al. [12] for the dipole-
dipole part. The restriction of the whole development
at this order is insufficient and does not provide an
agreement with the experimental results. Snook et al.
overcome this difficulty by using semi-empirical
effective mobility tensors obtained by mixing the
solutions of the unscreened and the screened Navier-
Stokes equations with exponential screening factors
[12). Their expressions for the mobility tensor are
simple to use but do not correspond to the original
«screened » problem.
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Thus, we report here the development of the effective
tensor (solution of the screened N-S equation) up to
the term in r~ 7 using the formalism of Mazur and
Van Saarloos [5]. The mobility tensor together with the
screened Coulombic hard sphere potential are used
to calculate the mutual diffusion coefficient for
different micellar solutions. The screening constant
which appears in the effective N-S equation is volume
fraction dependent and is adjusted with only one
parameter (independent of all the physical charac-
teristics of the system) to give the best agreement with
experimental data derived from light scattering measu-
rements on cationic micellar solutions (alkyltrimethyl-
ammonium bromide). Finally, the mutual and self-
diffusion coefficients on concentrated hard sphere
solutions are fitted using the same numerical value
of the parameter.

Section 2 is devoted to the theoretical development
of the mobility tensor and of the mutual diffusion
coefficient. This is followed by a short presentation
of materials and dynamic light scattering methods
(Sect. 3). The measured diffusion coefficient of micellar
solutions was studied as a function of surfactant
concentration at different salt concentrations and the
characteristic parameters of micelles are reported.
The interpretation and discussion are presented in
section 4. The empirical parameter that describes
the effective tensor allows a fit between experiment
and theory to be made. The agreement obtained from
both charged and uncharged systems at large volume
fraction is illustrated by the behaviour of the hydro-
dynamic effect of charged hard sphere solutions with
or without added salt. At last some comments are
made on the classical concentrated dispersions of
particles stabilized by short chain hydrocarbons
[13-15]. These particles are a good approximation to
hard spheres which have been extensively studied.

2. Theory.

The colloidal solution is described by a system of
hard charged spheres in a continuous solvent, addi-
tional ions are treated as point charged. With these
assumptions, the classical expression for the mutual
diffusion coefficient, defined from the first cumulant
of the autocorrelation function of the scattered inten-
sity, is [16, 17] :

a0 = 2L+ H@)

Where D, = kg Ty, is the ideal diffusion coefficient.

2.1

1 . . o .
Fo=¢7 wa is the ideal mobility for a sphere of radius a

and 7 is the solvent viscosity.
S(g) is the well known structure factor :

S@=1+c J g®(r) — 1)eardr 2.2
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where C = N/V is the particle concentration and
g®(r) is the pair distribution function. The latter
can be calculated over a large concentration range,
with the RMSA integral equation [18, 19] from the
screened Coulombic hard sphere potential [20] :

V(i) =+ r<a

zZ LB e~ x(r—2a)

=k T -
BT v A + ka)?

r>2a (2.3)
2

e . .
where Ly = Troe kT the Bjerrum length (7.19 A

at 298 K in water), Z is the particle charge and
k = [4nLg(2 C, + CZ)]*'? is the Debye screening
parameter, C, is the salt concentration.

For simplicity we suppose that the particles are
monodisperse and of radius a. We have : g@(r) = 0
forr<2a

The exact expression for the hydrodynamic term
H(g)is :

N - .
DI RITTRN Canl > 2.9

i,j=1

polt +H@) = 3

The sum runs over the N particles present in the
solution. r;; is the vector between the particles i and j.
q is the scattering vector and 4 = q/q. p;; is the genera-
lized mobility tensor which takes into account the
hydrodynamic interactions between the particles. p;;
relates simultaneously the velocity u; of the particle i
to the force F; applied to the particle j :

z

u= lﬁ,.,.-F,.. 2.5

J

In the absence of the hydrodynamic interactions il_'ij

reduces to p,9;; 1. The difficulties in developing
expression (2.4) arise from the fact that the mobility
tensor depends on the positions of all the particles and
not only on r;;. The total tensor can be decomposed
into a sum of tensors which are themselves functions
of 2, 3, 4,... particle positions. The n body tensor
4madc
3

gives a ¢~V contribution to H(q) where ¢ =

is the volume fraction.

Recently, Mazur and Van Saarloos [5] have expli-
citly calculated the two, three and four body tensors
up to order 7 in the interparticle spacing r.

Except for the two-particle integral, the calculation
of the integral of the n body tensor with the n distri-
bution function g™ is difficult; indeed, the knowledge
of the functions g™ for n > 3 requires heavy calcu-
lations (excepted at infinite dilution). Moreover the
multiple integrals of g™ are quickly prohibitive in
computation time.

The approximation of the full mobility tensor to
the pair mobility tensor p [2] is exact when one needs
the linear behaviour of D, versus ¢ at small concen-
trations but does not account for the experimental
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mutual diffusion D, in concentrated solutions [6, 7].
In particular, this leads to negative values of D,
above a certain volume fraction.

In order to overcome this difficulty, we want to
calculate an effective pair mobility tensor which
accounts for the effect of the other particles. The
«screening » of the hydrodynamic interactions bet-
ween particles 1 and 2 by particles 3, 4, 5, ... can be
introduced by employing the linearized screened
Navier-Stokes equation [11] which governs the solvent
motion :

VP — nAv + nK?v =0 2.6)
where v(r) is the solvent velocity and P(r) is the static
pressure. Equation (2.6) has been used by many
authors [11, 12). The additional force (— K?v) is a
simple representation of the «screening» effect.
It can be introduced by purely empirical arguments
or through more theoretical developments [11].

It is important to note that all interactions between
particles and solvent, except the classical excluded
volume interactions, have been neglected. This is an
approximation for charged systems.

Using a dimensional argument we can write the
« screening » constant K as :

K =K,a™ ' f(¢). 2.7
The form of f(¢) is discussed below.

The problem now consists_in calculating the
effective pair mobility tensors p¢ff and pcf% for two
spheres immersed in an effective solvent characterized
by equation (2.6). This equation must be solved with
the conditions :

V * v = 0 = fluid incompressibility 2.9

v(r) = u, for | r — r; | = a = contact condition (2.9)

u; is the velocity of the particle i (i = 1, 2) centred
atr =r;.

For simplicity the rotations of the particle have
been neglected and the fluid is supposed to be motion-
less in the absence of particles.

The effective tensor with the screening constant K
accounts for the multiple hydrodynamic interactions
between particles. Note that the case of one particle
immersed in the solvent must be treated with the
original unscreened Navier-Stokes equation (then
the one-particle tensor remains equal to u, ). Indeed,
the slowing down of the motion of one particle by
the others is first introduced in the pair tensor. Using
this precaution, we are sure that the linear behaviour

aH

do |4=0
will, as expected, be unperturbed by the screening
constant K. Previous calculations [12] using the

screened Navier-Stokes equation, did not take this

of H(q) with ¢ at small concentrations
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approach and the theoretical curves of D, versus ¢
for different values of K do not show the correct
behaviour at low concentrations (Fig. 4 of Ref. [12]).

As for the unscreened case, the pair mobility tensor
can be expressed as a development of terms whose ith
term represents the effect of i hydrodynamic « reflec-
tions » between the two particles. Adelman [10] has
given the first term (« screened » Oseen tensor) of
the development, which reduces to the Oseen tensor
(r~Y) in the limit K = 0. Snook et al. [12] have cal-
culated the next term («screened» dipole-dipole
tensor, r~3 for K = 0). However, the first two terms
are not sufficient to provide a good representation of
the full development at low or large concentrations.
For example, for hard sphere systems, the initial
slope value of H versus ¢ is — 6.44, when the deve-
lopment extends to the r ~7 term, whereas it is — 5 if
only the Oseen and dipole-dipole terms are used.

a) self contribution (i = j) :

e 1
o = T BKa) <
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Snook et al. correct their tensor by using mixed
solutions between screened and unscreened mobility
tensors. Rather than to use this empirical corrections,
we prefer to calculate a more complete development
of the effective tensor, where the last term corresponds
to the r~7 term in the unscreened development.

The « reflection » method associated with Faxen’s
theorem (which has been used by preceding authors)
becomes too complicated for the calculation of the
terms from 3 to r~ 7. Thus, we have used the for-
malism of Mazur and Van Saarloos’ [5]. The deve-
lopment of the mathematical calculation and, parti-
cularly, the differences between the screened and the
unscreened problem, will be published elsewhere [21].

The following expressions are the final result which
is decomposed into two parts associated with self and
cross contributions respectively. (P is the tensor
ff) :

15 sinh Ka [ sinh Ka a? 1
D — cosh K
8 { 2 Ka [ Ka c08 a] [((Kr)2 +

(Kr)3

3 3 4 1
&y 57 ( X )2>)(1 -P

ng’

B 1+3+3_§a_<1+
(Kr)*> * (Kn)® (Kn* 57 \(Kr)?  (Kr)® (K n*

>(1+2 ] ~Kr

15 a 1 8 a*
[(K 70D (@ )2)“ +?2 P)]
15 . sinh Ka cosh Ka sinh Ka | a 1 2 23 63 63
+ g sinh K“[_ Ka ' Kap ° (Ka® ]_[( K KY Ky K (Kr)S)
at (1 6 21 45 45 1 30 177 441 441
* 1072(76 & T &y T &y T (Kr)5)>1 B ((E TR T &y Tt (Kr)5>
1 a_2 -1 2 + 27 75
2 (Kr*  (Kr)* ~ (Kn* (Kr)5
15a° 1 21 147
+?r—6(Kr)2[(—?+30 >1+(—?+50 ) ]} (2.10)
Where
1 e—2x —1 e—2x
B(x) = 3t 3% + 3 2.11)
b) cross contribution (i # j) :
"ifzg/ﬂo = [as(Ka) B(r,,) + ay(Ka) By(r,,) + Be(l'lz)] I—I—B(Ka) 2.12)
The expressions of the different terms are :
3al gy _ e K ek _
B()—— [ (1 P)+<Kr + &7 >(l 3P)] (2.13)

(« screened » Oseen term)
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1 4° i
By(r) = = -'-5(1 —3P) (2.19)
(dipole-dipole term)
22 5 a’[ _g, sinh Ka (sinh Ka 1 3 3 a2 1
B, === " |e K — h K 2.15
«0) 7 [ Ka ( Ka =~ “) <(Kr)2 * &y (Kr)“) T )2] P Q.19

(« screened » r~7 term)

where :
: 2
() = S 2.16)
X
L2 2
2y(x) = 3 S0B ;‘4 X @.17)

The formulation of the cross contribution at the dipole-
dipole level is the same as that found by Snook et al. [12]
using the reflection method [the tensors B; and B,
are identical in the two approaches, the tensor B, of
Snook et al. is the sum of B, and B,, with coefficients
in (Ka)], except that the coefficients in Ka (o, and ay)
differ. This results from the fact that the developments
are not identical for the two cases. In particular, the
terms neglected in our development contain both
the B, and B, tensors with coefficients which vanish
when Ka approaches zero. In the limit Ka < 1 (but
not necessary Kr < 1), a, and a, tend to unity in the
two approaches. In the absence of «screening»
(K = 0), we again find the classical development of the
mobility tensor : the self part gives the r~* and r~
terms with additional terms r~® and r~1°. In the cross
part, B, reduces to the Oseen tensor, B, is the dipole-
dipole tensor, and B, reduces to the r~7 term plus a

After angular integration and performing the integral with g(r) =1 at r >

expression of the hydrodynamic contributionatq = 0 :

part of the r~° term. For dilute hard sphere systems,
the initial slope of H versus ¢, gives a correct value of
— 6.39. For K — o0, we have p$f — 0 and s — 0.
In this case the hydrodynamnc interaction is comple-
tely « screened ». It is interesting to note that the effec-
tive mobility tensors p¢ff and g*f do not vanish as
exp(— Kr) for large values of the interparticle distance
r, but as inverse powers of r, which agrees the conclu-

sions of Mazur et al. [8, 9].
Mutual diffusion coefficient :

In dynamic light scattering experiments, the mutual
diffusion coefficient depends on the hydrodynamic
term at g = 0 :

o H(O) = j 6+ ) + F©) - 490) dr.

(2.18)

In contrast to the unscreened case, the integral of the
« screened » Oseen tensor B, in equation (2.18) does
not lead to a divergence at ¢ = 0. Because this tensor
is divergenceless, the function g(r) can be replaced by
g(r) — 1 in the integral of B, without changing the
value of H(0), and this ensures the convergence of the
integral in the limit of K = 0.

2 a, we obtain the general

H(0) = 1—_——1371—5) { 4 mac S—lz%)lfa f e X r(g(r) — 1)dr — 5 a,(Ka) ¢
~ 10ma*c f [sm;f - (Sinll;aK =~ — cosh Ka) e_K,((K3r)2 (K9r)3 (K9r)4 - % s
(& + oy mon rwor) * 48 ) |0 - 10 - Fatkag
smare [ [son s - e 4 35 - SR (6 G~ o o )
et )
o m ))] o) — 11dr = 22 0(Ka) ¢
+ 150 7 ¢ L ,, [S‘I‘; aK" (Si“; f" _ cosh Ka) e ke ‘r‘—z ( (Klr)2 ( K3r 5+ K3r)4) + ‘r’—: ("Elr)—z] g(r) dr }

2.19)
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where :
—3[sinh?x/2 1) _, 1
al(x)=—5—[7<;+-x—2)e 2 —-?:l, (2.20)
15 [sinh x (sinh x —8 18 9N,z 3
az(x)=.11_8[ S (-x——coshx>(—;2—— +F+F e 2 +? . (2.21)
- 21| . sinh x cosh x sinh x\ /120 40 102 51 _a 17
#5(x) = 349[5“’“"(‘ A )(7“?‘7“7)5“’ 7]-
2.22)
The functions «;, a,, @, tend to unity when x vanishes. ‘P
The self part of the hydrodynamic interaction used 0 01 0.2
for the calculation of the self diffusion coefficient cor- T T
responds to the 3d, 4th, 5th, 6th terms in equa- Ka=
tion (2.19). e : /;:W
Now, the ¢ dependence of the screening parameter - ¢
K (Ka = K, f(¢)) must be chosen. The first assump- —_— o
tion is f(¢) = ./ ¢ which can be derived in the case of 4

the porous medium. In this case the screening force in
the effective Navier-Stokes equation is proportional
to ¢. The short coming of this choice is that the deve-
lopment of D, versus ¢ will have terms in 1, ¢, ¢,
@2, ¢°2, ... Whereas the real development is in 1, ¢,
@2, @3, ¢*, ... corresponding to 1, 2, 3, 4 particles inter-
actions. Fortunately, Mou and Adelman [11] found a
linear ¢ dependence for the screened constant (Ka~ ¢)
in the case of Brownian particles, which gives a correct
development for D, as a function of ¢. In order to
test the sensitivity of the theoretical results to the choice
for f(¢), we shall investigate the two forms f(¢) = \/$
and f(¢) = ¢. In both cases, the constant K, is adjust-
ed to give the best agreement with experimental data.
The distinction between the different expressions for
K is illustrated in figure 1 using physical parameters
which correspond to a micellar solution with 1072 M
added salt (see 3). All the theoretical curves have
the same behaviour at ¢ — 0, showing that the
« screening » effect starts at the second order in ¢. It
becomes clear that the unscreened pair mobility tensor
fails for concentrated solutions (¢ > 0.1) and gives
negative values of D,, for large concentrated systems.
The hydrodynamic screening (K in \/E and in ¢)
reduces the decrease of D,, with ¢ and gives correct
values at large ¢. Note that the curves corresponding
to f(¢) = \/% and f(¢) = ¢ are not very different for
¢ < 0.2. In this region of intermediate concentration,
the agreement of the theoretical curves with experi-
mental measurements is thus not very sensitive to the
choice of f(¢).

3. Experimental methods.

3.1 MATERIALS. — Tetradecyltrimethyl ammonium
bromide (TTAB) was prepared by the reaction
between tetradecylamine and methyl bromide in
absolute ethanolic medium at 60 °C (under reflux for

0 L L 1 n\ 1

0 0.1 0.2 0.3 0.4
Cmi(Mm)

Fig 1. — Theoretical mutual diffusion coefficient D, versus
the micellized monomer concentration C,. The physical
parameters, which correspond to micellar solutions of
TTAB with 1072 M of salt (KBr), are listed in table L
The three curves correspond to different expressions for the
hydrodynamic screening, f = 0.45 and 1 = 0.98.

2-3 days) and purified by three recrystallizations in
acetone and ethylacetate. TTAB forms aqueous catio-
nic micelles above a critical micellar concentration
(CMC) of 3.4 x 1073 M in pure water. Salt modifies
the values of the CMC and induces size variations of
aggregate formation. The micelles are characterized
by the following parameters : an aggregation num-
ber N which varies with the surfactant and salt
concentrations, and an effective charge Z,, or ioniza-
Zeff
N
was derived from the diffusion coefficient at the CMC.

tion degree a =

. The average size of the micelle
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The hydrodynamic radius Ry is given by the Stokes-
D, = - 1:1171;,, where kg T is the
Boltzmann factor, # is the viscosity of the solvent, and
D, is the extrapolated mutual diffusion coefficient
at the CMC. From the aggregation number and the
partial specific volume of the TTAB micelle, it is
possible to deduce the dry radius R, of the micelle. The
difference between R, and Ry corresponds to the
hydratation layer.

Two other systems were investigated : dodecyl-
trimethylammonium bromide and decyltrimethylam-
monium bromide in water which have smaller charge
and size.

The sample solutions were filtered through a
0.22 pym millipore membrane into the light scattering
cell which had been thoroughly rinsed with purified
alcohol and dried with dust-free air.

All manipulations were made in an air-cleaned hood
and the samples were centrifuged at 5 000 rpm for one
hour before measurement.

The apparatus, cell filling method, homodyne detec-
tion, and cumulant data analysis of the autocorrela-
tion function are identical with those used for the
study of polyelectrolytes [22, 23] and micellar solu-
tions [24].

Einstein relation :

3.2 QUASI-ELASTIC LIGHT SCATTERING (QLS). —
QLS was used to derive the effective mutual diffusion
coefficient D, from the correlation time 7, =
(D, g*) . The concentration dependence of D,, was
determined at 25 °C in aqueous solutions of TTAB
at different ionic strengths obtained by addition of
KBr of concentrations from 0 M to 0.16 M. Figure 2
shows the plots of D, as a function of the concentra-
tion of TTAB in water for the different concentrations
(C,) of KBr. At low TTAB concentrations (near the
CMOQ), D,, varies linearly with the surfactant concen-
tration C for one salt concentration and we have
D, ~ Dy(1 + kp C). From the slope kp, we can derive
the effective charge of micellar aggregate [25]. In a
preceding publication [24]. we have reported an inves-
tigation on these solutions and deduced the values of
Ry and Z i as a function of the K Br concentration (C,),
The molecular weight of the TTAB micelles, as deter-
mined from the intensities, was found to increase from
26 900 at C, = 0to 53 800 at C; = 0.16 M. The values
of Ry, N, and Z; are reported in table I. Note that the
aggregation number strongly varies with the TTAB
concentration [26]. A linear dependence of the aggre-
gation number N with the micellar concentration is
assumed and the radius taken to increase as N1/3,
The radius a was taken to be the hydrodynamic size
previously determined. However the results reported
here are not sensitive to its exact value.

In pure water, the strong electrostatic interaction
between micelles induced a very large positive slope
in the plot of D,, versus the surfactant concentration.
A neat maximum of D, is reported at 0.1 M (the maxi-
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5 P
b4 \7%
4 \é
Dm
_— \
10%n?s’ / 4/44 \A\\
* {{/i P S
A e Y
2l A% /D—""Q\
1 =5~ 0"~
____4—-—”"
0 1 1 L 1 A
(1] 0.1 0.2 0.3 0.4 0.5
Cm (M)
Fig. 2. — Experimental curves for the mutual diffusion

coefficients of TTAB versus the micellized monomer con-
centrations (C,) at different salt (KBr) concentrations
(C):0:0M,A:0.01M,V:002M,[7:005M, O :0.10M
and ¢:0.16 M.

Table 1. — Physical parameters for the tetradecyl-
trimethylammonium bromide solutions at different K Br
concentrations C, : hydrodynamic radius Ry = a at
the CMC, aggregation number N from the CMC to
0.5M [28] of micellized monomer concentrations,
effective charge Z and ideal coefficient diffusion D,,.

C,(KBr) CMC R, N z D,

™M) ™M A (CMC (10°°
C, = 0.5) cm?s™Y)
0.00 0.0034 24 80 — 160 16 0.93
0.01 0.0017 245 85 - 170 17 0.93
0.02 0.0011 25 90 — 180 18 0.93
0.05 0.0006 25.5 120 - 240 20 0.93
0.10 0.0004 26 140 —» 280 22 0.93
0.16

mum value of D, is about 5 x 10~ ® cm?/s) and from
0.1 M to 0.5 M in micellized monomer concentration
one observes a decrease of D,,. The addition of KBr
reduces the slope of D, versus C and the curvature is
shifted to large volume fraction. For large KBr con-
centrations (0.10 M and 0.16 M), there is a slight slope
in the plots of D, versus surfactant concentration.
Under these conditions, an attractive potential affects
the behaviour of D, [25] and the value of the effective
charge deduced from the slope, assuming only a
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screened Coulombic hard sphere potential, is not
correct. In this work, we have only investigated the
curves of D, as a function of surfactant concentrations
for sufficiently low salt concentrations (C, < 0.1 M)
where this attractive effect can be neglected. Let us
note that all the linear plots of D, versus TTAB con-
centration converge to an approximate common
intercept D, in the limit of zero micellar volume frac-
tion (D, ~ 0.93 x 107 cm?/s and Ry ~ 25 + 2 A).

The aim of this study is to explain the behaviour
of D at large volume fractions and mainly the large
curvatures observed at very low salt concentrations.
This effect could result from a variety of causes : a
modification of the micellar size, shape and polydis-
persity, a strong attractive potential at large volume
fractions and also a large effect of hydrodynamic
interaction.

We know the variation of the sizes as a function of
C,, this effect is too small to produce a strong con-
centration dependence of the diffusion constant. An
attractive potential at low salt concentrations and
large volume fractions is not reasonable. Polydis-
persity is generally more important at large micellar
concentration, according to neutron scattering mea-
surements [27]. It induces a non-exponential beha-
viour for the auto-correlation function, specially at
low salt concentrations, but it cannot explain the
decrease of the diffusion coefficient at large volume
fraction. The last effect to consider is the hydrodyna-
mic interaction which could be amplified by the charge
effect. It is the purpose of this study.

4. Results and discussion.

4.1 TETRADECYLTRIMETHYLAMMONIUM BROMIDE MI-
CELLES. — The experimental curves of the mutual
diffusion coefficient D,, as a function of the TTAB
concentration at different concentrations of salf (KBr)
have been fitted using the effective pair mobility ten-
sor. The ideal mutual diffusion coefficient D,, obtained
at the critical micellar concentration (CMC) is nearly
unchanged by the presence of salt. Thus, for simplicity,
we have used the same value of D, for the different salt
concentrations : (D, = 0.93 x 10~ ¢ cm?/s). The last
two curves, which correspond to large salt concen-
trations (0.1 and 0.16 M), show, by their linear beha-
viour at the origin, that they are sensitive to attractive
effects. Since these effects are not taken into account
in the present work, the screening parameter K is
adjusted by fitting the lowest three salt concentration
curves. For this calculation, we have accounted for the
salt and monomer concentration dependence of the
aggregation number N, in the same way as for the
modification of the radius g, and the effective charge Z.
The dependence of the CMC with salinity [24] has
been introduced (see Table I). Fortunately, the theore-
tical curves are not very sensitive to these variations
and a correct behaviour of D, versus ¢ can be illus-
trated by some fits with average parameters N, a and
Z, independent of C, and C,,
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We have fitted the experimental curves with the two
approaches proposed in section 2.

The first one corresponds to Ka = K,/¢ and the
best fit value found for K, is 0.45 + 0.05. The result-
ing fits are shown in figure 3 and the agreement with
the experimental data is good, except, of course, at
large salinity. The second approach corresponds to
Ka = K, ¢. We recall that, in this case, and contrary
to the preceding one, the hydrodynamic term H can be
developed in entire powers of the concentration. The
best fit gives K, = 1.05 + 0.1, and is shown in
figure 4. The precise value K, = 0.98 used in this
figure is justified a posteriori (see 4.3). The agreement
between theoretical curves and experimental data is
still good. The choice of the relationship of K with ¢
is not crucial.

The fit of different curves with only one parameter,
independent of C,, can appear surprising. It results
from the fact that, at large volume fractions, all solu-
tions behave (from the hydrodynamic point of view)
nearly as uncharged hard sphere solutions, the
excluded volume interactions being much more impor-
tant than the others. All experimental curves in figure 2
present very different behaviours at low micellar con-
centrations but seem to converge to the same limit at
large concentrations. The differences between the
various curves at C;, = 0.5 M are essentially due to the
structure factor term S(0). This effect is illustrated in
figure 5 where the theoretical hydrodynamic term
1 + H(0) is plotted as a function of C,, for different

Ka=0.45Y (]
5. P--—-Q_
/ \\\
/O SN
Il/ b\\\
a] |/ O
Dm S AN
8 24 l, z'/’ ~A\\‘ A \\\\
10 cms e} , A A S N
] e ~
] 4 SN m
3] S, A = ——a S
] / prag v v q\ S
b /AA Vid \\\
l: / /', v v N
| S = I
i - ~
2§ /A% O
/ M eme
; a0 .t
g o
1. 'l;v,g/(j‘”o O 0 o O
/
¢ M ¢ o o . L4
0 1 N ! 1 1
0 0.1 0.2 0.3 0.4 0.5
Cm (M)

Fig. 3. — Experimental data and theoretical curves of the
mutual diffusion coefficients. Same legend as for figure 2.
Ka is given by Ka = 045 \/$
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Ka=0.98 ¢

(1) 0.1 0.2 0.3 0.4 0.5
Cm (M)

Fig. 4. —Same legend as for figure 3 except that Ka = 0.98 ¢.

DIFFUSION IN CONCENTRATED SOLUTIONS

4
o 0.1 0.2
1]
Ka=0.98¢
0.8}
0.6/
1+H
0.4
Cs(m)
) ®
0.2. 0.1
0.0
0 1 I 1 1 1
(4] 01 0.2 0.3 0.4 0.5
Cm (M)

Fig. 5. — Theoretical hydrodynamic term 1 + H versus C,,
at three KBr concentrations : 0 M, 0.1 M and oo M which
corresponds to an uncharged hard sphere system. The phy-
sical parameters are : a = 25 A, Z = 20 and N = 100.

ionic strengths. For simplicity, the physical parame-
ters such as N, a and Z, are kept constant.

This figure shows that the difference between the
salt-free solution (C, = 0) and the excess salt solution
(C; = o0, uncharged hard sphere system) is small for
the largest volume fraction (20 %). It would certainly
be much smaller for more concentrated solutions. It
results from this observation that one can hope to
account for the hydrodynamic behaviour at large
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concentrations of many other systems (like other
charged micellar solutions or hard sphere systems),
with the identical « screened » pair mobility tensor
used with the same K, value.

4.2 DECYL AND DODECYL TRIMETHYL AMMONIUM
BROMIDE MICELLES. — The experimental data of the
mutual diffusion coefficient of decyl and dodecyl-
trimethylammoniumbromide micellar solutions as a
function of the surfactant concentration are plotted
in figure 6. These salt-free solutions present the same
behaviour as the TTAB solutions : first, we obtained a
large increase of D, with increasing monomer con-
centration and then, over a certain volume fraction, a
decrease with increasing monomer concentration.
The sizes, charges and aggregation numbers of these
micelles are smaller than those of TTAB micelles. The
values of the main physical parameters are listed in
table II. From these quantities, the theoretical values
of D, are calculated with the identical effective pair
mobility tensor and with the same value of K. The
curves are plotted in figure 6, using both Ka =
0.45./¢ and Ka = 0.98 ¢. The agreement is still
correct and this illustrates the remark of the preced-
ing paragraph : the hydrodynamic behaviour at large
concentrations essentially depends on the volume

0 02 04 06 o8 1
Cm (M)

Fig 6. — Experimental data and theoretical curves of the
mutual diffusion coefficient versus the micellized monomer
concentration for the decyl (m) and dodecyl (@) trimethylam-
moniumbromide solutions without added salt.

Table II. — Same legend as for table 1 but for the
salt-free decyl and dodecyl trimethylammonium bro-
mide solutions.

. CMC R, N Z D,
Micelle oy (&) (cMO) (10~
cm?s™?)

Decyl... 007 132 22— 6 1.77
Dodecyl. 0016 21 60— 18 115
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fraction and seems to be fairly unsensitive to the
charge of the particles. Only the amplitude of the
maximum of D, is strongly influenced by the charges
of macroions.

4.3 UNCHARGED HARD SPHERE SYSTEM. — The study
of the hydrodynamic interactions in hard sphere
systems is interesting in this work for many reasons :

First, it allows us to test our model on a classical
system. Second, the advantage of uncharged hard
sphere systems is that the interactions are very well
defined and that everything depends on a onedimen-
sional parameter, the volume fraction ¢. Third, some
experimental data obtained in light scattering at
larger ¢ up to 50 % can be fitted with the model
Lastly, all the preceding theories published in the
literature (Mazur et al. [8, 9], Snook et al. [12]) are
applied to uncharged hard sphere systems and are
tested with the same experimental data. The data
are reported in figure 7 where the mutual and self
diffusion coefficients are plotted as a function of the
volume fraction. It is worth noting that the concentra-
tion dependence of D,, is very weak contrary to the
preceding cases and that the relative uncertainties of
the experimental values are not negligible.

The theoretical curves of the present work are
plotted in the same figure, with both Ka = 0.45./4
and Ka = 0.98 ¢. For large volume fractions, we use
the Verlet-Weiss [28] correction for the pair distribu-
tion function and the Carnahan-Starling [29] expres-
sion for the structure factor S(0).

First, for ¢ > 0.2 we observe a large disagreement
between the experimental data of D,, and the theore-
tical curve corresponding to Ka = 0.45\/}5. It is not
possible to find an agreement using a small increment
of K, hence the hydrodynamic interactions are not
screened enough. With larger values of K, (near 0.65)
the agreement is not as bad but the fit is lost for the
micellar solutions.

Second, for Ka = (0.98 + 0.01) ¢, we find a good
fit for the mutual diffusion coefficient, even for volume
fractions near 50 9. The fit of the micellar solutions
is preserved with this value. These remarks are in
agreement with the conclusion of Mou and Adelman
[11] who derived the form f(¢) = ¢ for the screening
parameter in colloidal solutions. The behaviour
of the theoretical curve D_(¢) with ¢ larger than
309 is strongly sensitive to the value of K, (see
Ref. [12], Fig. 3, for the same effect).

For volume fractions larger than 20 9/, we must
consider that the curves are also very sensitive to the
truncation in the development of the effective pair
mobility tensor. For example, we have performed the
calculation of D, (¢) without the last term of the deve-
lopment, namely without the r~7 term. In this case, the
agreement is poor with K, = 0.98 ¢ ; the value of K|,
which gives the best fit is 1.15, but the fit is not good for
volume fractions larger than 30 %,. The r~7 contribu-
tion, which is very small for the slope of D, versus ¢
at low concentrations, seems to be important at large
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concentrations. This observation can be explained by
the following argument : for large volume fractions
the values of both 1 + H and S are very low. A small
relative uncertainty on the hydrodynamic interactions
H leads to a large relative uncertainty on the mutual
diffusion coefficient D_. Thus, the fit at large concen-
trations would certainly be different if the first neglect-
ed terms in the development of the mobility tensor
were introduced (namely r~8).

The theoretical curves for the self-diffusion coeffi-
cient show a disagreement with the experimental data
at large ¢, for both definitions of K. The adjustement
cannot be obtained with a small change in the K,
value, but it is easily obtained using a low value of K,,.
In fact, the D, experimental results are fairly well
reproduced even with the unscreened pair mobility
tensor (see Fig. 2 of Ref. [12]). In the same way, some
very simple expressions such as D,/D, = 1-1.73 ¢
given by Felderhof [2] or D,/D, = 1-1.73 ¢ + 0.88 ¢2
given by Beenakker and Mazur [8] lead to a correct fit.
These results show that it is easy to reproduce the
concentration dependence of the self diffusion coeffi-
cient D, without reproducing the corresponding con-
centration dependence of D,. In particular, the best
fit with our «screened » pair mobility tensor is
obtained for the following values of the parameter
Ka: 0.20\/$ and 0.17 ¢. The latter is in good agree-
ment with that found by Snook et al. from their empi-
rical tensor with two screening constants (Ka=0.125 ¢,
see Fig. 5 of Ref. [12]). We take this opportunity to
mention that we do not agree with figure 3 of
reference [12] : the variation of the self-diffusion coeffi-
cient does not present the correct behaviour at small
concentrations as is observed in figure 2 of refe-
rence [12]. Moreover at large volume fractions, the
position of the calculated curve D (¢) is too low and
corresponds, in fact, to a lower value of the screening
parameter. A justification of this comment can be
made by a close examination of figure 2 (K, = 0),

Fig. 7. — Normalized mutual and self diffusion coefficients
for hard sphere solutions. Experimental data for D, are
taken from reference [16] (lower dots); the data for D,
are taken from reference [17] (triangles) and 18 (upper dots).
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figure 3 (K, = 1.1) and figure 5 (K, = 0.125) of refe-
rence [12].

The main problem which still needs to be solved
is now to improve the theoretical representation of the
hydrodynamic interactions in order to fit the concen-
tration dependence of both the mutual and self diffu-
sion coefficients at large volume fractions.

A first way would be to use two different screening
parameters for the self and the cross part of the mobi-
lity tensor, as was done by Snook et al. [12]. This
ensures a good fit but is not theoretically justified and
introduces an additional parameter.

~ The formalism described by Mazur and Beenak-
ker [8, 9], which is theoretically more justified (it does
not have adjustable parameters), gives a correct

agreement for the self-diffusion coefficient but must

be confirmed for the mutual diffusion coefficient at
large volume fractions (¢ > 30 %).

As foresaid, the inclusion of higher order terms in the
development of the mobility tensor could improve the
theoretical results. If the first of them (r~ 8 contribution
for K = 0) is introduced, the fit of the self diffusion
coefficient curves will be different, because this term
is a self part of the mobility tensor, and because the
value of the screening constant K, will change to
preserve the same behaviour for the mutual diffusion
coefficient. But these considerations are somewhat
speculative.

Lastly, in order to examine the validity of the
« screening » mobility tensor for the self-diffusivity
of charged systems, we report in figure 8 the expected
concentration dependence of D, for an idealized micel-
lar solution (N = 100, R = 254, Z = 20) between
the two extremes in salinity. The theoretical lines
calculated with the « screening » constant (Ka=0.98 ¢)
present a small slope and, contrary to the mutual
diffusivity, it is approximately independent of the
salt added.

5. Conclusion.

The main goal of this investigation was to study the
decrease of the effective diffusion coefficient in charged
micellar systems at large volume fractions. The many-
body hydrodynamic interactions can explain this
behaviour. In order to resolve this complex problem
we have introduced an effective pair mobility tensor
calculated up to the seventh order in the inverse par-
ticle distance. An « empirical » constant has been
derived by fitting the experimental mutual diffusion
coefficients measured in light scattering over a large
concentration range for micellar solutions. It has
been shown that the same value of the single para-
meter leads to a good agreement with data obtained
for some solutions of cationic micelles with or without
added salt and for a classical hard-sphere system.
Our approach is different from that proposed by
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Fig. 8. — Theoretical concentration dependence of self

diffusion coefficient in micellar solutions. Same legend as
figure 5.

Snook et al. [12] who suggested an apparent pair
mobility tensor with three adjustable parameters.

All the systems which have been investigated show
the same hydrodynamic behaviour for large volume
fractions (¢ > 0.3). Thus, the influence of the elec-
trostatic interaction or attractive contribution is only
predominant at low volume fractions.

This approach is, of course, empirical for the deter-
mination of the constant K, but it can give a correct
fit for many concentrated systems such as micellar
solutions or microemulsions, without the difficulties
encountered in the full calculation of three, four, ...
body hydrodynamic interactions.

To improve our investigation, it would be interest-
ing to introduce higher order terms in the develop-
ment of the mobility tensor and to test both the self
and mutual diffusion coefficients of charged and
uncharged systems. A greater effort should be devoted
to new experimental measurements : for example the
determination of self diffusion coefficients of charged
micellar systems or colloidal solutions at large volume
fraction. Finally, some preliminary investigations
have been carried out to interpret the dynamics of
microemulsions in organic phases for large volume
fractions. In this case, we have an attractive interaction
between droplets and the pair distribution function
can be calculated from HNC methods [30]. The ana-
lysis of experimental data derived from light scatter-
ing [31] will be the subject of a future paper [32].
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