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Résumé. 2014 Nous discutons le comportement de surfaces greffées, ou couvertes de polymères adsorbés, et exposées
à un liquide qui est un bon solvant du polymère. Notre premier objectif est le paramètre d’étalement S, que nous
calculons en fonction de la longueur des chaînes, de la qualité du solvant, et aussi de la force de l’adsorption. Par
ailleurs, nous analysons les films de mouillage, obtenus à S &#x3E; 0 par étalement d’un solvant non volatil. L’épaisseur e
du film est un compromis entre S (qui favorise des films minces) et l’entropie des chaînes confinées dans le film
(qui favorise des films épais). Dans la plupart des cas, l’épaisseur d’équilibre e s’avère plutôt petite. Enfin, nous
analysons l’étalement sur une surface bigarrée : par exemple, une zone circulaire couverte de polymère, entourée
par du solide nu, ou l’inverse. Dans ces situations, l’épaisseur du film sur la zone centrale doit changer brutalement
quand la goutte atteint le bord de cette zone.

Abstract. 2014 We consider solid surfaces, partly covered with flexible, neutral, linear polymers (by adsorption or
by grafting), wetted by a liquid which is a good solvent of the poymer. We give formulae for the spreading coeffi-
cient S as a function of chain length, solvent quality and adsorption strength. We also discuss the wetting films
obtained in spreading a droplet of (non volatile) solvent : the equilibrium thickness e of the film is a compromise
between S (favouring thin films) and the coil entropies (favouring thick films) : in most cases e is rather small.
Finally we analyse the spreading on certain « patchy » coatings where the film thicknesses can change drama-
tically with time.
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1. Introduction.

The spreading of a liquid on a surface may be affected
by the presence of polymers. Such effects may be of
importance to certain practical applications like

adhesion, detergency, etc. Because of the large scale
imposed by the polymers it is convenient to investigate
these systems using a continuum theory of wetting [1].
The spreading of dilute [2] and of semi dilute [3]
polymer solutions on a non adsorbing surface were
recently analysed within this framework. Here we
consider the spreading of a pure non volatile solvent
on a polymer coated solid We distinguish between
surfaces which are coated by grafted polymers and
those coated by adsorbed polymers.

1) The tendency for a fluid to wet a solid surface
is determined by the spreading coefficient [1] S

where fd and f,, are respectively the free energies per
unit area of the dry and the wet surface. It should be
stressed that fw refers to a surface covered by a ma-
croscopic liquid layer. We derive explicit formulae

for S in section 1 for a grafted polymers, and in section 3
for adsorbed polymers.

2) We also discuss spreading : i.e. a non volatile

liquid invading a dry solid surface with S &#x3E; 0. In this
case a drop of liquid transforms into a flat« pancake ».
The equilibrium thickness of the pancake (e) is
determined by the balance between S and long range
forces which tend to thicken the film. Neglecting edge
effects the free energy of the film is

where P(e) denotes long range interactions and is
such that P(e -+ oo) = 0. A is the total area of the
film. For our purposes P consists of polymer C011’-

tributions to be discussed below plus non retarded
Van der Waals interactions given by

where AH is a Hamaker constant. To obtain the

equilibrium thickness we minimize the free energy
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with respect to e at constant volume V = Ae which
yields [4]

where H(e), the disjoining pressure, is defined by
Il = - dP/de.

2. Wetting of a grafted surface.

2.1 SPREADING COEFFICIENT. - Here we discuss the

wetting of a uniform, non adsorptive, surface on which
linear, flexible, uncharged, polymers with N mono-
mers/chain are grafted. We denote the average distance
between grafted sites by D, and consider the « dense »
case D  RF where RF is the size of a free coil. The
graft density is given by

where a is the mesh size of the appropriate Flory-
Huggins lattice. When the surface is covered by a
macroscopic layer of a good solvent the chains are
stretched, and the thickness of the grafted layer is [5, 6]

The concentration profile in this case is essentially
flat with monomer volume fraction

As the grafted layer is mostly uniform and rather
dense the Flory mixing free energy provides an
appropriate description of it, once we discard the
translational term, which is suppresed by the grafting.
The free energy per lattice site is then

To obtain S we now write [7]

where TP, Tp,, y, and Y sl are respectively the solid-
polymer, polymer-vapour, liquid-vapour and solid-
liquid surface tensions. T, the total number of mono-
mers per unit area is given by r = N/D 2. The factors
(1 - 03C3) in (2.5) describe the reduction is solid-fluid
contacts due to the grafted sites. Using equation (1.1)
we find

It should be noted that kTT is rather large. For
N = 102 and D = 10 A, kTT N 5 x 102 erg/cm2.
Thus, in many cases we may have S N kTT, i.e. the

spreading is driven mainly by entropy of dissolution.

2.2 STRUCTURE OF A WETTING FILM. - Because
S - kTT is very large, the wetting film ruled by
equation (1.4) tends to be very thin. Accordingly,
the polymer volume fraction may approach unity.
A rough form of H in this regime may be obtained by
using a Flory type argument. We start by writing the
free energy of a single chain as a sum of entropic and
elastic terms [6]

Here we identify the thickness of the wetting layer
with that of the grafted layer, eD 21a3 is the number
of lattice sites per grafted chain and Ro = N 1/2 a.
To obtain Il we use

keeping in mind the constraint

The resulting expression for n is

Note that for small e values, II is dominated by the
entropic term. The corresponding P function is then

When S is dominated by the polymer (S - kTT ),
(1.4), (2.10) and (2 .11) lead to

which is solved by
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Note that in comparison with a grafted layer immersed
in a solvent bath, the present layer is predicted to be
highly compressed (e  Nal /3 a).

3. Wetting of a surface coated by adsorbed polymer.

In this section we consider the wetting of a uniform
solid surface coated by adsorbed polymer molecules.
The structure is a diffuse self-similar layer; in most
parts of the layer the concentration is low, thus

justifing the use of available scaling results [8-10].
Our analysis depends on a reproducible behaviour
of the adsorbed polymers following wetting-drying
cycles, i.e. we assume that the concentration profile
obtained by wetting a dry surface carrying adsorbed
polymers, is identical to the one obtained by incubating
the bare surface in a polymer solution. It is natural
to assume that, on the dry surface, the polymer builds
up a completely dense layer. On the basis of those
assumptions we can write

4Jds denotes the fraction of the dry surface which is
covered by monomers. In this case

Let us first define the strength of the attraction in
terms of a dimensionless parameter 6 ( - kT6 is the
attractive energy felt by a monomer in contact with
the solid surface). Most practical situations corres-
pond to 6 - 1. However, the regime of small 6 can
also be understood using data on a certain « cross-
over exponent » [10-12] and is interesting : thus we
shall first consider the limit of 6 small. The essential
feature is the existence of a characteristic length
D(b) : at distances z &#x3E; D(b) from the wall, the
adsorbed layer has the standard (b independent)
self-similar profile ql N z - 4/3, while at distances
z  D(b) a different o proximal » regime prevails.
It turns out numerically that D(6) - 16 1-’ a with
x = 1 to a good approximation [11].
Knowing the structures of D(b) we can immediately

construct the scaling structure of the surface energy
correction Any. In a strong depletion regime (5  0,
6 - - 1) we have [13]

In a general case (b small, but of arbitrary sign)
we then expect

where f is a dimensionless function. In the particular
regime of interest here (b &#x3E; 0; Ob -+ 0, 03BEb ---&#x3E; 00)
we must have an Ay which is finite, and thus inde-
pendent of 03BEb. This imposes f(x -+ oo) ---&#x3E; x2 and gives

combining (1.1), (3.1) and (3-5) we find

For strong adsorption i.e. 6 - 1, D(6) - a and the
situation is similar to that at the grafted surface.
S is dominated by the kT /a2 term and the wetting
film will tend to be very thin. In this case, though,
the thickness of the film will be at order a, and the use
at a continuum theory becomes questionable. No such
difficulties are encountered in the case at weak

adsorption i.e. 6 « 1, but the situation is then less
interesting because S = So. In the special case of
wetting by a liquid monomer we may expect the
correction term kT /D 2(b) to be the dominant one.
Because kTID’(6) is comparatively small we expect
the wetting film to be rather thick. We may then
identify 17 with the force between two plates coated
by adsorbed polymer in the self-similar regime [9]

We then find, using (1. 4), a film thickness :

4. Wetting of a patchy surface.

In preceding sections we have considered the wetting
of uniform surfaces. Now we turn to patchy surfaces ;
we discuss two geometries (Fig. 1) : a circular patch
coated with polymers and surrounded by the bare
surface, and the inverse geometry, a bare circular

Fig. 1. - The two coating geometries considered for the
wetting of a patchy surface. Hatched areas are coated by
polymers.
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patch surrounded by a coated surface. We imagine
that the centre of the structure is fed by a pipette,
building up an adiabatically growing pancake, whose
centre coincides with that of the patch. (1) When the
wetting film is confined to the patch it is possible
to analyse it by using the method outlined in previous
sections (2) once the film has spread past the patch
boundaries we expect the film to have two zones which
differ in their thickness. Furthermore, we will see that
the thickness of the film at the central zone (on the
patch) undergoes an abrupt change once the contact
line reaches the peripheral zone. Equation (1.4)
describes the balance of forces at the contact line.
Thus it applies only to the peripheral zone which is
delineated by the contact line and the patch boundary.
To obtain the equilibrium thickness of the central
zone we invoke the equality of the solvent chemical
potential in the two zones. In this case this equality
implies (see appendix)

where H is always the disjoining pressure, er and ep
are respectively the equilibrium thickness of the
central and peripheral zones.
The equilibrium thickness of the film at the central

zone is determined by the S felt by the film at the
peripheral zone. The nature of the « patch » surface
determines the functional form of 17 in the central
zone.

Let us now consider the same two geometries when
the surface is coated by weakly adsorbed polymers.
When the outer zone is coated, the thickness of the
peripheral film is given by (3. 8). Thus, equations (4.1)
and (3.7) lead to

where we have taken AH to be given by [1] J

In the opposite case where the central zone is coated,
the thickness of the film at the peripheral zone is
known [1] to be

and thus equation (4.1) leads to

In both cases the film thickness at the central zone

changes abruptly once the contact line overtakes the
patch boundary (Fig. 2). This effect is more pro-
nounced when we consider grafted surfaces. In the
case of a bare central zone, e,, changes from the value
given in (4.4) to - a. (As a continuum theory is not
valid on this scale this result must not be taken

Fig. 2. - Dry spreading on a patchy surface. The film
thickness in the central (hatched) zone changes abruptly
when the contact line overtakes the patch boundary. - A
contact line inside the patch boundary. -.- A contact line
outside the patch boundary.

literally, but only as an indication of a trend.) When
the central zone is grafted and the peripheral surface
is bare, e, is given, in the limit of S17  1, by

Thus in this case ec is significantly larger than N ca,
its thickness before the contact line reached the bare
surface.

5. Conclusions.

1) Grafting or adsorbing polymer on a solid surface
leads to a dramatic change in it’s wettability : this is
no surprise, but our equations show quantitatively
what is the role of the various control parameters :
polymer length, grafting density, solvent quality and
adsorption strength.

2) Where we spread a good, (non volatile) solvent
on a polymer coated surface the spreading coefficient S
is so large that the final wetting film is usually very
thin : this regime cannot be analysed very well by
our continuum theory but the qualitative trends are
clear.

3) If the surface coating is patchy, we can find some
remarkable scenarios of spreading, with films which
transit from a thick state to a thin state, etc. Patchy
surfaces will often be present in practice; they lead
to classical hysteresis effects in partial wetting. But we
see here that they can also give remarkable features
in complete wetting.
Our discussion was limited to simple, circular or

annular patches. With disordered patches, certain

interesting statistical effects come into play [14, 15].
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Appendix.

CHEMICAL POTENTIAL OF THE SOLVENT. - Equa-
tion (4 .1) expresses the equality of the solvent chemical
potentials p. in the two films. We rederive below the
relation between p. and the disjoining pressure II,
for the specific case of a film in dry spreading.

Consider a film of area A, thickness e, and vary both
A and e. The resulting change in free energy from
equation (1.2) is

If the film is in equilibrium, this means that dF = 0
when the number of solvent molecules N. is fixed;
more generally we must have

Since the polymer is stuck to the wall, all the change

in volume d(Ae) is due to dN.,

Inserting (A. 2, 3) into (A. 1) we get two equations for p

The second form shows the relation between 03BCS and II.
Also the equality of the two forms leads back to (1.4).

In our patch problem, with two films in equilibrium,
the centre film has a fixed A. For this film equation
(A. .1) is reduced to

while for the outer film (variable A and fixed spreading
coefficient (S)) both forms of equation (A. 4) hold
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