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Period doubling boundaries of a bouncing ball

N. B. Tufillaro, T. M. Mello, Y. M. Choi and A. M. Albano

Physics Department, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, U.S.A.

(Recu le 24 fgvrier 1986, accepté le 12 mai 1986)

Résumé. 2014 Nous étudions, dans le régime de doublement de période, un système mécanique simple formé d’une
balle rebondissante soumise à des chocs répétés par une table vibrante. Nous faisons varier deux paramètres de
contrôle (la fréquence et l’amplitude des vibrations de la table) pour découvrir les courbes qui, dans l’espace des
paramètres, séparent les orbites périodiques. Les résultats expérimentaux sont en accord avec les calculs faits dans le
cadre d’un modèle simple.

Abstract. 2014 A simple mechanical system consisting of a bouncing ball subject to repeated impacts with a vibrating
table is studied in the period doubling regime. Two control parameters (the table’s forcing frequency and ampli-
tude) are varied to discover the curves in parameter space that separate periodic orbits. Experimental results for the
period doubling boundaries agree with calculations from a simple model.
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1. Introduction.

A nonlinear mechanical oscillator consisting of a
bouncing ball subject to repeated impacts with a
vibrating table is being studied by several research
groups who are interested in exploring the chaotic
dynamics of simple systems [1-3]. As illustrated in
figure 1, the ball is free to bounce inelastically on a
table which moves sinusoidally up and down. An expe-
rimental apparatus to study the bouncing ball system
is easy to construct from a loud speaker, ball bearing,
and a function generator [1, 2]. Pieranski recently
demonstrated that the bouncing ball system exhibits
a period doubling instability [2]. Holmes and Pieranski,
in separate research efforts, both choose to model the
bouncing ball system by the « dissipative standard
map ». As Holmes clearly points out, the dissipative
standard map is a good model for the bouncing ball
system only in the regime where the overall table
displacement is small compared to the total distance
travelled by the ball between impacts [3].
In this paper we analyse a more realistic model for

the bouncing ball system. The dissipative standard
map is easier to analyse than the model adopted in
this paper because the standard map provides an
explicit expression for the next phase and velocity
of the ball’s impact. The model analysed here relies on
an implicit equation to determine the next impact
phase. In spite of this we still obtain simple conditions
for the existence and stability of period one orbits.

Fig. 1. - Bouncing ball. A ball is free to bounce on a table
which moves sinusiodally up and down.

By analysing the period one to period two bifurcation
we discover the boundaries in parameter space which
separate these two periodic motions. The analysis also
allows us to determine the form of boundaries between
periodic and chaotic motion when the bouncing ball
system undergoes a period doubling cascade.

2. Description of modeL

To model the bouncing ball system we assume that
the table’s mass is much greater than the ball’s mass,
and that the impact is instantaneous. Under these
conditions, a typical period one orbit is shown in

figure 2. The ball’s trajectory is determined by specify-
ing the phase of impact (relative to the table’s fre-

quency) as well as the velocity of the ball immediately
before and after impact.
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Fig. 2. - Ball and table position. Period motion of period
P is depicted. Prime denotes ingoing velocity.

The change in the ball’s velocity at impact is calcu-
lated from the usual impact relation [4] :

where 0  a  1 is the coefficient of restitution (dis-
sipation rate) and v vk, and wk are the absolute velo-
cities of the incoming ball, outgoing ball, and the table
at the kth impact. The system is conservative when
x = 1.
The phase of impact is calculated by considering the

difference between the ball and table position. Let

be the ball position after the kth impact where xk is the
position at the kth impact, and tk is the time of the kth
impact; and let

be the table position with amplitude A, and angular
frequency OJ, and offset 6 at t = 0. The difference in
position between the ball and table is

which is always positive for a small enough t. The first
value of t for which d = 0 implicity defines the time
(and hence phase) of the next impact.

Elementary considerations of projectile motion
allow us to write down the mapping for Vk+ 1 and bk+ 1
in terms of only vk and bk. The mapping for the bounc-
ing ball system, with forcing period P, consists of an
implicit phase map,

where 6k, , is the next b for which d(6) = 0; and an

explicit velocity map (from Eq. (1)) :

The dynamics of the bouncing ball are easy to simu-
late on a computer using equations (5) and (6). The
only real numerical work is in finding the zeros of the
phase function. Examples of computer simulations
are shown in figures 3 and 4. Figure 3 shows a stable
period two orbit. Figure 4 illustrates part of the
trajectory of a chaotic orbit.

3. Period one orbits, 
’

For a period one orbit

Fig. 3. - Computer simulation of a period two orbit.

Fig. 4. - Computer simulation showing part of a chaotic
orbit.
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From equation (1) it follows that a necessary and suffi-
cient condition for the existence of a period one orbit is

Equation (9) specifies two separate periodic orbits,
only one of which is usually stable. In the conservative
limit (a = 1) the unstable (hyperbolic fixed point)
orbit usually occurs at 5 = - x/2 while the stable
orbit (elliptic fixed point) is at 5 = x/2. For a given
forcing frequency and amplitude, equations (8) and (9)
specify the phase and initial velocity needed to obtain
a period one orbit. However these relations give no
hint as to the stability of a periodic orbit.

In a period doubling cascade the period one orbit
gives birth to a stable period two orbit exactly when
the period one orbit becomes unstable. The period
doubling bifurcation is also referred to as a «flip
bifurcation » because the iterates of the map hop from
side to side as they approach (or depart) the fixed
point [5]. The eigenvalues of the map (linearized about
the fixed point) determine the stability of an orbit.
If the absolute value of both eigenvalues is less than
one then the orbit is stable. The orbit becomes unstable
as soon as the absolute value of one of the eigenvalues
is greater than one. For a flip bifurcation the eigen-
values are in fact negative. Therefore a periodic orbit
becomes unstable (or stable) precisely when one of the
eigenvalues equals -. 1.

In order to linearize the bouncing ball map about a
period one orbit we need to calculate (to first order)
how much a small perturbation of the velocity and
phase affects a subsequent impact. From figure 5 we
find the following relationships amoung ðl, 62, V15
and v2 :

and,

Fig. 5. - Ball and table position from numerical simula-
tion. The phase and velocity variables are related by elemen-
tary considerations of projectile motion. The numerical
simulation shows that the phase of impact can not be neglect-
ed when computing the time of flight between impacts.

where m = 2 7T/P. Equation (10) simply equates the
position of both the ball and the table at 61 and 62
while equation (11) relates the velocities.
Near a period one orbit we have

where 6pl and vpi denote the phase and velocity at
impact of a period one orbit as specified by equa-
tions (8) and (9); Ek, and represent a small perturba-
tion in both the phase and velocity. Substituting
equations (12-14) in (10) and keeping only terms of
first order yields

while equation (11) results in,

This linearized map is expressed more neatly by the
matrix :

which we will call Df. The determinent of Df, det (D/) =
a2, which says that the phase space contracts when

a  1. The conservative case (a = 1) preserves area
in phase space.
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With Df we can calculate the stability of a period
one orbit. The two eigenvalues of Df are

To find the value at which a period one to period two
transition takes place we set À.:I: = - 1 (for a flip
bifurcation) which implies

Equation (20) has a number of interesting implica-
tions. First, it states that the phase at which a period
one to period two bifurcation takes place depends
only on the coefficient of restitution and is therefore
constant for a fixed experimental system. Second, the
phase of bifurcation is easy to obtain from the experi-
mental apparatus so equation (20) provides a measu-
rement of the coefficient of restitution [1]. Third, the
fact that bb;f is constant allows us to determine the
curves in parameter space (forcing amplitude and fre-
quency) that separate the period one to period two
transition. Since equation (9) holds for any period one
motion; it follows that

Therefore, a graph of A vs. p2 at the period one to
period two transition should result in a linear plot

4. Experimental results.

Both numerical simulations and experiments with a
bouncing ball apparatus constructed from a loud
speaker and a ball bearing are employed to check the
results of section 3. In both cases we vary the forcing
frequency and amplitude (the coefficient of restitution
is constant) to discover where in parameter space a
period one to period two transition occurs. In addi-
tion, data is presented for the higher order period
doubling transitions. Following equation (21) we plot
A vs. p2 for all the period doubling transitions.
The results from numerical simulations are present-

ed in figure 6. Of course, the results agree exactly with
equation (21) for the period one to period two transi-
tion. Somewhat surprisingly, however, the boundaries
between the higher period doubling transitions are also
linear when we plot A vs. p2 . This result can be

explained by writing the impact map in dimensionless
variables and noting that the ratio Alp2 is a fixed
constant at any period doubling bifurcation [6].
An experimental realization of the bouncing ball

system is depicted in figure 7. A speaker, driven by a
function generator, serves as the vibrating table. A
small ball bounces on a concave lens glued to the

Fig. 6. - Period doubling bouncaries calculated from
numerical simulations (a = 0.5). All the boundaries appear
linear when we plot the table amplitude, A vs. the period
squared.

Fig. 7. - Apparatus for the bouncing ball experiment.
A thin piezoelectric film mounted to the surface of the lens
detects an impact between the ball and the lens.



1481

speaker - the curvature of the lens helps to keep the
ball’s motion vertical. Fastened to the surface of the
lens is a thin (28 J.1) piezoelectric film that generates a
voltage spike every time the ball hits the lens. The
voltage spike is monitored on an oscilloscope to detect
period doubling bifurcations. The forcing frequency
is read from a frequency meter connected to the func-
tion generator. In order to measure the amplitude of
the table’s oscillation, a bit more care is required. A
micro-positioner is mounted across the top of the
speaker so that the tip of the micro-positioner lightly
impacts with the lens (the impacts are detected by
the piezoelectric film). By gently sliding the micro-
positioner vertically, and looking for the initial impact
between the tip and the lens, it is possible to accura-
tely determine the table’s actual amplitude of oscilla-
tion and phase. In this way we can measure the table’s
frequency, amplitude, and phase at a period doubling
bifurcation.

Results from the experimental bouncing ball system
are given in figure 8. The agreement with the numerical
simulations is excellent. An experimental measure- 
ment of the phase of bifurcation yields approximately
0.5 for the coefficient of restitution. In the experimen-
tal system it is not possible to obtain orbits higher than
period four without the system exhibiting chaos. This
« truncation of the cascade » is the effect of noise
inherent within the mechanical apparatus and is not,
at present, accounted for in the numerical model.
The period four to chaos boundary is indeed linear as
suggested by the numerical simulations.

5. Conclusion.

We analysed the period one to period two transition
in the bouncing ball system. The analysis yields the
boundaries, in parameter space, which separate diffe-
rent periodic and chaotic motions. We also discovered
that the phase of bifurcation for the period one to
period two transition depends only on the coefficient
of restitution; and hence, a measurement of the bifur-
cation phase provides a simple determination of the
coefficient of restitution.
Our results also suggest that a simple analysis of the

period one to period two transition may yield infor-
mation about the boundaries, in parameter space,

Fig. 8. - Experimental results for the period doubling
boundaries from a bouncing ball apparatus. The boundaries
show good agreement with numerical simulations. The

amplitude is measured with a micrometer.

separating periodic and chaotic motion. We also
suspect that many forced and dissipative dynamical
systems may be similar to the bouncing ball system in
that the phase at which a period doubling bifurcation
takes place depends only on a single parameter, the
dissipation rate. An analysis, then, of the period one to
period two transition may prove to be a useful heuris-
tic guide in determining the boundaries of chaotic
motion in systems exhibiting period doubling insta-
bilities.
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