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Résumé. 2014 Nous envisageons la transmission et la réflection de la lumière par un milieu lamellaire. L’indice
optique de chaque lamelle est une constante qui fluctue d’une lamelle à une autre. Dans la limite d’un grand nombre
N de lamelles, le coefficient de transmission s’annule exponentiellement et le milieu devient un réflecteur parfait.
Une méthode nouvelle et simple nous permet d’évaluer la longueur de pénétration 03BE à l’incidence normale et pour
l’angle critique de réflection totale du milieu homogène équivalent. Dans le cas d’une distribution gaussienne de
largeur 03B6 de la partie fluctuante de l’indice nous trouvons respectivement 03BE ~ 03B6-2 et 03BEc ~ 03B6- 2/3 dans ces deux cas.
Nous discutons également les propriétés du coefficient de réflection et donnons des résultats de simulation numé-
rique. Ces résultats sont également valables pour la transmission des neutrons.

Abstract 2014 We consider the transmission and reflection of light by a layered medium where the optical index of
every layer is a constant which fluctuates from one layer to another. In the limit of a very large number N of layers,
the transmission coefficient vanishes exponentially, and the medium becomes an ideal reflector. A new simple
method is used to evaluate the penetration depth 03BE for normal incidence and at the critical angle for total reflection
of the homogeneous equivalent medium. For a Gaussian distribution with width 03B6 of the fluctuating part of the
index, we find 03BE ~ 03B6-2 and 03BEc ~ 03B6-2/3, respectively. We also discuss the properties of the reflection coefficient
and show computer simulations. We expect our results to be also valid for neutron transmission.
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1. Introduction

One-dimensional localization of electrons has been

extensively studied since the early work of Ander-
son [1]. Both numerical and analytical results were
obtained [2-6]. However this concept was used only
recently to study the propagation of waves through
random media [5]. Extensive work is currently being
done in such specific problems as chains of random
impedances [7], absorption properties of three-dimen-
sional random media [8, 9] and sound propagation
through layered random media [10]. In this paper we
consider the transmission and reflection of light by a
random layered medium. The system we consider is a
succession of N infinite layers with equal width 1 (see
Fig. 1). The refractive index of each layer is fixed, but
fluctuates around an average value n for successive

layers. We neglect absorption completely (n is real).
Possible realizations of the system we have in mind
are as follows.

a) Every layer is a mixture of two components. The
composition fluctuates for different layers.

(*) Laboratoire commun CEA-CNRS.

b) One might also think of a liquid polarized in
a flow. If this liquid flows through a succession of
cavities with random width, the velocity distribution
is random, and so will be the index.

Propagation of light across such layered media was
considered some time ago by Sulem and Frisch [18]
who showed that the transmission coefficient should be
an exponentially decreasing function of the number
N of layers. However they did not relate the penetra-
tion depth of the incident beam to randomness. This
is part of what is done in the present paper. Moreover,
to our knowledge, this is the first time that one consi-
ders the difference between the reflectivity of such
layered system for different incidence angles, and more
precisely between normal and critical angles of inci-
dence. The latter is related to the band edge problem
in Anderson localization which was very recently
considered by Derrida and Gardner [11, 12], whose
work followed the work of Kappus and Wegner [13]
on the band centre anomaly. The approach we use in
section 4 for critical incidence (total reflection for the
equivalent homogeneous system) is however quite
different from that in reference [1 ] : here we use a
simple renormalization argument to derive the scaling
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Fig. 1. - Sketch of the layered system.

properties of the penetration length and the reflection
coefficient.
Another motivation for the present work is that

measurements of the reflection coefficient by such
layered systems should not be very hard to perform
by light or neutron scattering.

In the following, we will assume that the refraction
index of layer k is :

where the r¡t’S are random independent variables,
with a probability distribution Pt r) which we will
assume to be a Gaussian for convenience.

Suppose we have N such layers embedded in a
medium with index no, and an incident plane wave
comes with an incidence angle 80, as shown in figure 1.
We wish to know the transmission and reflection
coefficients by this layered system. The basic conser-
vation equations are given in section 2. The discrete
nature of the problem is kept and leads to a product
of random matrices that was not considered so far.
Section 3 gives some general results about the trans-
mission coefficient. Section 4 deals with critical inci-
dence. We show that the penetration length ç varies
with the width C of the distribution of tlk as f - -2J3 
we also discuss the properties of the distribution of
reflection coefficients. In section 5, the scaling laws
for the same properties are derived for normal inci-
dence. Some numerical results are also discussed

2. Conservation law in the layered system.

Consider a set of N infinite layers with equal width I
along the z direction, embedded in two semi-infinite
media with optical index no. An electromagnetic plane
wave is sent with an incidence angle 00 with the normal
z to the layers, as shown in figure 1. We assume that
the incident electric field is monochromatic and

linearly polarized along a direction perpendicular
to the plane of incidence

where Eo is the complex amplitude, and y a unit vector
normal to the plane of incidence. We also assume that
there is no current distribution at the surface of the

layers, so that there is conservation of the tangential
components of the electric and magnetic fields at

every interface. Let Et(k) and E:k) be the (complex)
amplitudes of the transmitted and reflected electric
fields in the kth layer, at zk = (k - 1) I. The conserva-
tion law may be written [14J, using transfer matrices

where

and

with

with Ok the refraction angle in layer k, with boundary
conditions

Eo, Et and Er being the incident, transmitted in medium
B, reflected in medium A fields, and Ko = 0 in the argu-
ment of the exponentials of relation (5). Introducing

we may relate K. to the random variable tlkl using
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relation (6)

It is however more convenient to use another set of
variables which are the total electric and magnetic
fields :

We then have

where Q, = 1 is the identity matrix and

With the usual convention that in case K is a complex
number, K = iK,

cos Kl = cosh Kl , and sin Kl = i sinh Kl .

Note that the elements of Qk are real.
Iteration of relation (9) leads to

with

To our knowledge, this is the first time that one looks
at the properties of matrices such as TN’ with the Qk s
given by equation (10) where the Kk’s are random
variables.

Defining the transmission and reflection coefficients
for the amplitudes

equation (12) is equivalent to

We can easily check from equation (11) that all the Qi’s
are unimodular matrices, and so is iN. Using (15) it may
be easily shown that this property is equivalent to the

conservation of energy

This is done in appendix 1.

3. Transmission coefficient and exponential growth of
’

It was shown, under some restrictive conditions which
are fulfilled by iN, that when N goes to infinity the
norm of the product of N random matrices diverges
exponentially [15] :

where the so-called Lyapunov exponent y is positive.
Note that y has to be related to the randomness, and
thus to the width I of the distribution function. We
will see some special cases below. Note also that,
although the norm of the matox diverges, the determi-
nant of iN is unity. Finally, it is shown in appendix 1
that the transmission coefficient t = Et/Eo is related
to a norm of TN

so that [ t goes exponentially to zero

Relation (19) implies that the intensity transmitted
by the layered system is exponentially small whatever
the extent of randomness in the successive layers, and
whatever the angle of incidence. Even a very simple
system consisting in successive layers where the ave-
rage index n is the same as in the semi-infinite homo-

geneous medium no will not transmit the incident wave,
and thus acts as a perfect reflector as long as the
number of random successive layers is larger than
a characteristic value

in what follows, we relate the Lyapunov exponent y to
the width ( of the distribution of the fluctuation in nk
for two simple cases, namely at the critical angle 0,
for total reflection, and for normal incidence.
A final property of iN is shown in appendix 2 : when

N goes to infinity the asymptotic form Of TN is

where P(C) tends to a projection operator :

and thus

a relation which will be useful in next section.
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4. Critical incidence.

Critical incidence angle corresponds to total reflection
for the homogeneous system of index n

Equivalently it may be defined by e = 0 in equation
(8).

If there were no randomness in the refraction index
of the layers, all the Qk s would be equal to

For small randomness, we consider a perturbation
of Q to first order in ’1. Using (8) with 8 = 0, we
expand (11) :

which is unimodular to first order in q. We stress that
we are not interested here in the exact value of the

Lyapunov exponent but rather in its scaling with (
(see Eq. (27) below).
The renormalization transformation performed in

appendix 3 leads to

Using (22) and (25) we get

and thus

and, from relation (19) the transmission coefficient is

and thus a penetration length, from (28) and (20)

Equation (27) was derived recently by Gardner and
Derrida [11] for the one-dimensional Anderson loca-
lization near the band edge by a different method
Let us now discuss the reflection properties of the

system. We define the vanishing quantity

Setting

Equation (25) together with (15) lead to

Thus we can relate t, t’, cp and cp’ to the elements of

IrN,2.,/2C Because the latter is unimodular, we get2
the following condition :

Since t and are exponentially small, we assume that
tt’ as well as 9T’ may be neglected in (32). Then (32)
becomes

Thus

Since equation (16) is valid for both sets of coefficients,
we find that to the leading order in (, T is pure ima-
ginary, and from (33) we get

and

Figure 2 shows the results of computer simulations :
Im lp converges well when N increases. It also shows
that lp is sample dependent : the limit of Im lp depends
on the chosen sample. This result has a simple phy-
sical meaning : after a limited number of layers,
the transmitted intensity is already very small. Then
the partial wave which actually probes a large number
of layers contributes very poorly to the reflection
coefficient. Thus the actual values of the indices of the
first layers are very important for the reflection

properties. This means that the same experiment
on different samples with a constant value of C leads to
different values for 1m lp : there is a distribution

P(Im T) for Im lp. The meaning of equation (34) is
that this distribution is a universal function of

(Im lp)/,2/3 rather than of (Im T) itself This was done
numerically. Figure 3 shows the result of computer
simulations for different values of C. Because of the
superposition of the different curves, it shows that the
distribution P(lm lp) is a universal function of

(Im lp)/,2/3, in agreement with our predictions.

5. Normal incidence.

In the previous section we showed that, at the critical
angle, the incident beam is reflected We stress that the
reflection is the effect of randomness in the optical
index. What is characteristic of the critical angle is the
scaling variable NC’I’ which includes the disorder.
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Fig. 2. - The imaginary part of T as a function of the
number N of layers for ( = 0.001. The limit reached by
Im T when N is large enough depends on the sample (curves 1,
2 and 3). Possible bursts such as those on (1) and (3) are
probably related to local interference conditions and depend
on the actual distribution of indices in the sample. They
become smaller as N increases and do not alter the asymp-
totic behaviour.

In this section, we consider the case of normal inci-
dence to show that there is still total reflection (for an
infinite system), but that the scaling is different. When
the incidence angle 00 is zero, we get, from equation
(7a)

The Qk matrices are particularly simple when
kl = 2 pn with p being an integer. For convenience,
we will only consider this case in what follows. Then
equation (11) becomes

If there were no randomness, Qk would reduce to the
identity matrix. As in section 4, for small randomness
we consider a perturbation to the first order in il :
Equation (37) becomes :

Note that Qk is still unimodular to the first order in tit
which we consider here. The renormalization pro-
cedure is simpler than for critical incidence : grouping

’ uu.33 Itr11

I/*

Fig. 3. - The distribution P(Im T) as a function of the
scaled variable Im cp/C2/3 for three different values of C.
For each value of C, 400 samples were studied Every plotted
point corresponds to an average over 400/16 results. The
dotted curve is a guide to the eye.

the matrices by sets of two, we get

leading to a different scaling for y. In the same way as
in last section, we get

and thus, for the transmission coefficients, the penetra-
tion length, and the reflection coeflicient :

and

As discussed in section 4, Im (p is sample dependent.
In the present case of normal incidence, the distri-
bution of cp was determined by Sulem [17], using a
continuous wave equation.

It may be shown that the exponent 2 holds for any
incidence angle as long as the condition k18 = 2 7rp
is fulfilled We conjecture that this value of the expo-
nent holds for any value of 00 different from 0,. As a
matter of fact, this exponent may be derived from
a mean-field calculation where the multiple reflections
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are not taken into account. This is somewhat similar
to the random phase approximation of Anderson
et al. [3]. Note however that it cannot lead to the right
scaling at critical incidence.

6. Conclusion.

We have shown that a set of layers with random
indices is a perfect reflector of an incident wave when
the number of layers is large enough. The reflection
coefficient r is sample dependent but follows a simple
scaling law with disorder C. The imaginary part of
T - 1 - r might be observed by an interference

experiment between the incident and reflected beams.
The exponential decrease in the transmitted amplitude
is closely related to the Anderson localization of
electrons in a disordered potential. This analogy is
more direct if one considers the transmission of
neutrons by a layered system. It is possible then to
relate the index n to the scattering potential by a
single element and to the density of scatterers. Thus
we also expect an incident neutron beam to be reflec-
ted by a layered medium exactly in the same way as the
electromagnetic waves we considered above. There is
however a difference in the order of magnitudes for
both cases : one might reasonably assume a width
C - 10- 2 for the distribution of indices in the case
of light, whereas I is rather of the order of 10-6 for
neutrons, layers with 1 micron width are also possible.
This leads to penetration lengths of the order of some
microns for light, and 1 cm for neutrons, at 00 = Oc.
For normal incidence the typical length for light
is of the order of 1 cm and the corresponding con-
clusions might still be checked experimentally. One
imitation for our calculation is absorption. Our
results are valid only when the typical length for
absorption is larger than the penetration depth
discussed above.

Finally, we note that interesting experiments by
neutron scattering might be performed with magnetic
materials. Depending on the polarization of neutrons,
the magnetic part of the neutron refraction index
changes sign. Thus the critical angles are very different
for neutrons polarized up or down. The penetration
lengths are thus also very different because of the
different power law behaviour of ç as a function of( for
0 0 = 0, and 00 :0 0, discussed above. Thus if a beam
of nonpolarized neutrons is sent onto a layered
system, the neutrons polarized up are totally reflected
while a large fraction of those polarized down should
be transmitted, so that the layered medium acts as a
polarizer.
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Appendix I.

We calculate using equation (14),

Let

Defining :

equations (A .1) and (A. 2) lead to :

which is readily solvable

We way deduce the reflection and transmission
coefficients for the intensities :

Using (A. 7) and (A. 8) it is straightforward to show
that I r2 1 + I t p = 1 is equivalent to

On the other hand, one can see on relation (A. 8)
that t 12 may be expressed in the following way :

with

and

is a norm in the space of real 2 x 2 matrices.

Appendix n

Let us consider the first representation we used in
section 2, equation (5). It has been proved [16] through
time reversal invariance considerations that for a

1

non-absorbing medium the product P[ Mk has
k=N+1



1473

the simple form :

where t* and r* are the complex conjugates of t and r
respectively.

This assertion holds, whatever the angle of incidence.
Let Pk be the passage matrix from the first to the second
representation

Then

with

Using equation (21) we get

the most general form of 2 x 2 projector is

in order to identify iN to eYN P, we must have

then we can calculate a and c in (A. 16) as functions
of r, t, r * and t *. The form given in (A. .16) may be
obtained only if

This is realized in the limit when N is much larger
than N* - ,,-1 because we know that in such limit

Appendix III.

When the medium is homogeneous, all the Qks are
equal, and at criticality they have the following
expression : 

We note that Q is the fixed point of the following
transformation

In order to perform a perturbation of Q in the
random case up to the lowest order in ’1k’ we write :

Note that Qk+ 1 remains unimodular, up to the order
of approximation retained
We then have

Qk, has the same form as the initial matrices Qk-l and Qkl with the random variable ’1k being replaced
by 2( nk + ’1k-l).

However the transformation we have performed has generated the term 1(,2/2(’1k - ’1k-l) a. which was
absent from the initial matrices Qk.

Let us consider a set of more general random matrices :
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where a = k2 /2 and x, y and z are three non-correlated centred Gaussian small random variables :

Thus Q depends on three parameters U2 =  X2 ), J§ =  y2 ), u) =  Z2 ).
The matrices Qk are of the form Q, with :

Let us now make the following product

The matrix obtained has exactly the same structure as the initial matrix Q(x, y, z), with three new random
variables :

One can check that: XY&#x3E; = XZ&#x3E; =  YZ&#x3E; = 0.
The parameters : a,2 =  X 2 X at2 =  y2 X a,2 =  Z2 &#x3E; which characterize Q(X, Y, Z) are related

to a2, az, a2 by the following relations :

Thus we have a linear relation between the vectors (U2, U2, a;2) and (uf, J§ , J§). The eigenvalues of this
linear transformation are equal to 8, 2 and 1/2.

The matrices Q" are characterized by a one component vector (uf = 2, Q2 = 0, J) = 0). This vector can
be expressed in function of the eigenvectors V l’ V 2 and V3 associated respectively to the eigenvalues 8, 2 and 1/2 ;
(uf = ,2, J§ = 0, J§ = 0) = a,2 V 1 + b,2 V 2 + C,2 V 3. a, band c are three constants which depend on a
and could be calculated The important fact to note for the following discussion is that a =1= 0. We can write :

In fact, we shall be interested only in the scaling behaviour of the Lyapounov exponent with C’. Thus we
shall retain only the most relevant perturbation, which is associated with the largest eigenvalue (equal to 8).
The second eigenvalue, equal to 2, should correspond to a correction to the scaling laws. The third one is smaller
than 1 and corresponds to a non relevant perturbation of the homogeneous case.

Thus, neglecting the less relevant terms, we can write equation (A. 26) in the following way :

And thus :
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