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Résumé. 2014 Nous considérons une famille de modèles qui généralise le modèle de Hopfield, et qui peut s’étudier
de façon analogue. Cette famille englobe des schémas de type palimpseste, dont les propriétés s’apparentent à
celles d’une mémoire de travail (mémoire à court terme). En utilisant la méthode des répliques, nous obtenons
un formalisme simple qui permet une comparaison détaillée de divers schémas d’apprentissage, et l’étude d’effets
variés, tel l’apprentissage par répétition.

Abstract. 2014 We consider a family of models, which generalizes the Hopfield model of neural networks, and can
be solved likewise. This family contains palimpsestic schemes, which give memories that behave in a similar way
as a working (short-term) memory. The replica method leads to a simple formalism that allows for a detailed
comparison between various schemes, and the study of various effects, such as repetitive learning.
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Introduction

Networks of formal neurons provide models for
associative memories [1-5] and much numerical and
analytical progress has been made recently, especially
on the Hopfield model [2, 3]. In particular Amit
et al. [3] have solved for the thermodynamics of this
model, using the replica method with the approxi-
mation of replica symmetry. Since then, alternative
learning schemes have been proposed [4-6], which
avoid the catastrophic deterioration of the memory
when the number of stored patterns exceeds a critical
value. In these schemes, new patterns may always
be learned, at the expense of previously stored patterns
which get progressively erased For this reason, such
memories have been called palimpsests, and may
provide inspiration for the study of working (short
term) memories.

In this paper, we define a family of models, which
generalizes the Hopfield model and can be solved
likewise. One of the palimpsestic schemes defined in [4]
(the marginalist scheme) is a member of the family.
Within the replica method, with the approximation

(°) Permanent address : Laboratoire de Physique Th6ori-
que, Ecole Normale Sup6rieure, 24, rue Lhomond, 75231
Paris Cedex 05, France.

of replica symmetry, we obtain analytical results that
agree with previous numerical calculations, and
allow for a detailed comparison between various
schemes. The most interesting case is when one requests
a very good retrieval quality of the learned patterns :
remarkably, the formulation becomes very simple
in this limit.

In section 1, we introduce the family of models.
In section 2, we give the solution within the approxiT
mation of replica symmetry, and study the zero-
temperature limit. In section 3, we consider various
effects, such as repetitive learning of a pattern. The
main results are summarized in the conclusion.

1. Palimpsestic schemes.

All the models we will consider have the same basic

ingredients : the network is made of N interconnected
formal neurons S,. Each neuron can be either in the
firing state (Si = + 1) or in the quiescent state

(Si = - 1). The synaptic efficacies Tij contain the
information on a set of patterns Su = (Si)i=l,N which
one wants to memorize. They can be either positive
(excitatory) or negative (inhibitory). The network
should work as an associative memory : setting the
network in a pattern SIJ (or close to SIJ), it relaxes
under a suitable dynamics towards a close stationary
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state. Proximity is measured by the retrieval overlap
B

where the bracket is an average over stochastic noise

(thermal averaging). When m - 1, retrieval is good
Assuming symmetric connections and relaxational
dynamics, the (meta)stable states of the network are
those of the Hamiltonian

As a first rough criterion of efficiency, a pattern S /l
is said to be memorized (or recognized) if its retrieval
quality (l.l) is good
The models we study differ in their learning schemes.

These are the rules which fix the synaptic efficacies
for the given set of patterns to be learned. The Hopfield
scheme [1] is :

In this model, each pattern is learned with the same
acquisition intensity k = IIN’. In the first palimp-
sestic scheme proposed in [4], named marginalist
scheme, each pattern J1. is learned with an intensity
k(g), which increases exponentially with M. To avoid
this undesirable exponential growth, we consider a
slightly different version of this model : once t patterns
have been stored, storing a new pattern st+ 1 is done

through the following modification of the synaptic
efficacies :

where Å. is such that the cumulated intensity (average
squared synaptic efficacy) remains fixed :

This normalization is convenient for the learning of
a large number of patterns. The bar denotes the

average over the quenched disorder { SP }. For

independent random patterns, this implies

This scheme is stationary in the sense that the rule
(1. 4), (1.6) is time independent. This scheme will also
be named marginalist since it is equivalent to the one
of [4] through a rescaling of the temperature.
For simplicity of notation, we will use in the fol-

lowing a « time» such that the interval between two
consecutive learning events is equal to one «times
unit. Emphasis is given first to the asymptotic regime,
after an infinite number of patterns has been learned
Finite time effects will be considered later. Hence,
if we denote ç 1 = (Ç:)i = 1,N the last stored pattern

ç2 the previously stored one and so on, the model
we consider is given by

In this scheme, the actual intensities are exponentially
decreasing with storage ancestry. In the large N limit,
I - exp - E2/2 N. Thus, for the most recently learned
patterns, that is for p finite (relative to N), the intensity
is constant. For p  N, the intensity is vanishingly
small : this observation suggests that the network
will act like a Hopfield system, with a capacity of
order N, the memorized patterns being the most
recently stored
By a straightforward generalization of (1.7), we

can actually introduce a whole family of models in
which the strength of learning is time dependent :

where A(li) is any positive function such that

The marginalist scheme (1.7) is obtained for A = Am :

It is particularly instructive to compare a given
model with the Hopfield model. This model also

belongs to the family (1.8)-(1.9) : it corresponds to
learning with constant amplitude between some

initial « time » - NT up to the present moment.
Hence, in our formulation it is given by the function
A = AH:

The normalization (1.9) imposes

Within this formulation, the Hopfield scheme is

clearly not stationary : as the number NT of stored
patterns increases, the parameter s which measures
the effective uniform acquisition amplitude decreases.
For the general problem (1. 8)-(1. 9), the replica

method can be used in the very same way as for the

Hopfield model, that is following exactly the cal-
culations of reference [3]. In the following, we will
discuss the properties of these models within the
assumption of replica symmetry : for any function A,
the entropy at zero temperature is negative, but very
small as in the Hopfield case. Thus, replica symmetry
breaking effects are expected to be small, at least for
recognition properties. Furthermore, we will mainly
discuss the zero temperature limit, since it is the low
temperature behaviour which is the most interesting.
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However, we emphasize that any calculations that
have been, or can be, done for the Hopfield model
can be simply generalized for a generic function A.

2. Replica symmetric solution

We compute the average free energy per spin

with the replica method As in [3], we are led to intro-
duce three sets of order parameters : the states we
consider are characterized by

i) the macroscopic overlaps Wi, i = 1, s, s being
finite as N - oo,

ii) the total mean square of the small random

overlaps with the other patterns Jl, weighted by
A(plN) :

iii) the Edwards-Anderson order parameter,

One gets the following expression for the free energy

where «. &#x3E;&#x3E; means averaging over the Gaussian variable z with zero mean and unit variance, and over the discrete
distribution of { Çlli }. The values of the order-parameters are determined by the saddle-point equations :

We shall now concentrate on the zero temperature
limit.
An indication of the capability of the network to

recognize a given pattern of ancestry p = aN, is given
by looking at the solutions with a macroscopic overlap
with the single pattern p :

As fl --+ 00, equations (2. 5)-(2. 7) yield

with

with

Finally one obtains two coupled equations for the
reduced variables x and C :

which, for a given function A, can be solved nume-
rically. In particular, for the Hopfield scheme, A = AH
(see (1.11), (1.12)), one recovers the equations of
reference [3]. Numerical solution of these give the
critical values 2,: = 1 /8f = 0.138..., me = 0.97...
For the marginalist scheme A = Am, we find that

there is no solution with m 0 0 for

For s = Bc, there is one (stable) solution with a = 0,
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and

For s &#x3E; Bc’ there are two solutions with m non zero,
for :

and one finds that the (meta)stable one corresponds
to the highest value of m This state has a retrieval
quality m(a, s) &#x3E; mc. The functions ot(c), m(a(s), e)
and m(O, s) are shown in figure 1. a(s) is the (stationary)
capacity of the memory. It increases with e until a
maximal value at e = Eopt

with a capacity

Fig. 1. - a) Capacity a = p jN of the marginalist scheme as
a function of E. This capacity is zero for c  Be = 2.4648...,
and goes through a maximum at c = Bopt = 4.108. b) Re-
trieval quality as a function of e. The upper curve is the
retrieval quality m(o, c) of the most recently stored pattern.
The lower curve is the retrieval quality m( (X( B), s) of the pat-
tern p = oe(s) N, that is of the most anciently stored, but still
memorized, pattern.

and decreases for 8 &#x3E; Bopt - the number aN of
memorized patterns being I in the large s limit.

It is also of interest to request a retrieval quality
at least equal to a given value of m - hence of x,
see (2.9). The interesting limit consists in requiring a
very good retrieval quality, that is m close to one.
In this limit, it is easy to compute the capacity for
any function A. In particular for models with a tunable
parameter, such as the marginalist scheme, one

finds explicitly the optimal value of the parameter
and the corresponding optimal capacity.
When m - l, x - oo and C ---+ 0. Then one has

If A is a decreasing function, the capacity ax is the
largest value of a for which (2.20) holds. For the
Hopfield scheme An one recovers

for

The maximal capacity is reached at 8 = 8H’ with
the capacity aH :

In fact, this capacity aH is the maximal possible capa-
city whatever A is. This is easily seen in this limit of
good retrieval : due to the normalization condition
(1.9) on A, if A is piece-wise continuous, ax can be
equal to aH = l/x2 if and only if A is constant, equal
to x, on an interval of length l/x2, and zero everywhere
else. This result confirms the fact, observed in previous
numerical simulations [4], that there is a price to pay,
viz. a decrease of the capacity, to obtain a working
memory, robust to new learning.
For the marginalist scheme, in the limit m - 1,

one finds

This gives a maximal value of ax at a value e.p,(X) :

with a capacity

Note that lXoPt = I/B;pt, Bopt = JëBc, whatever x is.
In order to compare with the numerical estimations

of reference [4], let us suppose that m &#x3E; 0.97. Nume-
rical solution of the equations (2 .13), (2.14) gives the
exact values
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Note that these values are close to the values (2.15),
(2.17) and (2.18), obtained without restriction on m.
The values reported for s,, - 2.2, s.p, - 4, were in
reasonable agreement with (2.27), but at N = 100,
a capacity of 0.065 was estimated The corresponding
discrepancy can be attributed mainly to finite size
effects : further numerical simulations at 8 = 4, for
N up to 320 give an estimate 0.059 ± 0.005 for the
capacity.

3. Learning by reinforcement, and finite time effects.

Other interesting features can be obtained within our
general formulation :

i) the repeated learning of a given pattern with a
period L, within a background of random patterns;
ii) the learning of a sequence of L patterns, repeated
ad infinitum ; iii) the learning of a number L of patterns
starting from tabula rasa at « time » - L.
The last problem (iii) will be treated in this section

because it appears to be formally very similar to
problem (ii). The two first problems will illustrate the
well known efficiency of repetitive learning (« to teach
is to repeat »). That a learning scheme leads to such
effects is not surprising. What is interesting is the

possibility, within our formalism, to quantify these
effects.

i) We illustrate here the repetitive priming effect
We consider the learning of patterns independently
chosen at random, except one given pattern which is
learned periodically, with a period L = gN.

If p = aN is the last o time » when this pattern has
been learned, its actual weight is

Thus instead of the function A, we have to consider
the fonction Ag

Since Ag differs from A only at a denumerable set of
points, we still have

Hence we can apply the preceeding formalism for AA.
If we look at the states having a macroscopic overlap
with the periodically learned pattern, the equations
are the same as (2.9)-(2.12), with Ag(a) instead of
A( a) in (2. 10).

Since Ag(cx) &#x3E; A(oe), we see already that the retrieval
quality will be enhanced by this periodic learning.
Consider in particular the case a = g, which means
that we are looking at the retrieval quality just before
re-learning. At zero temperature, the maximal value

g* of g, for which the retrieval quality is at least equal
to a given value m, is given by

We recall that x is related to m via (2.19). For the
marginalist scheme, this gives the relation

This shows that for any s

Thus, whereas a given pattern learned only once is
retained during a time Noc.(B), a pattern learned every
N 9 patterns is never forgotten provided g  g*,
where g* is much greater than oc.,(s). Even for s  ec(x),
where tXx(e) = 0, g* is finite :

In fact, through the diminution of the noise due to the
other stored patterns, the smaller q the greater g*.

ii) Consider now the repeated learning of the same
sequence of L = gN patterns. At « time » zero, the
weight of the pth pattern is

To cast this problem into the general formulation,
we have to consider the normalized weight Ag :

Now the model defined by Ag belongs to our general
family : the new equations look the same as (2.9)-
(2.14), with A replaced by Ag. For the marginalist
scheme, one has

In particular, for e small, i.e.

Ag is constant for u  g :

This means that for c small enough, the resulting
memory is equivalent to the Hopfield limit. Within a
palimpsestic scheme, one way to approach the

optimal capacity, that is the Hopfield capacity, is to
repeat again and again the sequence of patterns to
be learned, but with a very low intensity.

iii) Finite « time » effects. The learning of L = gN
patterns (starting from tabula rasa) appears to be
formally very similar to the learning of a periodic
sequence. We want to recover the results of sections 1
and 2 in the infinite g limit : we consider the storing
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of the pattern of ancestry p = aN with a weight A(Lx),
for a  g. But to cast this problem into our general
formulation, we have to consider the normalized
weight Ag(a), such that (1.9) remains true for any
finite g :

In the limit g - oo, Ag becomes identical to A. For the
marginalist scheme, Ag is again given by (3.9) : the
two problems are thus equivalent.

If one works at a given value of s, this gives imme-
diately that, for short times, the complete set of

patterns is memorized. This is the case until a critical
value gr ,(i;). For g &#x3E; g,,, only a fraction of the patterns
are memorized, and the capacity decreases from gc
toward its asymptotic value a(8). This is illustrated in
figure 2 for 8 = 4. Solving numerically the equations
for A 9 one finds gc slightly greater than I/g2

whereas

While the capacity decreases from gr ,(s) to a(8), the
retrieval quality decreases slightly from a little better
than 98 % to about 97 %.

3. Conclusion

In this paper we have shown how one can analyse very
simply a whole family of models for working memory.
Using the replica symmetry approximation, the result-
ing formalism is quite simple, and allows one to
answer many questions about the behaviour of such
memories. In particular we confirm that the capacity
of these working memories are lower than the capa-

Fig. 2. - Capacity of the marginalist scheme for e = 4.0,
as a function of g = L/N, where L is the total number of
stored patterns. All the patterns are memorized for g up
to g,, = 0.06719... For g &#x3E; gc’ the capacity decreases toward
its asymptotic value a(c).

city of the Hopfield model. Typical phenomena of
human short-term memory, such as the repetitive
priming effect, are simply modelized and quantified
within our formalism.
The incentive for considering non uniform acqui-

sition intensities came from biology. From the view
point of statistical physics, it is clear that everything
that has been computed [2, 3] in the case of uniform
intensities can be generalized. This paper has only
made a first step in this promising direction.
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