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Interference effects and magnetoresistance oscillations
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Résumé. — Nous présentons un formalisme général pour calculer les coefficients de transport dans un réseau de
meétal normal en régime de localisation faible. Notre approche est illustrée d’abord sur des circuits simples : boucles,
échelles, etc. Des expressions compactes de la magnétorésistance d’un réseau régulier infini (carré, nid d’abeilles, ...)
sont obtenues. Le cas d’'un réseau fractal infini (tamis de Sierpinski) est aussi étudié. On montre que dans le cas
général, la correction de localisation faible & la magnétorésistance est donnée par une somme pondérée sur les
valeurs propres du probléme linéaire sous-jacent. En particulier, on montre 'absence d’une structure fine due
aux effets d’interférence entre boucles adjacentes, et ceci par opposition avec les réseaux supraconducteurs. Nos
résultats sont en parfait accord avec les mesures récentes de I'oscillation de la magnétorésistance d’un réseau de
métal normal.

Abstract. — A general formalism is outlined for the calculation of the transport coefficients of a normal-metal
network in the weak-localization regime. Simple circuits such as loops and ladders are used to illustrate our
approach. Closed expressions for the magnetoresistance of infinite regular networks (square, honeycomb, ...) are
derived. The case of an infinite fractal network (Sierpinski gasket) is also investigated. We show that the localization
correction to the magnetoresistance AR/R is given in general by a weighted sum over the eigenvalues of the under-
lying linear problem. We find in particular that, in contrast with superconducting networks, no fine structure due
to interference effects between adjacent loops is expected. The obtained results are shown to agree very well with

recent experimental results on the magnetoresistance oscillations in normal-metal networks.

1. Introduction.

Since the prediction [1] of a Bohm-Aharonov-type
effect [2] in disordered metals, with half-quantum flux
¢o = hc/2 e, only three groups were able to observe
clearly this effect in the following new multiconnected
geometries : regular networks [3], ladders and neckla-
ces [4] and more recently in single ring geometry [5].
The original experiment [6], performed on a hollow
cylinder, has been repeated by several groups [7].
The magnetoresistance (MR) oscillations observed
in these experiments are actually the manifestation of
a specific and new interference phenomenon in
disordered materials. Indeed, the flux periodicity
2 ¢, = hc/e of Aharonov-Bohm resistance oscillations
have been reported [8] on very pure single-crystal
cylinders with long mean free paths. The observation
of these interference effects with the period ¢, (super-
conducting quantum flux) is therefore as fundamental
as the Little-Parks experiment [9] on superconductors.
The physical explanation for the factor of two in the

flux period has been given in reference [10] : the inter-
ference effect is due to two counterpropagating elec-
tron waves, each of which travels fully around the
ring. However, this interference effect, obtained ori-
ginally through an explicit diagram calculation, is
really a very general phenomenon in systems with
quenched disorder. Indeed, the basic origin must be
traced to the enhancement of backscattering during
the propagation of waves in randomly inhomogeneous
media, where multiple scattering dominates. As long
as A < /(A is the wave length and / is the mean free
path), the first interference corrections to the wave-
field energy-transport equation are controlled by the
so-called fan diagrams. This is actually the case of
the weak localization regime. The presence of a
magnetic field, which couples to the phase of a wave
function, is therefore the most natural method to
reveal this interference effect.

Given the fundamental aspect of the interference
phenomena in disordered systems, it is natural to
look at the corresponding corrections in new geome-
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tries, like networks, where the recent experiments
were performed. The magnitude of the MR oscillations
has been calculated only for the hollow cylinder geo-
metry [1] and, to our knowledge, there is no equivalent
expression for the general situation. In addition to
the relevance of such a calculation for the experimental
investigations [3-5], there are at least two additional
motivations for our study. First, how is the amplitude
of the MR oscillations influenced by the experimental
set up ? Second, are there new features of the MR curve
in the case of an extended network ? Actually, these
effects will be produced by interferences between adja-
cent loops in the network. For instance, in supercon-
ducting networks, such effects were predicted [11] and
observed [12] on the fine structure of the upper critical
line. Is there a counterpart in the case of normal net-
works ? In this paper, the first in a series, we report
on a general formalism for the calculation of transport
coefficients for a normal-metal network of arbitrary
shape. Our formulation, illustrated below explicitly
on different examples, permits us to answer the above
questions and provides explicit expressions for the
MR oscillations for an arbitrary network. In the
following, we will limit our exposition to localization
corrections in the weak-localization regime. Note,
however, that corrections due to electron-electron
interaction can also be calculated in the framework
of the present formulation. A more detailed exposition
will be given elsewhere [13].

A short summary of this paper has been presented
in reference [14]. Our aim is to present detailed calcu-
lations of the MR oscillations using the Cooperon
approach [15]. In section 2, we present the basic equa-
tions for the localization correction to the conductivity
in network geometry. The network equations thus
obtained are illustrated in simple cases : loops with
or without arms. In particular, the influence of arms
and of contact geometry on the MR oscillations is
discussed in this section. Similarly, the interference
effects in the case of two adjacent loops are explicitly
discussed. Section 3 is devoted to the calculation of
AR/R in extended geometries : open or closed ladders,
necklaces, ..., etc. Infinite regular networks and
fractal networks are worked out in section 4, where
simple expressions for AR/R are derived for each case.
In order to make contact with experiment, the finite
width effect of wires and the spin-orbit scattering
contribution are investigated in section 5. An explicit
comparison with the available experimental results is
illustrated at the end of this section. Our results are
discussed in section 6, where contact with other
approaches is made. Some technical details are given
in Appendices A, B and C.

2. Weak localization corrections to the conductivity
in network geometry.

The localization correction to the conductivity in the
weak-localization regime (kg /, > 1) is given in general
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by the following expression [16] :

Aa(¥) = — 2/nv) 6, C(r, 1) 0))
where ¢, is the bulk conductivity of the sample, given
by Drude’s formula, and v is the density of states at
the Fermi level. The equation for the Cooperon [15],
C(r,x') in the presence of a magnetic field (vector
potential A) is

{[- iv, — znA(r)]Z + L2 } Ccr,r) =

o
=(1/AD) &r — ). ()

Here D denotes the electron diffusion coefficient and
L, = (Dz,)"/? is the length over which dephasing of
the electron wave function results from inelastic pro-
cesses. In equation (2), L, appears as the fundamental
length scale in the problem, and has the same status
as the coherence length scale £ in Ginzburg-Landau
equations [11, 12] for superconductors. In general,
equation (2) must be supplied by boundary conditions
on the surface of a given sample. In what follows, we
shall limit ourselves to the following free boundary
condition :

<5%—i%¢—:A-n>C(r,r’)=0 3)
where n is the normal unit vector to the sample sur-
face.

It is important to notice that equations (1) and (2)
actually correspond to a self-averaged theory, where
all traces of randomness are summarized in L, (see
section 6 for further discussions). In principle, equa-
tions (2), (3) can be used to calculate the local correc-
tion Ao (r) in an arbitrary geometry. This program has
been carried out for bulk systems[16](1, 2 and 3 Dimen-
sions), as well as for semi-infinite geometries [17).
In the general case, we need the expression of the off-
diagonal Green function C(r, r') giving the response
at point r to a source term located at point r'. However,
in the case of multiconnected geometries, equations (2),
(3) can lead to heavy calculations, already in the case
of simple circuits such as the hollow cylinder or single
rings [1]. In order to go beyond these simple cases, a
simplified formalism is of order. This is the object of
this section. As will be shown below, the new formu-
lation allows us to follow the influence of multicon-
nectedness on Aa(r) and particularly in the presence
of an applied magnetic field.

2.1 WIRE APPROXIMATION AND NETWORK EQUATIONS.
— In the following, we will consider networks made
of metallic wires, of width and thickness smaller than
L, In this limit, the transverse modes of the Cooperon
can be neglected, and one recovers a 1 D problem on
each wire. Note that the weak-localization approach
used here makes sense only if the transverse dimen-
sions of wires are greater than the elastic mean free
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path /. These two conditions are actually fulfilled
in the experiments done on networks [3-5]. The finite
width of wires can, however, be taken into account,
and this results in a renormalization of L, which beco-
mes a function of the magnetic field (see Sect. 5).
Note further that this formalism may break down
in very small systems [18] where there is a lack of
self-averaging of the theory.

Assume, in equation (1), that the position of the
source r’ is given and let us denote by C(r) = C(r, r)
the corresponding solution of equations (1), (2).
Using the notations of figure 1a, C(r) can be written as

M
) = g(s) exp(i ff’_:,[ A- dl) 4
0

where the circulation of the vector potential A is taken
along the strand, and g(s) is an unknown function.
In the framework of the wire approximation

t- (— v, — ﬂA(l')) ) =
0

and then equation (1) reduces to

d -
-ELte=o. ®

This gives, for points M between two given points o
and B, the following solution

g(s) = g, cosh (s/L,) + (g5 — ga c0sh (Jpp/Ly,)) X
x sinh (s/L,)/sinh (l,5/L,) . (7)

Here /,; denotes the length of the strand between o
and .

The complete solution of equations (1), (2) in a
network geometry can then be deduced from the
expressions of g,’s at nodes. In this respect, equation (7)
must be supplemented by a Kirchoff-type equation
at nodes. Such an equation is implied by the continuity
conditions of C’s at nodes (i.e. current conservation
law) and can be written as

. 0 .
3 (- a—)g — D)6 ®
Here, the sum is taken over nodes f connected to a
given node o and the derivative is taken along the
corresponding strand (S denotes the cross-section of
wires). Note that the boundary condition of equation
(3) is nothing else than equation (8), taken at the free
end of a strand. In this respect, equation (8) holds in
general, without reference to equation (3). Note also
that equation (3) can be replaced by other boundary
conditions, such as perfect contact (C(r, r') = 0) points.
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(a) (b)

Fig. 1. — (a) A single strand of cross section S, in a normal
network. Here s denotes the curvilinear coordinate of point
M on the wire : OM =r and OM = s. The unit vector t
refers to the tangential vector at point M along the wire.
(b) Junction at node o of different strands («f) in a part of
the network.

It appears from equation (8), that the source point r’
can be considered as an additional node in the network
and equations (7), (8) lead to the following network
equations

C, Y coth (I/L,) — ¥ C; x
B B
x e~ [sinh (I,5/L,) = (L,/hDS) 8,, . (9)

v
In equation (9), y,5 = %E A - dl, refers to the circu-
(1]

lation of the vector potential A along the strand af,
of length /,5, between two nodes « and B (Fig. 1b).
Furthermore, the source term at r, where Ag is
calculated, acts as an additional node. This remark, as
well as other observations, shows the basic differences
between equation (9) and the similar one derived for
superconducting networks [11].

In principle, equation (9) provides the basic equa-
tion for the calculation of A ¢(r') at any point ' and for
an arbitrary geometry. In what follows, we shall
illustrate these calculations for simple geometries.

2.2 EXAMPLES.

2.2.1 Single wire (Fig. 2). — Consider a single wire,
of length L, 0 < x < L. In this case, equation (9)
written for the two nodes x = 0, L and for a current
node located in between, leads to a system of three
linear equations :

C(x) [coth(x/L,) + coth((L — x)/L,)] —
— C(0)/sinh (x/L,)

_ C(L)/sinh <L —

) = (L,/hDS) (102)

C(x)/sinh (x/L,) — C(0).coth(x/L,) = 0 (10b)

. L—x L—x
C(x)/smh( T T

) — C(L) * coth =0, (10c)

14 (4
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C(x)

0

0 X L

Fig. 2. — Spatial variation of the local localization correc-
tion C(x, x) ~ Ao(x) to the conductivity of a single wire
of length L, equation (12), for L/L, = 0.4, 1, 2, 5 and 10 res-
pectively. C(x) increases as L,/L increases, for fixed L.

One deduce from equations (10) the following solution

L,
Clx) = (h DS) cosh — L¢ cosh

shown in figure 2. C(x) assumes its minimal value at
the mid-point x = L/2, and takes its maximal value
at the ends of the wire (x = 0, L). Such a behaviour is
actually a very general one : the backscattering correc-
tions to o are, in general, depressed at points of high
coordination number (e.g. x = L/2). This remark
becomes clearer on the next examples.

Note that the expression (Eq. (11)) found for C(x)
is modified when other boundary conditions are used.
For instance, if the contact points at the ends are
perfect : C(0).= C(L) = 0, equations (10) yield :

) = (hlb s) sinh ( 1:,) sinh (L I x)/sinh @L/L,)

(12)

instead of equation (11). In the following, we shall limit
our investigation to free boundary conditions (Eq. (3)).
In particular, from equation (11), one deduces the
integrated correction AR to the total resistance of the
wire

/smh (L/L,) (11)

AR =1 r dx A(1/o(x). (13)
o

Here A o(x) is the local correction given by equation(1).
In general Ag(x) < g, is a small correction, and
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equations (11), (13) give

AR/R = g [coth (L/L,) + L,/L] (14)

where we have introduced the dimensionless factor x :

_ 2L,
= nhoy S

(15)

(R =L/ag, S).

Equation (14) exhibits the two interesting limits of
the wire. The first corresponds to L/L, <1,
AR/R ~ L /L where AR is independent of the wire
length L : zero effective dimensionality. The second
one is the classical Ohm’s law : AR/R ~ k/2, recovered
at L/L, > 1.

Note that for L < L, our result differs from the

L L
known one [19] : AR/R = <c th( ) - -f"’) The
'P

net difference comes from the boundary conditions.
Indeed, using equation (12), instead of equation (11),
one gets the usual result.

2.2.2 Single wire with dangling side branches (Fig. 3a).
— The local character of A o(x) is clearly visible in the
case of a single wire, when N dangling side branches
are attached to it. The compact expression of Aa(x)
for this geometry is given in Appendix A. In figure 3b,
the spatial variations of C(x, x) along the strand are
shown, for typical values of a/L, and b/L,, and for
N = 12. For non vanishing values of b, the localization
correction is modulated with a net depression of
C(x, x) at junctions. Two general features are to be
noticed, regarding the shape and the amplitude of the
modulation. Side branches are responsible for the
strong modifications of C(x, x) in the limit a/L, > 1,
whereas the zero dimension behaviour a/L¢ <lis
slightly affected. In both cases, the net effect of arms
saturates at b> L, Therefore, starting from the
single wire behaviour at b = 0 (Fig. 2), small and
smooth modulations appear near the middle of the
wire. Increasing b gives rise to sharper and sharper
oscillations of C(x, x) over the whole range of the wire.
The magnitude of oscillations increase monotonically
with the ratio b/L,.

2.2.3 Single loop in a normal magnetic field (Fig. 4). —
In this geometry, the source position r’ is arbitrary, and
equation (9) reduces to

[— 2 coth (L/L,) + 2 cos (2 1 g—)/sinh (L/L,p)] X

x C(r,¥) = — L,/hDS. (16)

Here L denotes the length of the loop and ¢ is the
magnetic flux through its surface. Equation (16) leads



0 1 2 i i+l N

0

0 5 10 X

Fig. 3. — (a) A single wire geometry with dandling side
branches. (b) The dimensionless local correction to the
conductivity as a function of x along the wire. The modula-
tion of C(x) along the wire corresponds to the attenuation
of backscattering corrections at junctions of large coordina-
tion number (z =3). Here N =12, a/L, = 0.5 and
b/L, = 0.05 and 10 respectively. C(x) decreases as b increa-
ses.

to

L
c,r) = —==

5755 Sinh (L/L,)/

[cosh (L/Ly) — cos (2 np/do)] (17)

reproducing the result of reference [1] in a somewhat
elementary way. From equation (17), it is easy to
deduce the following expression for the resistance
correction AR/R, between two opposite points on the
loop :

_ kK

AR/R = > sinh (L/L,)/[cosh (L/L,) — cos (2 nd/¢,)] -

(18)

As expected, AR/R exhibits a periodic behaviour in the
reduced flux ¢/¢,. The amplitude of oscillation is
~ 1/sinh (L/L,) and then exponentially damped at
L » L, In the limit L/L, = n < 1, one obtains :
AR/R = k/n at zero field and the width of the maxima
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05 89 L

Fig. 4. — Variation of the relative correction AR/R measured
in unit of x (Eq. (15)) between two opposite points A and B
on a single ring of circumference L, as a function of the
reduced flux f = ¢/¢, (n = L/L, = 0.2, 0.5 and 0.8 res-
pectively). The maximum of AR/R at integer values of f
becomes sharper for smaller #.

at integer ¢ /@, is of order of # (sharp maxima). On the
other hand, for ¢/¢, = 1/2 one obtains AR/R ~ 9,
which appears to be quite general : all the networks
we studied actually show this behaviour. Note however
that at small ¢/¢,, the single loop exhibits the sharpest
behaviour among all networks. Indeed, in more com-
plex geometries (loop with arms, strips, etc.) AR/R
at zero field increases more slowly than 1/# as # goes
to zero and the width of the maxima is actually greater
than 7. The origin of this behaviour must be found in
the exponential damping of the Cooperon C(r,r),
equation (7), over the length scale L. In this respect,
the single loop geometry is a useful reference for
further comparisons.

2.3 EFFECT OF ARMS ON THE RESISTANCE OSCILLATIONS.
— Usually the resistance of a ring is measured through
two arms attached to it [5]. In the following we shall
investigate the influence of such arms on the localiza-
tion correction to the measured resistance.

2.3.1 Single ring with one arm (Fig. 5a). — Using
equation (9), it is not difficult to obtain the following
expressions for the Cooperon C(x) according to the
position of the source node. For M located on the
arm, one finds

L ., L x b—x
) = -
Clx) = #DS [smh I cosh I cosh ” +
+2 cosh£ - cosZni coshisinhb — X4
Lw ¢0 L¢ L¢
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L Similarly, for M’ on the loop, one finds

B _ L b / L !
C(x") hDS [smhf-smh I smh—L

(4 (4 (4

b . L
(a) (b) + coshZ; sinh L—w] /A. (20)

Fig. 5. — (a) A single ring geometry with one arm. AR is
measured between A and B. (b) A single ring geometry with
two arms.
Note that C(x), as given by equation (19), assumes its

maximal value at x = 0, i.e. at the free end of the arm
where (point A in Fig 5a). Similarly, C(x' = 0) is smaller
than C(x’ = L/2) corresponding to point B. This
.. b .. L . .
A = sinh — sinh — + result agrees with our previous remarks on the depres-
v L, sion of C at junction nodes of large coordination num-
bers. Using equations (19){20), it is not difficult to
¢> deduce the integrated correction to the resistance R,g

+ 2 cosh b cosh — L — cos 2
L Lqp T b0 measured between points A and B. One gets

(4

AR, p/Rsy = K { (b cosh b + sinh b) sinh L + 2 bsinh b(cosh L —cos2n i)

bo

+ Lcoshbsinh L + 1 sinh b(L cosh L — sinh L) }/A . 21)

1
2b+ L
2

For convenience, we have replaced b/L, and L/L, by b and L respectively (b = arm length, L = loop length).
The previously obtained results (Egs. (14), (18)) are recovered for L = 0 and b = 0 respectively. Furthermore,
AR, /R,y exhibits the expected oscillations as for the single loop. However the magnitude of the oscillations is
affected by the presence of the arm. Indeed, for L ~ b < L, the correction along the arm (Eq. (19)) and that
along the loop (Eq. (20)) become comparable. More precisely, if # denotes the smallest ratio b/L, or L/L,,
then C(x) ~ 1/n at ¢/, ~ 0 and C(x) ~ n elsewhere, and this either on the arm or on the loop. In this limit,
the maximal correction AR,y takes place at ¢ < ¢,, with a width of order #.

The presence of the arm becomes more and more interesting in the limit L < L, < b. In such a case the
oscillations are still present because of L < L,. However, from equation (20), C(x) becomes independent of #
at small n = L/L, for ¢/p, ~ 0 but C(x) ~ n for ¢/¢, > n'/%. This new behaviour contrasts sharply with
the #~! regime found in the absence of the arm. This leads to a damping of the resistance oscillation, when
compared with the b = 0 case. Furthermore, the sharp maxima at integer values of ¢/¢, are broadened by the
presence of the arm.

2.3.2 Single ring with two arms (Fig. 5b). — The same calculations can be carried out in the case of two arms
attached to the loop, as shown in figure 5b. The expression of AR, /R, is given by

AR,p/RAp = K { (b + tanh b) <2 cosh L + sinh L tanh b) sinh L +
L 2 2 2
4b + =
2
+ b tanh b[smh Ltanh b + 2<cosh L —cos2n g—)]
(1]
+ %I:L sinh L + (L cosh L — sinh L) tanh b + (% cosh% — sinh %) sinh % tanh? bjl }/A . (22)

Here, 4 is given by

A =coshL —cos2m d’i + sinh L tanh b + %smh2 tanh? b. 23)
0
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The variations of AR/R as functions of the reduced flux ¢/¢, for different values of b/L, and L/L,, are shown
in figure 6. The qualitative results found above for one arm, hold also in the present case.

2.3.3 Two-loop geometries. — Given the oscillations of the resistance with magnetic field, it is natural to ask
for interference effects for two adjacent loops enclosing different magnetic fluxes. For this, it is useful to consider
the simple geometries shown in figure 7.

2.3.3.1 Two articulated loops (Fig. 7a). — Using equation (9), it is not difficult to calculate the Cooperon at
point x, as shown in Tigure 7a :

L, ® )\ . .
C(x) = 5HDS DS [snnh L,sinh L, + 2(cosh L, —cos2m ;Fo ) sinh x sinh (L, — x)] /A . (24)
Here, the denominator 4 is given by
4 = sinh L;.(cosh L, — cos 2 n¢,/¢,) + sinh Ly(cosh L, — cos 2 ng, /) . 25)

In equations (24),(25), L; and ¢, (i = 1, 2) denote respectively the length (divided by L) and the enclosed magne-
tic flux associated to the loop i. The corresponding integrated correction to the resistance between A and B,
can be written as

AR, 5/R,p = g ﬁ (L, + L,)sinh L, sinh L, + (L, cosh L, — sinh L,) <cosh L, —cos2m ¢2)
1t L b0
+ (L, cosh L, — sinh L,) (cosh L, —cos2m q;;)] /A . (26)

As it should be, the single loop result (Eq. (18)) is recovered for L, = 0 and ¢, = 0(i = 1 or 2). In general, equa-
tion (26) shows the presence of two periodic contributions. For rational ¢, /¢,, a periodic behaviour is obtained
(Fig 8a). The resulting period is fixed by the smallest flux. On the contrary, for irrational ¢, /¢, no strictly periodic
behaviour is observed, but some sharp maxima can appear in the limit where both ¢, /¢, and ¢,/¢, are very
close to integer values. This resonance-like behaviour is illustrated in figure 8b.

O D OO

(b) (c)

Fig. 7. — Different ways of connecting two loops. (a) two
articulated loops ; (b) two adjacent loops; (c) two rings with
one arm. Here the resistance is measured between points A
and B and ¢, and L, correspond to loop i (i =1, 2).

It is important to notice that, for two identical loops
(¢, = ¢, = ¢), no secondary maxima at ¢/¢, = 1/2
are obtained. The corresponding behaviour is depicted
in figure 9. At first sight this result may appear to be
paradoxical. Indeed, on the basis of a naive intuitive
1 argument, new features of AR/R can be expected to
occur because of interference effects between adjacent
loops. The absence of a new period in the present case

0 0.5

?/ %o

Fig. 6. — AR,g/R,5 in unit of x as a function of the reduced
flux ¢/¢,. The length of the loop is kept fixed at L/L, = 0.2.
The length of the arms is gradually increased : b/L, = 0;
0.5;2.0 and this leads to a net damping of the resistance
oscillations.

must be attributed to the « weak coupling » between
the two loops. As will be shown below, a new structure
of AR/R may be found in the « strong-coupling »
limit.
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AR/R

2, /% 2

Fig. 8. — (a) AR,3/R,p in units of x for the system shown
on figure 7a, as a function of reduced flux through the
smallest loop, which control the period of oscillations. Here
L,/L, =04 and L,/L, = 0.8. (b) The same plot as in
figure 8a but with L,/L, = 0.4 and L,/L, = (1 + \/5)2
the golden mean. The non periodic behaviour is due to the
non commensurability of the length ratio L,/L,.

Note that in the zero dimension limit L < L,
equation (26) reduces to the expression corresponding
to two identical loops :

AR,p/R,p = 7 sinh (L/L,,,)/

K
4
/[cosh (L/L,) — cos (2 ng/¢o)]

which is exactly equation (18) divided by a factor of 2.
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Fig. 9. — ARJ/R for two identical articulated loops (the
lower curve). The upper curve is the result for a single loop
of the same size. Note the decrease in the magnitude of the
correction when two loops are tied together, as well as the
absence of secondary maxima for ¢/¢, = 1/2. Here ¢
denotes the magnetic flux through each of the two loops.

This is actually a general property of zero dimensional
systems (AR is independent of the system size), given
the used boundary conditions.

2.3.3.2 Two adjacent loops (Fig. 7b). — A new fea-
ture appears in this case, particularly for L > L,, L,
which can be considered as a strong coupling limit
between the two adjacent loops. As shown in figure 10,
new maxima appear at ¢/¢, = 1/2 in the case of two
identical loops. This new behaviour, which is absent
in the limit L ~ L, ~ L,, must be traced to the
reduction of the network into a single loop. In fact,
because of the strong coupling, the backscattering is
inhibited in the long common strand and this holds
for arbitrary values of L.

2.3.3.3 Two rings with arms (Fig. 7c). — In addition
to the main features found above, an interesting
situation appears for two identical loops (L; =L, =L,
¢, = ¢, = ¢) in the zero dimensionality limit L < L.
In this case, the local correction is minimal at the
middle of the arm (point 0), and this for small values
of the reduced flux ¢/¢,. This is reminiscent to the
case of a single wire (Fig. 2), and the presence of loops
does not noticeably alter the spatial variation of the
local correction on the arm. However, at ¢/¢, ~ 1/2,
a kind of antibackscattering takes place in the loops,
leading to a maximal correction at point 0. This
inversion phenomenon can be viewed, in comparison
with the single wire case, as an effective modification
of the boundary conditions : for small ¢/¢,, the
two loops act as free ends, whereas at half flux, they
behave as perfect point contacts.
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We have studied other simple geometries, following

the same lines of ideas. Some relevant results are
summarized in Appendix B. Let us close this section
with a few general remarks, which are specific to
the backscattering phenomenon in network geome-
tries.
0.5 : First, the magnitude of the local correction to
conductivity, at a given node of the network, decreases
when its coordination number increases. This is a very
general feature due to the diffusive character of the
Cooperon.

Second, the resistance oscillations under an applied
magnetic field are damped in the presence of arms.
This is also a general feature arising from the inertia
of the arms which act as mass terms in the network
equations.

Finally, for identical adjacent loops, no new periodic

°0 - 05 —— 1 oscillations, coming from interference effects, are
/%o expected to occur on AR/R. The precise origin of
Fig 10.— AR,z/R, for two adjacent loops in the « strong  this somewhat puzzling result will become transparent
coupling limit » L,/L, = L,/L, = 0.2 and L/L, = 1.0. in the next section.
¢ denotes the magnetic flux across each of the two loops.
In this case, a secondary maximum at ¢/¢, = 1/2 occurs
(compare with Fig. 9).

AR/R

iy
p=s

Ny

3. General formulation of the magnetoresistance calculation

3.1 Basic EQUATIONS. — For a given network, with N nodes, we need for the calculation of the Cooperon
C(r, r) the solution of the (N + 1) x (N + 1) linear system of equation (9). Because of the linearity of equa-
tion (9), a somewhat more compact formulation of this problem can be obtained. Let us consider a point r/
along the strand between two nodes « and B (Fig. 11). According to equation (9), one deduces :

o Lq) . X . laﬁ - X/ . Iaﬁ , — e o) laﬁ — X/ . Iaﬂ
C(r,r)—m[sxnh L—¢s1nh T /smhf + C(o, ¥) e smh—-L smhfq,+

14 14 14

. x ]
"y e~ i 8 ginh — | sinh -*£
+ C(B,r)e sinh I, / sinh T :I 27

P

When (27) is used in (9), written for nodes « and f, one obtains :

Ly — x
. ap
Ly [, . Smoh=y
Clo, ¥) | Y. coth [;/L, ) — Y (e™7=¢/sinh =) - C(3, 1) = —Z e "= L (28)
. ; L, #DS Iy
inh —
L¢

Fig. 11. — A strand («f) on a typical network. r' denotes
the position of the point where Ac is calculated and x is
its curvilinear coordinate from node « along (apf).
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as well as a similar equation, obtained by the substitutions : « <> f, ,,; — x <> x in equation (28). It is natural to
introduce the following Hermitian N x N matrix M, which is independent of the considered point r' :

=2 coth(ly/Ly) ~2 3. cos (2 npy/go)/sinh (/L) (292)

M,z = — exp(— iy,g)/sinh (I4/L,), o#fB. (29b)

In equation (29a), the first sum is taken over nodes f connected to the node « by strands of lengths /5. The
second sum is taken over the elementary loops, of length /, containing the node « and enclosing a magnetic
flux ¢..

According to (28), the expressions of C(B,1') and C(a, 1) can be written down using the matrix elements
T,;of T = M ™, the inverse of the matrix M. This leads to the following expression for C(r’, r’) :

L sinh x/L.sinh (/,; — x)/L
Cclr,r) = == { J 28 ?
®. ) = %bs sinh (I,,/L,)
1 o hp—x L, X s oox L hy—x
+ +| T, sinh + Tyg 5inh® — + 2 Re (T, €™ *#) sinh — sinh (30)
sinh2 _lti ch Lw pr ch

(4

and then to the integrated correction along the strand (af)

_k Lol (b o Fas o s —ires fsinh 22 ) [ i 28
AR4/R,p = 3 l_ [( cosh == L¢ — sinh -L—) (1 + 2Re(Ty, e ﬂ)/smhL—¢ sth +

P

+ { sinh by cosh o8t (1 4 T, sinh 28 31

sin I;cos L_,,,_L_,,, (Tp + Tgp)/si | 3D
Depending on the specific configuration, used in the measurement of the resistance, the different AR, will

be weighted differently, in the calculation of the overall resistance correction AR. In what follows, we will choose

a uniform weight, which corresponds to the integration of C(r’, r') over the whole network. The main physical

results are not very sensitive to this choice of weights.

3.2 REGULAR NETWORKS. — Assume that all the Ny strands of a regular network have the same length a. The N
nodes are assumed to have the same coordination number Z. For such a regular network, one obtains :

AR « 1 . Ty e + T,pe e
R~ 2N ysinh n[("COSh"‘Slnh ")Z(l+ sinh 7 >

(@p)
+ (Slnh n COSh n — 7]) (;) (Sln—hﬂ)] . (32)

In equation (32), the sums are taken over the Ny = 1 ZN strands of the network (n = a/L,,). This expression

can be simplified further by noting that M,, = Z cotl"l2 n:
AR/R = g[” °°s;‘ - :inh 1 (1 - —> %i TM] (33)
Furthermore, M is Hermitian, of positive eigenvalues A; <because of M, > Z | M |> Therefore, the
final result becomes
%:%["“S:;’m; f’i“h”<1 —%> +—12\7::21 A.-“]. (34)

This equation shows that the calculation of the magnetoresistance (MR) reduces finally to a trace over the spec-
trum of the operator M. The result thus obtained can be generalized trivially to the case of node-dependent
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coordination numbers Z, :

AR=5[ncoshn—sinhn(l_£>+ . iZaTm:l. (39
B a=1

R 2 n sinh 7 Ng) " Ny

3.3 EXAMPLES : NECKLACES AND LADDERS.
3.3.1 Open necklace of loops (Fig. 12). — Following the notations of figure 12, the non-vanishing elements of
the(N + 1) x (N + 1) matrix M, are givenby (n = a/L,) :
M, =2cothn, My, yy =2cothpy
M,, =4cothn, l<a<N+1 (36)
Ma,a+1 = - ZCQS (7t¢/¢0)/smh n, (1 Sa< N)

and Muﬂ = M ﬁ*u‘
The explicit expression of AR/R is obtained by following the same procedure used as that in Appendix A.

_kfncoshn—sinhy N-1 1]J 2sinh g
ARJR = 2{ 7sinh 7 N T IN| L Teosh = Ve ¥ Voo cosndide |
1 sinh 5
* N cosh = Vy cos nd/d, } 37)
In equation (37), the sequence { V, } is defined recursively by :
V, = cos(np/py)/sinh n (38a)
vV = cos (1 2 cosh —V.cosni .
k+1 ( ¢/¢0)/( n k ¢0> (38b)

In the limit N = oo, V, can be replaced by its limiting value :

1/2
vV, = [cosh n— (cosh2 n — cos? n%) :| /cos nd/do »
p
and equation (37) reduces to

_k[ncoshn —sinhn . . 2. a2 ®\
AR/R = 4[ 7 Sinh + sinh 7 (cosh n — cos n—o) . 39

The effect of the increasing of N is illustrated in figure 13. Note the absence of fine structure of AR/R in this
geometry.

In the case L, < a, one would expect that AR/R is the same as for a single loop. Actually it is not true,
because a given ring inside the necklace is not described by the same boundary conditions as the single ring
considered in section 2.2. Indeed, the whole structure has an influence similar to arms on a given ring, and then
a damping of the magnitude of the MR oscillations is actually expected as the number of connected rings increases.
This phenomenon can be illustrated by considering the first harmonic of the MR curve, in the n = a/L, > 1
limit. Indeed, for
a single loop :

=K exp<— L£> cos 2 nd/P,

P

two articulated loops :

Nl x

exp<— LA) cos 2 /e,

L4

=% =% =%
Sl e

three articulated loops :

K exp(— rL-) cos 2 /¢,

Fig. 12. — An open necklace made of N identical loops,
with N + 1 nodes. The length of the wire between two
nodes is a which is half the length of a loop. We set n = a/L,
and ¢ is the magnetic flux through an elementary loop.

[e]

4
.
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0.5 N=5
10
50
24
o
g
Fig. 13. — AR/R for the necklace of figure 12, in units of .
The parameters are : a/L, = 0.2 and N = 5; 10; 50 res-
0 . N pectively. Note that AR/R decreases as N increases as well
0 0.5 0/ do 1 as the absence of fine structure.
e R L
an infinite open necklace : 'AIQ" = -g exp(— f) cos 2 /¢, .
(4

Here L(= 2 a) denotes the length of elementary loops.

As n > 1, the first harmonic becomes predominant because the backscattering selects only the smallest
available loops ; then, the functional dependence in ¢/¢, is the same for any size of the necklace. However the
prefactor decreases as N increases, showing a non-trivial collective effect : the MR oscillations of a given ring
are very sensitive to its coupling to the external world, even when L, becomes much smaller than its size.

3.3.2 Closed necklace (Fig. 14a). — This geometry is worth studying because it will help us to understand the
behaviour of a single ring, with finite width. Let us denote ¢ the magnetic flux through each of the N loops and ¥

|

AR/R

0.2

0 0.5 0o 1

Fig. 14b. — AR/R for a closed necklace of N = 20 elemen-
tary loops. The elementary loops are located on the circum-
ference of a large ring. Within the main period 0 < ¢/¢, < 1,
Fig. 14a. — A closed Necklace. y, (resp. y,) denotes the there are new oscillations due to the presence of the large
phase factor along an external (resp. internal) strand of ring This system can be viewed as a large ring with a small
length a. Y denotes the magnetic flux through the whole width simulated by elementary loops. This width is respon-
1 sible for the attenuation of the oscillations corresponding

2 nN(yl + 72 to the large ring.

structure defined by taking the mean value %
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the total average flux across the whole network. More precisely

Yr — V2 = 27'E¢/¢0,
¥ =3 Wen + V).

and

N)’1 =2 n'l/ext/¢0 H

Ny, =2 winddo

Due to the rotation symmetry, the eigenvalues A, in equation (34) can be easily obtained from the eigenvalue

equations :

4cosh .C, — (™™ +&7").C,_, — (" + €7) C,,, = A sinh 1

C, can be taken as C, = a, exp(2 inkn/N) and then

M = 4[cosh n — cos nicosz—;-(k + Y/dy) |[sinh n

®o
Equation (34) leads to

O<k<N-1). (40)

o N-1 -1
£=E|:’7°°Sh'7 smhn+sinhq-% y (coshn——cosnicos?ﬁn<k+i)) ]
k=1

R 4 n sinh 5

which can be written as :

bo

0

— s 1/2
AR _ EI:" cosh n — sinh + () — Z3) sinh n/(cosh2 n — cos? n—(é-> X

R 4 n sinh 5

Here

1/2
zy, = cosh n i'<cosh2 n — cos? ni) .

If the curvature of the ring, in the neighbourhood of an
2
elementary loop, is neglected, one gets Y ~ % ¢.

Two limiting procedures are actually of order.

First, one can keep the size of the loops fixed
(n fixed) and look at AR/R as a function of ¢/¢,. In
this case, a quasi-periodic modulation is obtained, at

2
$ldo =n13
effect disappears at Na > L, as one could expect.
The limit N = oo reproduces equation (39) relative
to the open necklace network. An important difference
with the single loop case (parameter 2 u) appears,
however in this limit. In fact, for ¢/¢p, ~ 0 and
n < 1, AR/R is no longer of order 1, but reduces to
1°, whereas the width of the maxima remains of order
of 7 as for the single loop case.

Second, one can keep the network size nN fixed.
In the limit N = oo, we recover the expression AR/R
for a single ring with parameter #nN, at least for
¢/do < 1. For finite N, the oscillations characterized
by y/¢, = integer are modulated. The envelope and
the damping (as ¢ increases) are actually caused by
the « penetration » of a non-zero flux ¢ into the ele-
mentary loops, leading to a decreasing backscattering
in the whole structure. This qualitative picture

(n = integer). Such an interference

bo

X (z’lv + 7z — 2<cos n%)N cos 2 n%)]. @1

42)

0

remains true for a real ring of finite width : the non-
zero width is modelled here by the presence of a large
number of elementary loops, which take into account
the large number of diffusion paths within the width.

3.3.3 Open ladder (Fig. 15). — Let ¢ = Ha? be the
magnetic flux through each of the N elementary
square loops, as shown in figure 15. The inversion of
the matrix M can be carried out, following the same
iterative procedure described above, where the running
variable is now a 2 x 2 matrix. For this, it is useful
to define the following matrices :

E< 3coshn—1 0
- 0 3coshn +1]
cos —sinf
FO = = .
©) [sin 0 cos0 ] © = n4/¢o)
0 1 2 ok N
a ]
0 1 2 oL N

Fig. 15. — A simple open ladder with N elementary loops
of side a each ( = a/L,).
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Two sequences U; and V; of 2 x 2 matrices are defined
recursively by :

U, = (E — F(— ¢/¢o) Ui—l)_l F(¢/¢o),
I<i<N
43)
Vi =(E = F(¢/$o) Vis1) ™' F(— d/do),

0<ig<N-1

with

0=

[cos 0/(2 cosha—1)

—sin 0/(2 cosha—1)
sin /(2 cosha+1) ] “4)

cos 0/(2cosha+1)

and V, is obtained from U, by replacing § = n¢g/¢,
by — 0 (here a refers to a/L,). Using these notations,
the expressions of T,,’s to be used in equation (35) are
given by

Ty, = 5 sinh n.Trace [E — F(— ) U,_; —

N =

—FO) Vo ]™t. 49

This expression holds also for « = 0 or N, using the

convention U_;, =0, Vy,; =0 and replacing, in
equation (45), E by E’ defined by

B = 2coshn — 1 0
B 0 2coshn + 1]

The final result is

n cosh n — sinh N—1+ 2
n sinh 3N+1 3N+1

N-1
(2 Too+2Tyy +3 ), TM)]. (46)
a=1

K
AR/R = 7[

The variations of AR/R as a function of the reduced
flux ¢/¢, are shown in figure 16.

3.3.4 Closed ladder (Fig. 17). — For this geometry,
in addition to the principal period, corresponding to
¢/¢, integer, secondary oscillations appear at low
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0

0 0.5 ¢ /¢° 1
Fig. 16. — AR/R for the open ladder of figure 15. Here
n = 0.2 and N is set equal to 5, 10, 50 respectively. The qua-
litative features are the same as in the open necklace case
(Fig. 13).

¢/do. The number of these oscillations, which are
due to the two enclosed fluxes ¢, and ¢, by the
internal and external major loops, increases for
increasing N, but their magnitude decreases.

4. Infinite regular networks.

In order to study the case of an infinite network, two
approaches can be used. The first one is based on
equation (34) and the second one is the multistrip
approach.

4.1 MuLTISTRIP GEOMETRIES (Fig. 18). — In addition
to their own interest, multiple strip networks can be
used to investigate two limiting problems. The first
is the 1D-2D crossover of the magnetoresistance,
obtained by increasing the width M of the strip. The
second one is the strict limit M = N = oo of the
infinite network.

Let us denote by ¢ the magnetic flux through the elementary square loop. Using the radial gauge,

A= 1 H x r, the circulation of the vector potential A is given by y,, = N + 27a(m — 1)) /¢, at level m.

2

&

Here N denotes the number of loops in each of the M shells. The solution of equation (35) leads to the following

result (n = a/L,) : .

K| ncoshny —sinhny M—1

sinh n

NSt M 4 — 5m,1 - 6m,M

AR/R:EI: n sinh 5 2M -1

Here,

E,(m) = 4 cosh n — 2cos(y,, + 2 nk/N),
= 3 cosh n — 2 cos(y,, + 2 nk/N),

NOM - & 2 B —om = D —wm ¥

@7

2<m<M-1

or M “9)

m=1
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1

Fig. 18. — A multiple strip geometry. Here ¢ denotes the
magnetic flux across an elementary loop and vy, is the
dephasing factor along a strand in a radial gauge. a is the
side of an elementary loop. # = a/L,

Fig. 17. — A closed ladder geometry with N elementary
cells.

and

o) =1EQ), um) =1/(E(m) — v(m— 1)
wi (M) = 1/E(M), wym) = 1/(E(m) — w(m + 1)).

Qualitatively, the behaviour of AR/R is identical to that of the single strip network. Let us just discuss the
limit of large N and M. For the sake of clarity, we shall only consider the limit of z¢ro magnetic field H = 0.
In this case, for finite N, the sequences v,(m) and w,(m) converge rapidly to their common limit v,(c0) as M — oo.
In this limit, equation (47) becomes

k[ ncosh n — sinh 5 1 N! 4
AR/R = 4[ 7 sinb 7 +silhng ¥ 00 (50)

(49)

where E, denotes the common value of E(m) at zero field, related to v,(c0) by E, — (EZ — 4)'? = 2 p,(0).
Taking now the limit N = oo, one obtains :

n cosh n — sinh . dx
R —sinh 51
AR/R = 4[ n sinh 5 Sm 1 [(4 cosh n — 2 cos x)® — ]“2] S
The integration in equation (51) can easily be performed, and leads to
K[ ncoshn —sinhpy 2
AR/R = 4[ 7 Sinh 7 + tanh n.K(1/cosh r]):l (52)
/2
where [K( ) denotes the complete elliptic integral of first kind K(k) = dx(1 — k2 sin? x)~ '/2, The continuum

V]
limit of equation (52), given by n = a/L, < 1, reproduces the 2D bulk behaviour, as it should be. Indeed, for
n < 1, K(1/cosh n) ~ In (4/tanh 5) and equation (52) yields

ARR =~ Zn (ﬁ> (53)

L
(we recall that k = 2¢ ?")

nhao,
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The final expression, equation (53) corresponds to
the known one [16] :

&2

AR = == RZIn (L, (54)

where, instead of the elastic mean free path /, the
lattice spacing a appears in the network result. The
.occurrence of a as a short length scale cutoff is actually
not surprising. The continuum limit of the network
calculation is actually valid up to a 2 I For a lattice
spacing a < I, the wire approximation breaks down
because o, cannot be defined properly in this limit.

4.2 INFINITE SQUARE NETWORK. — The calculation of

AR/R can be performed directly, using the result of
equation (34) :

2"’

34|

(35)

AR/R =E[l n cosh n — sinh n .

7|2 7 sinh 7

where J, are the (positive) eigenvalues of the N2 x N2
matrix M. Here N 2 is the number of elementary square
loops in the network. For large N and finite L,
boundary effects can be neglected and one recovers
the calculation of the spectrum of matrix M. For conve-
nience, it is useful to take a Landau gauge : 4, = — Hy,

A, = 0and 4, = 0. Let us denote by 7, =2nd;£m
0

the dephasing factor between nodes(m, n) and (m,n—1)
(for the notation, see Fig. 19). The eigenvalue problem,
associated to the matrix M, can be written (n =a/L,) :

(4cosh n — Asinh ) C,,, = e ™ C,,_, +

+ eiym Cm,n+l + Cm—l,n + Cm+1,n (56)

(A refers in Eq. (56) to the eigenvalues of M).

Using the translation symmetry in x direction, one
can find the solutions of equation (56), as plane waves
in x direction : €, e* 0 < k < 2 n/a. Therefore,
equation (56) reduces to Harper's well-known equa-
tion :

(4cosh n — Asinh n) G, =

=2cos(yp + ka)C,, + C,_, +C,.1 (57

n cosh n — sinh .

JOURNAL DE PHYSIQUE

AR/R = 2[ 2 5 sinh g

where ¢(¢, p) refers tothe g(1 < i <

Smh "J de j i (4 cosh n — &(o, u))"]

q) subbands and u = gf. Note that 4 cosh n >

Ne 6

me+l,n

m,n-1 m,n m,n+1

m-1,n

Fig. 19. — Notations for the infinite square network geo-
metry. The side of a loop is denoted by a and # = a/L,

which can also be cast as
adlm = '//m—-l + l/’m+l +

+ 2cos <21r—(tm + 0)1//,,, (58)
?o

where ¢ =4coshn — Asinhn and 0 =ka is a
factor of Floquet.

The spectrum of equation (58) has been previously
worked out by various authors [20, 21]. The explicit
calculation of the eigenvalues ¢ can be carried out for
rational flux ¢/¢p, = p/q. For these values of the flux,

the solution y,, can be chosen as y/,, = exp(i % (p). Vps

where ¢ denotes a phase factor. Due to the g-periodi-
city in m direction, one can limit the search for solu-
tions to those such that v,,,, = v,. In this way, the
eigenvalues ¢ are given by the solutions of a secular
equation : det D = 0, where D is a ¢ x g Hermitian
matrix, of non-vanishing elements :

D,;, =2cos 2221+ 90 —¢&, 1<I<

, q q
Diyvy =Dpyyy =1, I1<l<qg-1
D,, =Dj, =exp(— ip).

The secular equation actually assumes a very simple
form [21] :

P, (e) =2cosp + 2cosqf = W (59
where P, (¢) = & + - is a polynomial of degree q
in ¢ and W is a current variable, —4 < W < 4.

In general, there are q subbands in the spectrum of
equation (58), contained in the interval |¢| < 4,
the subband edges are given by : P, (¢) = + 4.
Therefore, equation (55) becomes

(60)

4 lies outside the spectrum
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| €| < 4 and the sum in equation (60) is very well behaved. The above result can be simplified further, by per-
forming the sum over the g subbands. Indeed, from equation (59), one deduces

i 1 _ P, (4 cosh n) 1)
&1 4cosh n — e(p, ) P, (4cosh n) — W(p, p)°
Furthermore, the integration is quite trivial and leads to the final result
k[ ncoshn —sinhn 8sinhn P, (4coshn) 4
AR/R = 4 [ n sinh n nq P, (4 cosh n) K P, (4cosh )/ |’ (62)

In equations (61) and (62), P, , refers to the derivative
of the polynomial P, (e), defined by equation (59),
and taken at & = 4cosh . Note that, because
4 cosh n > 4, the argument k = 4/P, (4 cosh n) of
the complete elliptic integral, lies inside the interval
(0, 1) and equation (62) is well defined for all p, g
and 7. This rather simple and compact expression
(Eq. (62)) can then be used to calculate AR/R for
arbitrary # and every rational flux p/q. Indeed, one
has just to calculate the polynomial P, () and there is
no need for further information such as the eigenvalues,
the density of states or the ordering of the subbands.
Let us mention that in superconducting networks [11-
12], it is the.edge of the spectrum which is involved.
Here, AR/R gives additional spectral information,
taking into account the whole structure of the spec-
trum. This remark is at the origin of the difference
between these two problems, although very close to
each other. Furthermore, the absence of fine structure
in the AR/R curve, has its origin on the expression
equation (62) so obtained. In fact, despite the rich
structure of the spectrum associated with equation (58),
AR/R is given by a regularizing sum (Eq. (55)) over the
subbands of this spectrum, weighted by the density of
states. Furthermore, equation (62) is analytic, because
4 cosh 7 lies outside the spectrum | ¢ | < 4 of equa-
tion (55).

Before discussing the numerical results, it is useful to
discuss the behaviour of AR/R in some limiting cases.

4.2.1 Zero field limit. — For ¢/¢, = 0, one can take
q =1 and P(¢) = & The eigenvalues are given by
e=2 cos ¢ +2 cos p and the multistrip result (Eq. (52))
is simply recovered. In this limit as well as for integer
¢/do, one obtains : AR/R ~ nlnl/nat n < 1, to be
compared with the single loop behaviour : AR/R~ !
and the simple ladder one : AR/R ~ y°. Therefore,
by increasing the effective dimensionality of the
network (d = 0, 1 and 2), AR/R decreases at zero field
and small n = a/L,. On the contrary, for non integer
values of ¢/¢,, AR/R ~ 7 in the three cases. A direct
comparison is shown in figure 20.

4.2.2 Small field limit. — In the limit of vanishing
magnetic field, the width of subbands becomes smaller
and smaller, giving rise to Landau levels. For instance,

AR/R

0.5

0 0.5 0/ do 1

Fig. 20. — AR/R as a function of the reduced flux ¢/¢,
shown for three networks (a/L, = 0.2) : curve a, single
square loop of perimeter L = 4 a (Eq. (18)); curve b, simple
ladder made of identical square loops, of side a; and curve c,
infinite regular network made of identical square loops
(Eq. (62)). For convenience, AR/R has been normalized to
its value at zero field in each case. Triangles, corresponding
to case c, are calculated for rational ¢/¢, = p/q, p < q <50,
according to equation (62). Note the absence of fine structure
as well as the broadening of the maxima as the effective
dimensionality of the network increases.

at ¢/¢, = 1/g, one obtains, close to the lower edge
(e=—-4):
2 q

In this case, the band structure can be well approxi-
mated by a central subband | ¢ | < &* and a discrete
set of Landau levels, with » < n* and n* ~ q. Here
&* and n* are chosen such as to secure the normaliza-
tion of the total density of states. Using this approxi-

€= n = integer .
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mation, one obtains :

AR ., AR K 8 cosh 7
THE=0-F7@ ~TnU:

.« 16cosh? n — ¢

PHYSIQUE No 6
47 = 8 cosh 7
__Z 1 2
770 16 cosh? n — (4 — 22 (n+ 5
cosh? n — 2 3

(63)

Note that the integrand in equation (63) has a
width ~ 5% at n ~ 0 and ¢ < 4. In order to discuss
the limiting behaviours of equation (63), it is useful to
introduce the magnetic length /;, defined by : /; =
a(¢o/P)!?, and giving the spatial extension, in units
of a, of a region enclosing one quantum flux ¢,,.

a) Case Iy > L, : In this case, n* > ¢/¢, and the
difference between the discrete sum and the integral
in equation (63) behaves as ¢~ 2, i.e. H? as expected [16].

b) Case Iy < L, : The discrete sum is a poor
approximation and this particularly near ¢ = 4. This
is due mainly to the discreteness of the Landau levels,
where their relative separation is very large compared
to the width ~ #? of the integrand. In this case, the
leading contribution is controlled by the singularity
at ¢ = 4 and then

R AR
AT(H =0) - (H) ~In(l + LY/R) ~In H.

Therefore, in both limits, the continuum results [16]
for a 2D bulk system are recovered from the network
calculations. In figure 20, some results for the infinite
square lattice network are shown together with the
single loop and the simple ladder results. Here ¢/¢p, =
p/q, with p < g < 50 have been used in the numerical
calculation. As was anticipated before, the variation of
AR/R as a function of the reduced flux does not
exhibit any singularity or fine structure. Only the usual
logarithmic singularity arises in the limit of small
fields ¢ > 1 and n ~ 0. Therefore the results for the
infinite network geometry confirm all the characte-
ristic features exhibited by finite networks.

4.3 INFINITE HONEYCOMB NETWORK (Fig. 21). — In
principle other infinite regular networks can be
studied as above. The main features, found for the
square network remain present on the other networks
(triangular, honeycomb) : a proper continuum limit,
absence of fine structure, etc. In what follows, we shall
derive the analogous of equation (62), but for the

Fig. 21.— A honeycomb network geometry. Here a denotes
the length of a strand and ¢ the magnetic flux through a
hexagonal elementary cell. n = a/L,.

honeycomb networks where experimental results are
available [3]. In this case, the spectrum is also given by
a dispersion equation which has the same structure as
equation (59). Actually, we have [22] a similar polyno-
mia] equation :

P, (8 —3) + W(6,,0,) =0 64

where

W(0,, 0,) = (— 2)" cos g0, +
+ (= 1)"*}(2 cos g0, + 2(— 1)" cos q(6, + 6,)).
(65

For more details, we direct the reader to refe-
rence [22]. Note, however that the polynomial in
equation (64) is not identical to that used in the square
network case. The sum over the spectrum (Eq. (34))

can be cast in the following simple form :

k | ncosh n — sinh y 36 sinh n cosh #.P; (9 cosh? n — 3) 43 — A)'4
AR/R = - - - 3 vz VAT 2
6 n sinh # ng [4% — 12 + 8(3 — A)'*]Y [4%2 — 12 +8(3 — 4)'/*]*2
for A < 0,and
k { ncosh n — sinh 4 18 sinh # cosh #.P. (9 cosh? n — 3) 4 — (u — v)*\'?
AR/R = - — P4 K
/ 6 { n sinh 7 + nq (uv)172 4w (66)

for4 > 0.
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Here 4 = P, (9 cosh? n — 3)and for 4 > 0, u and v are defined by

u= %(A2 +44—12)2

1

U=§'

(A2 — 4 4 + 4)1/2

This expression for AR/R has been used in reference [14] and compared with the experimental data [3]. The agree-
ment was excellent and this will be discussed in section 5.

4.4 INFINITE SELF-SIMILAR NETWORKS (Fig. 22). — It
appears now that the magnetoresistance does not
exhibit any fine structure in an infinite network
geometry. It is then natural to ask whether such a fine
structure exists in a self-similar network such as the
Sierpinski gasket. In fact, for such a network a whole
hierarchy of loops, at all length scales, is present and
may favour the appearance of an infinitely countable
set of singularities at small magnetic field.

As was shown previously, AR/R is directly related
to the tight-binding Hamiltonian, on the underlying
network, under an applied magnetic field. This pro-
blem has been studied recently by different authors
[11, 23, 24], but a compact solution is not yet available.
However, the scale invariance of this network allows
a recursive calculation of AR/R, using equation (34).
Actually, the sum in equation (34) is taken at an energy
lying outside the spectrum and then AR/R can be
obtained numerically after a few iterations. Details
are given in Appendix C. Here we shall discuss some
limiting cases.

Fig. 22. — A Sierpinski gasket geometry and the corres-
ponding decimation procedure. At a given step, the renor-
malized magnetic flux is denoted by ¢, the flux through a
corner triangle and @, the flux through a central triangle.
Any choice of dephasing factors «, B, 9, u, v, ..., z compatible
with ¢ and ¢ can be used. One must imagine that the fractal
is infinite, with a finite lowest length scale.

4.4.1 Zero field limit. — The expected scaling law
for AR/R as a function of the phase breaking time t,,
is obtained through an argument, similar to that of
reference [25]). One gets :

AR/R ~ 1292 (@ < 2) 67)
where d denotes the spectral dimensionality of the
structure [26, 27]. However, because of the anomalous
diffusion on fractal structure, the definition of the phase
coherence length has to be modified. If L, denotes
the «bare » phase coherence length L, = (D7,)'?,
then the true phase coherence length £, must be
defined by
£ola = (Ly/af" (68)
(d = fractal dimensionality).
From equations (67), (68), one deduces the following
result
AR/R ~ L3~ ~ ¢ P (69)
where — B, = (2 — d) d/d denotes the localization
exponent of the fractal structure. Note that this result
agrees with the prediction of reference [27], obtained
through a different argument. In figure 23 are shown
some numerical results : AR/R vs. n = a/L, at zero
magnetic field. Clearly, the scaling behaviour (Eq. (69))
is well obeyed.

4.4.2 Finite magnetic field — Following the scaling
arguments of reference [25], one expects two different
regimes

weak fields (HE2 < &) :

AR/R(H = 0) — AR/R(H) ~ H>  (70)
typical fields (HEZ > ¢,) :
AR/R(H) ~ H*P2 . 1)

Note that equations (70), (71) are simply the extension
to fractals, of the known results on Euclidean networks
(at d = 2, B, = 0 and one gets the usual logarithmic
regime). This behaviour is actually well observed on
the numerical results shown in figure 24. The slope of
AR/R vs. ¢/¢, in a log-log plot is given .by By /2.
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In AR/R

'ln n

2 1

Fig. 23. — In AR/R as a function of In 7 for the Sierpinski
gasket. The expression of AR/R (Eq. (C.1)) has been divided
by 7 in order to take into account the L, dependence of the
factor k. For comparison, a dashed line of slope

d-2= % — 2 ~ 0.6348 is drawn. The scaling beha-

viour, equation (69) is well obeyed.

However, the power law (Eg. (71)) so obtained is
actually modulated by a small periodic function. The
period of this oscillation is In 4, ie. the ratio of the
areas of two consecutive triangles on the gasket. The
physical origin of this phenomenon is the following,
As was shown in Appendix C, the gasket breaks down
into independent pieces after m* iterations of the renor-
malization procedure. This gives rise to equation (69)
in zero magnetic field. The magnetic field H controls
actually this long range cut-off. Decreasing the magne-
tic field by a factor of four corresponds to an increase
by a factor of two of the long range cut-off and this is
equivalent to iterating one more step. Therefore, the
obtained modulations are the consequence of the
dilation invariance of the gasket only under a dis-
crete subgroup of the dilation group. Therefore, we
expect that this fine structure will disappear in random
fractal structures such as the percolation clusters.

The scaling behaviour of equations (70), (71) can be
derived in the present case using the formulation of
Appendix C. Indeed, in strong field regime the long
range cut-off is no longer given by £,. We can then set
pu ~ Aasif£, = oo, and then obtain :.

n 3Y
Gulbn=0 = 4 (4 + 13<2—0) )/17.

The maximal modulations of AR/R are obtained for
@/¢, corresponding to integer values of the renorma-
lized fluxes ¢ and ¢. According to equation (72), ¢, is
the same for : (n > 1) (¢, n) and (¢/4, n + 1). This

7
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-15

1
-20

Fig. 24. — Log-log plot of AR/R as a function of the reduced
flux ¢/¢, through the clementary triangular cell of the
Sierpinski gasket, for n = 1075, 10™* and 10~ 3 respectively.
The figure shows clearly the crossover between weak and
large field regimes. The crossover field increases when L,
decreases. In addition to the main power-like behaviour
predicted by equation (71), one observes modulations of
AR/R, with a period of In 4. The dashed line of slope
— Bu/2 = d2 — d)/2 d ~ 0.36848 has been drawn for com-
parison.

explains quantitatively the « period » In 4 of the modu-
lation.

At low magnetic fields, AR/R as given by equa-
tion (34), is controlled by the spectrum of the tight-
binding model on the gasket. This problem, with
obvious notations, can be written as

4x, — Y e Mix = (73)
J
w? is actually an eigenvalue of equation (73). There-
fore, equation (34) implies :

1
R/R ~
AR/ %:4(coshn—1)+co2

(74)

where n = a/L,. As was shown for the square network
case, AR/R is dominated by the low energy modes in
the spectrum. Let us denote by w,(H) the lower edge
spectrum, and assume a power law form : w,(H) ~ H*®
as for Euclidean networks. In the limit # = a/L, < 1,
equation (74) reduces to

o(H)
-AR-E(H =0)— ATR(H) o r do 0?12 n* + @?)

(7%
and then

AR/R(H = 0) — AR/R(H) ~ Const. — H*@=2_ (76)
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However, in the regime where HL2 > 1, the long
range cut-off length is given by H and then AR/R(H)
is only a function of H. Therefore, we obtain :

AR/R(H) ~ H*@-2 an
The comparison with equation (71) leads to :
s=dRd. (78)

For the Sierpinski gasket, d = In3/In2 and d =
23 = 0580, This detailed
analysis of the gasket confirms the expected scaling
laws for the weak-localization corrections in non
Euclidean structures. These results are relevant for
the experiments done on metal-insulator mixtures,
close to the percolation threshold [28, 29].

2 In 3/In 5,leadingtos =

5. Comparison with experimental data.

Presently, a certain number of experiments have been
performed on multiconnected networks [3-5]. In order
to make a close comparison with the weak-localization
theory predictions, we should take into account three
effects, which have been neglected in the previous
sections.

The first one is the finite width of wires, which is
responsible for the damping of the MR oscillations
at large field : the backscattering loops are no longer
around a very well defined flux.

The second one is the spin-orbit and spin-flip
scatterings which are responsible for a change in both
the sign and the magnitude of the MR oscillations [16].
The third effect is given by electron-electron inter-
actions. Indeed, the mutual influence between impurity
scattering and screened Coulomb interactions of
electrons is known [30, 31] to give important correc-
tions to the conductivity at low temperatures. In the
multiconnected networks considered here, the inter-
action effects on the Cooper channel have to be taken
into account, at least for high enough perpendicular
magnetic fields : eH > k; T/D. However in the
available experiments, Ly = (AD/kg T)*/? is very small
when compared to L,,. This allows a good distinction
between weak localization effects at small fields and
interaction effect at large fields [31]. Therefore, we will
assume that L < L, and then neglect here the inter-
action effects.

5.1 FINITE WIDTH OF WIRES. — The finite width of
wires can be taken into account, through a simple
renormalization of the phase coherence length, which
becomes a quadratic function of the applied magnetic
field [32] :

L,(H) = L,(H = 0) [1 + “_;(ﬂg‘—*’ﬂ_m . (19)

Here w denotes the finite width of wires. The original
calculation, leading to equation (79) has been per-
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formed for a single wire, in the limit of small enough
magnetic fields. However, equation (79) is no longer
valid when the magnetic flux through the area of a
network node (~ w?) becomes of order ~ ¢, :
there the MR becomes sensitive to the detailed shape
of the nodes and our approach cannot be used. But,
this occurs at very high fields and equation (79)
breaks down before such fields are reached. Actually
equation (79) is a good approximation as long as :
HwL,/¢p, S 1. We have checked numerically the
renormalization of L, by comparing the multistrip
expression (Eq. (47)) with the single loop result after
the renormalization of L, The obtained results
are very satisfactory, supporting the validity of
equation (79), in the field interval of interest.

5.2 SPIN-ORBIT AND SPIN-FLIP SCATTERING. — The
presence of these processes can be taken into account
by separating the singlet and triplet contributions to
the Cooperon [16]. The spin-orbit interaction affects
only the triplet one. Formally, L, has to be replaced by
a combination [10] of L, L,, and L, :

_ 4 _ 2.,V
Ltriplet = [L¢ 24+ 3 I{soz + 3 L, 2]
Lsinglet = [Lqp_z + 2 Ls_ 2]_1/2 . (80)
The resulting Cooperon is then given by [16] :
1 3
C=- E Csinglet + 5 Ctriplet (81)

where Cgp, and C;p,, are obtained as before by
replacing L, by Ly, and L,; ., respectively.

A quantitative comparison between the theoretical
results and experimental data is shown in figure 25.
The solid line corresponds to Cu, at T = 133 mK, in
a honeycomb network geometry. Here the spin-orbit

ot H (Ce)

-15 -10 -5 0 5 10 15

Fig. 25.— Quantitative comparison between the theoretical
results (triangles) and experimental data (solid line), for Cu
at T = 133 mK, taken from reference [3]. The hexagonal
elementary cells (side @ = 1.5 pm) are made of wires of
width w = 0.42 um. In this fit, we have L, = 536 pm and
L,, = 3.12 pm respectively (L,, is the spin-orbit length).
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coupling has been taken into account. In this situation
the field renormalization of # = a/L, gives

PH) = i2(H = 0) + g n(B/gof W) (82)

where ¢ denotes the magnetic flux through an elemen-
tary hexagonal cell (side @) made of wires of width w.
This low-field approximation breaks down at
Haw 2 ¢,. The renormalization of n becomes impor-
tant at large H and is actually responsible for the
damping of oscillations. Other experimental data [3]
obtained for different metals, on square and honey-
comb networks have also been analysed following the
same scheme. This allowed in particular the calculation
of the temperature variations of L, The observed
deviations, appearing at large H, have also been
investigated. Detailed results will be given else-
where [33].

Note that the results obtained on necklaces and
ladders [4] also agree with our general results. For
these geometries, a reduction of the MR oscillations
has been found, in comparison with the single ring
behaviour, when L, is large. Furthermore, the MR
curve does not exhibit any fine structure in agreement
with our conclusions.

6. Conclusions.

Our main results are summarized in the introduction.
Let us conclude this paper with some remarks relative
to our approach. The network formalism used in this
paper assumes the validity of the Cooperon’s equa-
tion (Egs. (1), (2)) for the calculation of the magneto-
resistance AR/R corrections. As can be seen, this
approach gives a set of reliable results for extended
networks as well as for the single ring [5] geometries.
In this approach, all traces of randomness are summa-
rized in the phase coherence length L, and the theory
is an averaged one [10]. In this respect, fluctuations
from sample to sample are neglected and Ao(r)
refers actually to an averaged correction to the conduc-
tivity. However recent numerical calculations, done
on 1D ladders [35]), suggest the existence of such
fluctuations on the magnetoresistance behaviour.
This problem of the probability distribution of the
magnetoresistance is still open and some relevant
results will reported in a forthcoming paper [35].

In addition to the self averaging question, the possi-
bility of the coexistence of two harmonics (¢, and

Too = Tw+1n+1 = sinh(a/L,)/(cosh (a/L,) —
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2 ¢) has been raised recently [5, 18] on small systems.
For instance, magnetoresistance oscillations with the
expected period ¢, have been observed recently [5] on
thin-film rings (1-2 pm in diameter). This is the first
observation in single rings of oscillations with flux
period ¢, at low fields. Small periodic oscillations
(period 2 ¢,) have also been observed at higher
fields [5, 18] in such small systems. These results
provide strong evidence that these two types of oscil-
lations, seen on the same ring, arise from different inter-
ference mechanisms. Therefore, it is of importance to
produce a unified theory for both types of oscillations
using a single theoretical framework.
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Appendix A.

Using the formalism developed in section 3, the
matrix M for the single wire with N side branches,
shown on figure 3a, can be written as

M, o=My.,, ., =coth(a/L,)
M, ;=2 coth (a/L,)+coth (b/L,),
M, ;. =coth (b/L,),
M,;,,=1/sinh(a/L,),

M, ; =1/sinh (b/L,),

[ B
N /L\ /L\ N
. N A N
z z =z

N
>

The matrix M is a Jacobi-like one and then can be
inverted recursively. The calculation of the cofactors
T; of M can be done through the definition of the
sequence ¥; = C,/C;, , giving the ratio of C(x) at two
successive nodes for the homogeneous equation. It is
easy to show the following recursion equation for
u’s

u, = 1/cosh (a/L,)

-1
Uy, = [2 coshLi + tanhLi sinhLi - u,-:l .

P 1 4 P

The coefficients T'; can be expressed simply from the
solution { #; } :

uy) ,

T;; = sinh(a/L,)/[2 cosh(a/L,) + tanh (b/L,)sinh (a/L,) — 4;_y — uy_;], (1 <i<N)
Tijrr =uy; Ty, 0O<i<N)
Ty = tanh(b/L,) + Ty/cosh? (b/L,), (1<i<N)
T, = Ty/cosh(b/L,), (I <i<N)

The local correction to the conductivity is obtained from equation (30) and the above expressions for T, ;S
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In order to calculate the global correction AR/R, only the local correction along the principal axis of the
wire has to be taken into account : current does not flow along the dandling branches. We obtain (n = a/L,) :

N
) Y T+
a=0

2 cosh # — sinh X
n n n ,,;0 TM“],

AR _ k| ncosh n — sinh 2 sinh ncosh n — 7
R 2 n sinh # (N+1) n sinh? g

+ N+1 1 sinh? g

In the limit N > 1, it is possible to simplify the result, replacing T, by its limit :

1 b . b . 2 172
u_=={(2cosh n + tanh—sinh n} — | (2 cosh n + tanh+—sinh | — 4
© 2 L, L,
sinh #
Toooo = b p) 12"
[(2 cosh 1 + tanh — sinh n) - 4]
L(P
Then
AR 2[(sinh hn— h # — sinh
= -Kh n cosh 1 — sinh n + [(sinh ncosh n — n) + gn cos 112 sin 1/121) Uy |
1 sl n [(2 cosh  + tanhL— sinh n) - 4]
(4
AR « . P .
Note that for b = 0 we have R =3 asis the case for an infinite wire.

Appendix B.

In this Appendix, we shall summarize some results-relative to two networks, not discussed in the text, which can
be of some experimental interest.

1) SINGLE RING WITH DANGLING SIDE BRANCHES (Fig. 26). — Let us denote by ¢ the magnetic flux through
the loop (length = Na) and by b the common length of side branches. Using the notation of figure 26, one finds

hDS

L L

L4 14 P

Cx) = =2 <sinhi + tanh 2 sinh X sinh &= ") -G
L, L

Fig. 26. — A closed ring geometry with dangling side bran-
ches.
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for points x on the loop, and
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N = L, . x . b—x _ sinh®x/L,
C(x ) = m sinh L—q, sinh L‘p ~oih b/L¢ +
. . ’ L . h —x
sinh a/Lq, sinh2 xl/L¢ N G b—x Lo sinh X/ » SIN L¢
sinh b/L¢ COSh2 b/L¢ Lq, cosh b / L:p

on a branch. Here G refers to the sum

L 2

L4

L N

14

bo

1 N2 a 1. a b 2n ¢ -1
G—ﬁ—k;)l:cosh—+—s1nhftanh——cos—<k+—>] .

In practice, it is convenient to use the following compact expression for G :

G=@-1)""0" - ﬂ")/(a" + BN — ZCOSZni)-)

where

a 1., a b
z = coshL— + —2-51nhL—tanhL—,

? '] ']

a=z+ (22 =112,

b0

B=z—(2—1)12.

Note that C(x’ = 0) < C(x¥’ = b) holds in general and the difference C(x' = b) — C(x’ = 0) is larger at

¢/do = 1/2 than at ¢/¢p, = 0.

2) CHAIN OF RINGS (Fig. 27). — For N identical rings, of length 2 a each, articulated with identical strands (of
length a each), the integrated correction to the total resistance R,y is given by

ARAB/ RAB =

2sinh g

X

3N +1 n sinh g

N
+ 6sinhn - )

p=1

1 {(N_l)ncoshn—sinhn

cosh n — upn 4y

-1
[3 cosh n — (uzp_l + 2 cos n% . uz(N_p)+2)] }

Here n = a/L, and { u, } denotes the sequence, defined recursively by :

u, = 1/cosh

Uy, = 2cos(ng/¢y)/3 cosh n —

u2p— 1)

Uyp+1 = 1/(3 cosh n — 2 cos (nd/¢).uz,)

Appendix C.

In this appendix we shall outline the recursion proce-
dure, used for the calculation of AR/R on the Sier-
pinski gasket. The notations are given in figure 22.
The length L, refers to the bare coherence length.
From equation (35), one has

_ Kk | ncosh n —sinh n
AR/R—4{ n sinh n +

+ 4 sinh ’71—1]-2']“}' (C.)

For convenience, we have replaced M by sinh 7. M.

The idea of the decimation procedure is the follow-
ing. It is actually possible to express Jy,, J405 Japs -
as functions of the inverse matrix elements JX,,

OO

N

—()

1

2
Fig. 27. — An open chain of rings with arms.

JRs, J& of a renormalized operation J® associated
to the renormalized gasket (decimation by a factor 2).
During this renormalization procedure, non diagonal
matrix elements (e.a. J§p) are introduced. At each step
m of the recursion, AR/R is given as a linear combina-
tion of three gauge-invariant terms :

T = i 2 I



1

_r (m) oir{m
Ny & 7

(uv)

J,(m) = (C.2)

and
J_(m) = J¥(m).

Here, N (m) and N(m) are respectively the number of
sites and bonds of the gasket, at step m. The sum in
J.(m) is taken over positively oriented bonds (uv) :
the orientation of a bond is defined from that of the
corresponding elementary triangle. The expression of
AR/R can be written as

AR/R = g [X(m) + Y(m) J(m) +

+Zm) J (m) + Z*(m) J _(m)]

where X, Y and Z are defined recursively (see below),
and

1

X(0) = 5(11 cosh n — sinh #7)/(n sinh #)
Y(0) =2sinh n, Z@0) =0.
1) RENORMALIZATION OF THE OPERATOR M. — At

step m, the matrix elements of the operator M = M™
are given by

Ml(l':) =4 lm and M‘(‘T) = — U, e_iYuv

(1 and v connected by a single link). It is actually
necessary to distinguish two effective fluxes through :
corner triangles ¢, and central triangle ¢,. The
recursion relations for 4, u,,, ..., €tc., can be written as

2
Am+l=,1—-”7[16,12—u2+

+ 4 jucos2ng + u? cos2 m(¢ + ¢)]

MAGNETORESISTANCE OF NORMAL-METAL NETWORKS

997

e N,y = Hmsq €70F2 €0 (C.3)

and

2 -
P @ =52 [16 22 — 12 + 4 a2+ 4
+2 ezm¢) + y2(2 ezin(¢+$; + e4i1t¢)] )

Here 4, y, ¢, @, ... refer to A, fys B> Gy ---» ELC., AL
strep m. 4 is given by

A=643—-2pdcos2np — 12 ip®.

The phase factor 0 isrelated to the reduced fluxes ¢ and
¢ through :

Gnos = 3bu+ u— 7m0, (C.A)

Note that ¢,, and ¢,, are related by ¢, + P, =2.4" P, _ o.
The set of equations (C.3) and (C.4) defines actually
the new operator M, on the renormalized gasket.

2) RENORMALIZATION OF THE OPERATOR J = M~ —
Using the renormalized operator M®, one can write
down the renormalization equations for J(m), J . (m)
and J_(m). Assume that we want to calculate J,, for
instance. J,, is actually equal to x,, where x,, xy,
Xg, Xp, --., are the solutions of the linear system asso-
ciated to matrix M, the source term being located at
node a. Therefore, in order to calculate J,,, we start
by calculating x,, x, and x, as functions of x,, xz and
xc. The next step would be the calculation of x,, xg
and x. in terms of the inverse matrix J’® = (M®)™1,
Coming back to x,, xy, x,, one can deduce the desired
quantities J,,, J,, ..., etc. In order to perform such
calculations, it is useful to introduce the 3 x 3 matrix
D and the vector 4 :

J(m) Jm + 1) A(m)
Jm) |=D|Jm+1) | +|Am)
J_(m) J_(m + 1) A_(m)

The matrix elements of D are given by :

1
3 a2

2#2 2in —2ing
D, ==|1+=5QG + He*™ + H*e ) |,

Z -
[E + Fe2i1r¢] + 3#A2 [G eZin¢ + He—Zin(¢+¢) + 2 H*] ,

(G e~ 2in(2¢+ &) +2 H e~ 2inté+ &) + H*,

D,, = % Z_Zzeio[G + He 2im20+d) 4 2 g+ e—2in¢],
D,; = DY,
e .D,, = g—Z[E + F*e 2" 4 5’5—2
e®.D,; = :‘:‘—Z

= * .
D31 -DZI’
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— D* -
D32 _D23’

_ 2
[F e + F* 20 79) 1 L5262 1 He¥™ 4+ HY),

D33 = D;z .

67
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Here we have used the following notation :

E =16 22 — 2,

JOURNAL DE PHYSIQUE

F =4y + p*&2é

G =256 2* + 3 u* + 16 Au® cos 2 g
H=128ui® + 48 12 2 e2ind | u4(e—zin$ -2 e2in$)'

Similarly, the vector elements of 4 are given by

2
A(m) =nE;

1
A+(m) =ﬁF*a

1
A_(m) =3—ZF.

Using the above notations, one deduces the recursion relations :

1

X(m + 1) = X(m) + == E. Y(m) + = F*.Z(m) + ﬁF.Z*(m)

34 34
Y(m + 1) Y(m)
Zm+1)| ='D|Z(m)
Z*m + 1) Z*(m),

Here 'D denotes the transpose of the matrix D.

During the iteration, u,, converges very rapidly towards zero. Therefore M can be approximated, after m*

iterations, by a diagonal matrix and this leads to : AT? ~ g [X(m*) + Y(m*)/4 2X]
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