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Résumé. 2014 Le formalisme de la fonctionnelle de la densité est appliqué à l’étude de la stabilité mécanique et
thermodynamique de cristaux colloidaux polydisperses. Les particules colloidales sont assimilées à des sphères
dures avec une distribution continue, p(03C3), de diamètres additifs. On montre que de telles solutions solides cessent
d’être stables au-delà d’un degré de polydispersité critique, qui dépend de la forme de p(03C3), mais est toujours de
l’ordre de 20 %. Le problème de la détermination de la courbe de coexistence fluide-solide est brièvement évoqué.

Abstract 2014 The recently developed density functional theory of freezing is applied to an investigation of the
mechanical and thermodynamic stability of polydisperse colloidal crystals. The colloidal particles are modelled
by hard spheres with a continuous distribution p(03C3) of additive diameters. It is shown that such solid solutions
cease to be stable beyond a critical degree of polydispersity, which depends somewhat on the shape of p(03C3), but is
always of the order of 20 %. The problem of determining the fluid-solid coexistence curve is also briefly examined
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1. Introduction.

Dispersions of colloidal particles, like silica or poly-
styrene spheres, are known to undergo a « disorder-
order » transition from a disordered fluid phase to an
ordered crystal structure when the volume fraction of
the particles or the electrolyte concentration in the
solvent are varied [1]. The resulting phase diagram for
monodisperse suspensions has been extensively ana-
lysed theoretically [1 ], generally on the basis of the
standard DLVO model for the interactions between
colloidal particles in charge-stabilized dispersions [2].
However rather little effort has gone into assessing the
influence of the unavoidable polydispersity of particle
diameters on the fluid-solid phase transition and on
the stability of the colloidal crystal. The only available
information comes from the molecular dynamics
simulations of small samples of 108 colloidal particles
due to Dickinson and co-workers [3]. The main
conclusion of that work is that polydispersity favours
disorder, as one would intuitively expect, and that the
ordered phase disappears altogether above a certain
critical degree of polydispersity. For a triangular dis-
tribution of diameters, an extrapolation of the simu-
lation data predicts the critical degree of polydisper-
sity to be about 27 % [4].

In this paper we examine the stability of polydis-
perse «solid solutions » in the framework of the
modem density functional theory of freezing [5]. The
polydisperse generalization of the theory is formulated
in section 2 and specialized to the case of hard sphere
mixtures in section 3. This specialization is necessary
since detailed theoretical information on the pair
structure of multicomponent fluids, a fundamental
ingredient in the density functional theory, is available
only for the hard sphere model [6]. Results on the
stability of the polydisperse solid phase are given in
section 4 for triangular and rectangular distributions
of diameters and various degrees of polydispersity.
The theoretical problems associated with the deter-
mination of fluid-solid coexistence of polydisperse
systems are finally discussed in section 5.

2. Density functional formulation.

We consider a polydisperse suspension of spherical
colloidal particles with diameters a distributed accord-
ing to a given normalized distribution p(a). Let

p = N/ Y be the total number of particles per unit
volume. It will prove convenient to introduce the fol-

lowing moments of the distribution of diameters :

(*) Unite associ6e au C.N.R.S.
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In particular the volume (or packing) fraction of the
particles is :

In the uniform fluid phase the local density Pa(r) of
particles of diameters a is everywhere equal to pO =
pp(a), while this density has the periodicity of the
crystal lattice in the solid phase. Denoting by
Rj(l  j  N) the lattice sites of a given crystal struc-
ture, we assume the density p,,(r) in the solid solution
to be the sum of Gaussians centred on the Ri :

Equation (3) constitutes the obvious generalization
of the local densities used earlier to study the freezing
of hard spheres [7] and of their binary mixtures [8].
A local density of the form (3) means that particles of
species (i.e. diameter) a are, on average, distributed
at random on the N site of the crystal lattice.
A convenient starting point of the density func-

tional theory is the following exact expression for the
difference between the Helmholtz free energy densities
of the solid and fluid phases taken at the same density
and temperature, and for identical distributions of
diameters :

with :

where P = I lkB T and Caa, denotes the direct correla-
tion function between particles of species a and a’cor-
responding to a system with local densities :

Equation (4) is the straighforward generalization of the
one and two-component expressions used in earlier
theories of freezing [7, 8]. The first term on the r.h.s. of
equation (4a) is the ideal part of the free energy, while
the interaction part involves a coupling-constant
integration over a linear path in one-particle density
space, in the manner first introduced by Saam and
Ebner [9] (an exhaustive presentation of density func-
tional techniques is given in the excellent review by
Evans [10]).

Equation (4) is exact; the pair correlations embodied
in the Caa, (r, r’; { pl’ }) are, however, in general
unknown. Systematic approximations are obtained
by making a Taylor expansion of these functions
around their uniform fluid values caa,(I r - r’ I; {p2})
corresponding to A = 0. If only the lowest order term
is retained, caa,(r, r’) --- caa,(I r - r’ I; {p2}); higher
order terms of the expansion in powers of A involve
three and more-body direct correlation functions of the
uniform fluid, about which very little is known. For
that reason the expansion is limited to lowest order,
but, in an attempt to account approximately for the
neglected higher order terms, the direct correlation
functions caa’ are taken to be those of an « effective »
fluid having the same composition { po }, and a total
density p adjusted such that the position of the first
peak in the total fluid structure factor :

coincide with the first reciprocal lattice vector of the
solid The partial structure factors S,,,(k) appearing
in equation (5) are related to the Fourier transforms
ëaa,(k) of the direct correlation functions by the usual
Ornstein-Zernike equations :

4
where ’haa,(k) is the Fourier transform of the pair
correlation function haa,(r) = gaa,(r) - 1.
With the above prescription for Z_,, the approxi-

mate free energy difference is now given by equa-
tion (4a). This expression is then minimized with

respect to the widths a,, of the Gaussians appearing
in the local density (3), for a given distribution of
diameters, a given temperature T and a given total
density p. The scenario which is observed along an
isotherm, in similar studies of one or two-component
systems (characterized by one or two Gaussian widths
ao) is generally the following [7, 8]. Below some
threshold density p., the free energy f exhibits a single
minimum for cx,, = 0, corresponding to a stable fluid
phase. Above p., f exhibits two minima, one for
ao = 0 (fluid) and a second one for a. &#x3E; 0; this
second minimum is associated with a solid phase where
particles are localized around the lattice sites { Ri }.
In a certain range of densities P-  p  pb, this
second minimum is higher than the minimum cor-
responding to the fluid phase, signalling that the solid
is mechanically, but not thermodynamically stable

(metastable solid phase). At still higher densities

(P &#x3E; Pb), the second minimum drops below the fluid
minimum and the solid becomes the thermodynami-
cally stable phase. The fluid-solid coexistence is

determined, as usual, by equating the pressures P and
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chemical potentials of both phases. In sections 3
and 4 we show that the bifurcation scenario which
we have just described also occurs in a polydisperse
system of hard spheres; in section 5 we point out the
difficulties encountered if one attempts to determine
the fluid-solid coexistence curve [1 ].

3. The polydisperse hard sphere model.

In order to calculate the free energy difference (4a)
explicitly, detailed expressions for the direct correla-
tion functions caa,(r) of the polydisperse fluid phase
are required Such information is at present only
available for polydisperse mixtures of additive hard
spheres. Indeed, using Baxter’s reduction of the Oms-
tein-Zemike equations for finite-range potentials [12],
Blum and Stell [6] were able to calculate the partial
structure factors Saa,(k) of such mixtures in the Percus-
Yevick (PY) approximation, which is known to be

reasonably accurate for dense hard sphere fluids. This
approximation supplements the set of Omstein-
Zemike equations (6b) by the closure relations :

Equation (7a) expresses the exact requirement that
hard spheres of diameters a and Q’ must not overlap,
while equation (7b) is the PY approximation. The
results of Blum and Stell [6] can be used to obtain the
following solutions for caa,(r) inside the hard cores
(with a’ &#x3E; a) :

where x = r - Å.aa’ and the coefficients a, band d can
be expressed in terms of the moments (1), of the pack-
ing fraction q and of 4 = 1 - q according to :

The total structure factor, which is required to deter-
mine the density of the effective fluid, as explained in
section 2, is finally calculated from equations (6)
and (5). Examples are shown in figure 1 for triangular
and rectangular distributions of diameters.
The lattice sites { Rj } in equation (3) are chosen to

be those of an FCC lattice, which is the stable structure
for a monodisperse hard sphere solid [7, 13]. This
completes the specification of the ingredients of our
calculation, the results of which will be presented in the
following section.

Before that we briefly pause to examine the relevance
of the polydisperse hard sphere model for the study
of colloidal crystals. Polydispersity is an unavoidable
characteristic of colloids and should hence be taken
into account in any realistic calculation of the phase
diagram. The hard sphere model is of course a crude
oversimplification of the DLVO interaction between
colloidal particles, which includes, besides a hard core
repulsion, a screened Coulomb interaction and a van
der Waals attraction. If the latter is neglected, and
under strong screening conditions (i.e. in the presence
of added salt), the DLVO potential may be reasonably
well approximated by an effective hard sphere interac-
tion with state-dependent diameters, as is routinely
done in the theory of simple liquids [14]. It should be
noted that the FCC structure has been predicted to be
the stable one in the strong screening regime, by cal-
culations based on a repulsive screened Coulomb
interaction [15]. Experimentally, charge-stabilized col-
loidal crystals are observed in the opposite, weak
screening limit, but crystallization of uncharged col-
loidal particles has also been observed [17], and the
present hard sphere model applies directly to that case.

Fig. 1. - Static structure factors (5) of the monodisperse
hard sphere fluid (full curve) and of polydisperse hard
sphere fluids with triangular (dashes) and rectangular (dots)
distributions of diameters, versus reduced wavenumber,
at a packing fraction 17 = 0.5. The polydispersity parameter
has the value 6 =.0.15 in the two polydisperse cases. The
structure factors are calculated in the PY approximation [6].
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4. Results.

We have carried out explicit free energy calculations
to determine the density range of stability and meta-
stability of polydisperse hard sphere systems with
triangular and rectangular distributions of diameters.
Since we are dealing with hard spheres, the results are
independent of temperature. The triangular distribu-
tion is defined by :

while the rectangular distribution is given by :

where 6 characterizes the dispersion (2 6-a is the total
width of each distribution) and 7F = ’1/’0 is the mean
diameter, equal to the median value in these symme-
tric distributions. The calculations can in fact be easily
carried out for any choice of p( 0), but only the distri-
butions (l0a) and (lOb) will be considered in the fol-
lowing. With these choices, and the forms (3) and (8)
for the local densities and direct correlation functions,
the integrations in equation (4a) can be carried out
analytically, thus greatly simplifying the minimization
pr’ocedure with respect to the a,,. This minimization
is most easily carried out in practice by discretizing the
distributions (l0a) or (lOb) and seeking the minimum
of Af with respect to n width parameters a; by a stan-
dard simplex algorithm. The results turn out to be
practically independent of n whenever n ;Z-, 10. In the

monodisperse case (ð = 0), we recover the results
of Baus and Colot [7] : the bifurcation occurs at a
packing fraction tj = 0.504 beyond which a second
minimum with rx #= 0 (metastable solid) appears
besides the fluid minimum (a = 0, Af = 0). The
second minimum drops below the fluid minimum for
11 = 0.548 beyond which the solid is thermodynami-
cally stable up to the vicinity of close packing ( r = 0.74)
where the second minimum disappears abruptly.
A qualitatively similar behaviour is still observed

when 6 is gradually increased from zero. However the
abrupt vanishing of the second minimum takes place
for increasingly lower values of the packing frac-
tion (2), due to the overlap of the largest spheres at
high densities; more precisely the minimum of the
free energy surface vanishes in the direction of the
width parameter aQ associated with the largest spheres.
Indeed, two spheres touch as soon as 0’ + a’ = aJ2,
where a = (4/p)1/3 is the FCC lattice constant. Since
the range of the direct correlation function caa,(r) is
( 6 + c’)/2 (cf. Eq. (7b)), the corresponding contribu-
tion to Af in equation (4a), i.e.

increases sharply. In the monodisperse case this leads
to the rapid vanishing of the second minimum around
j7 = 0.74, as mentioned earlier. In the polydisperse
case, the contribution (11) is weighted by the product
p( 0-) p(a’) which corresponds roughly to the probabi-
lity of finding two spheres of diameters a and Q’ on
neighbouring sites; this weight factor explains why
stability is not lost as soon as ama. = Z(1 + b) &#x3E;

al.,,12-, and also why the triangular distribution has a
wider range of stability than the rectangular one.
The destabilizing role of the large spheres becomes

very apparent if the expression (11) is rewritten in

reciprocal lattice space. The local densities can be
expanded as sums over the vectors G of the reciprocal
lattice according to :

Substituting (12) into (11) we arrive at the following
contribution of a (1 (1’ pair to the free energy :

A typical situation is shown in figure 2; the contribu-
tion to (13) due to the largest spheres is large and posi-
tive at the second reciprocal lattice vector, which
makes a sizeable contribution (large amplitude a,G)
to the local density p,,(r). As 6 is increased, the desta-

Fig. 2. - Three partial direct correlation functions (k)
(dashes), -a C,,,,,(k) (full curve) and "’êa2a2(k) (dots) correspond-
ing to the pairs of largest (a, = aj .and smallest ( 62 = O"min)
spheres in a polydisperse fluid mixture with a rectangular
distribution of diameters, and 6 = 0.15. The effective packing
fraction is fleff = 0.5 and corresponds to a solid solution
of tj = 0.56 according to the structure factor criterion

explained in the text. The moduli of the first three reciprocal
lattice vectors of the FFC structure,

are indicated by arrows.
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bilizing contributions of the larger spheres to the free
energy lead to a vanishing of the minimum for decreas-
ing values of q, as shown in figures 3 (triangular dis-
tribution) and 4 (rectangular distribution of diame-
ters). This second minimum, associated with the solid,
vanishes completely (i.e, for all values of ’1) beyond
6 = 0.16 for a rectangular distribution and beyond
b N 0.21 for a triangular distribution of diameters; the
latter result is roughly compatible with Dickinson’s
molecular dynamics data [3, 4] discussed in the intro-
duction. Beyond these critical degrees of polydisper-
sity, a solid solution is always thermodynamically and
mechanically unstable; this means that upon com-

pression of a sufficiently polydisperse colloidal sus-

Fig. 3. - Range of stability of the polydisperse solid solution,
with a triangular distribution of diameters, in the plane of
packing faction 17 versus polydispersity parameter 6.
The dashed curve delimits the region of mechanical stability,
while the full curve corresponds to the onset of thermody-
namic stability; the two types of stability vanish simul-
taneously at large values of 17 (upper. part of the stability
range).

Fig. 4. - Same as figure 3, but for a rectangular distribution
of diameters.

pension, one should observe either glass formation
or phase separation into crystals with different com-
positions.
So far our calculation has allowed us to mark the

boundaries of stability of the polydisperse solid solu-
tion. The problem of determining the fluid-solid
coexistence curve in a polydisperse system is much
more tedious in practice, and is briefly examined in
the following section.

5. Comments on the fluid-solid phase equilibrium

The difficulty in studying the equilibrium between
two phases of a polydisperse system lies in the fact that
the composition (i.e. the distribution of diameters)
is not, in general, the same in the two coexisting
phases. If we denote the two phases by A and B and the
corresponding distributions by PA( a) and PB( a),
chemical equilibrium between A and B involves in
principle an infinite set of coupled equations, express-
ing the equality of chemical potentials over the whole
range of diameters :

If some easily tractable (e.g. analytical) form is
available for the chemical potentials, the problem is
usually solved by discretization, i.e. by modelling
the polydisperse system by an n-component mixture,
and by solving the resulting n coupled equations [11,
16]. Such a procedure cannot be implemented in any
practical way in the present case, because the varia-
tional nature of our calculation renders the method

numerically untractable.
The problem can be simplified further by imposing

that the distributions PA and pB be members of a given
family p( a ; z) depending on a single parameter z ; for
example z could be taken to be the position of the top of
an asymmetrical triangular distribution, as shown
in figure 5. By a judicious choice of the single parameter
one may hope to retain the essential features of the
phase coexistence, for instance the possibility of having
a solid phase richer in large spheres than the fluid, as is
the case in binary mixtures of hard spheres [8]. The
compositions of the coexisting phases are now charac-
terized by the values of the single parameter z, zA and
zB say. Equilibrium between the two phases must be
expressed in a way involving only zA and zB. The total
free enthalpy of the system is :

where gA’ and gB are the free enthalpies per particle
in both phases, with distributions PA( (1) = P(a; ZI)
and PB( (1) = p(a; zB) respectively. The total number
of particles of diameter 6 is :
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Fig. 5. - Examples of asymmetric triangular distributions
of diameters characterized by a single parameter z.

The equilibrium condition dG = 0 and the conserva-
tion equations dN( 0’) = 0 take the form :

As a consequence of the constraint imposed on the dis-
tributions p(a), the conservation equations (18) cannot
be satisfied simultaneously. Instead we look for an
approximate solution that violates the conservation
conditions (18) as weakly as possible. To this end we
retain the global condition dNA = - dNB and we
seek two functions A(zA, zB) and p(zA, zB) such that :

and such that

be minimum with respect to variations of A and Jl.
The solution is :

À(ZA’ ZB) =

By inserting equation (19) into the equilibrium condi-
tion (17), and by separately equating to zero the coef-
ficients of dzA and dzB, we arrive at a set of two equa-
tions for zA and zB :

It can be easily checked that in the case of a binary
mixture, where the distribution is entirely characte-
rized by the composition parameter x = N - z,
the set of equations (23) reduces to the usual double
tangent construction; in that case the minimum value
of 6S is exactly 0. 

It is worth noting that the ideal gas termslp2 Log x
(p2 A;), which involve the particle masses ma in the
de Broglie thermal wavelengths Aa, cancel in equa-
tions (23) if we express these masses as ma = a a’,
where a is proportional to the mass density of the mate-
rial of which the colloidal particles are made. Thus
equations (23) involve only T, P, zA and zB and may be
solved to yield for example, the value of the para-
meter zB of the crystal phase which is formed when the
temperature T is lowered at constant zA and P.

In the present context such a calculation of the fluid-
solid coexistence, although feasible in principle, re-

mains very cumbersome, and we made no attempt to
carry it through, but we believe that the method which
we have just outlined may be useful in related pro-
blems where polydispersity is an important factor.
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