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Résumé. — Afin d’illustrer I'intérét de la dynamique des systémes non linéaires appliquée a la plasticité des solides
cristallins, nous considérons une description simplifiée de I'effet Portevin-Le Chatelier. Les propriétés dynamiques
des dislocations, moyennées a petite échelle, sont exprimées en termes d’un oscillateur non linéaire du premier
ordre. Les solutions obtenues font apparaitre une périodicité temporelle sous la forme d’oscillations de relaxation,
et une organisation spatiale sous forme d’'une onde solitaire. Diverses vérifications expérimentales sont décrites
ou suggérées, et plusieurs syst¢émes dynamiques analogues sont discutés.

Abstract. — In order to illustrate the potentialities of application of the methods used in the dynamics of non-
linear systems to crystal plasticity, we consider a simple description of the Portevin-Le Chatelier effect. The dynamic
properties of dislocations are modelled through a small scale averaging procedure, in terms of a first-order
nonlinear oscillator. Solutions are obtained which exhibit time periodicities of the kind of relaxation oscillations
and spatial organization in form of a solitary band. Several proposals for further experimental investigation are
outlined, and various analogue systems are discussed.

1. Introduction. and v, depend, in a nonlinear manner, on various
external and internal quantities.

Strictly speaking, the Orowan relation (1) is only
valid on the local scale. In view of the fact that micro-
structures developing during plastic deformation exhi-
bit a marked nonuniformity [2, 3], identifying the
macroscopic averages with the local quantities appears
severely wanting. Structural « self-organization » is
present on various scales. Within an elementary
slipped volume (referred to as a « cross-section »

which, with the accuracy of a geometric factor omitted ~ henceforth (1)), dislocations appear to be distributed
here, relates the plastic strain rate, &, to the density of —more or less regularly or exhibit collective behaviour
mobile dislocations, p_, moving with a velocity vp, owing to mutual interactions. In a crystal subjected
The quantity b represents the magnitude of the Burgers  to uniaxial deformation, these slipped volumes have,
vector that characterizes the « strength » of a dislo-  asa result of predominantly planar dislocation motion,
cation. The velocity vy, is, of course, a result of avera- @ thickness of only 10 to 100 A and fill the cross-
ging of the individual dislocation velocity over various ~ sections to a large extent.
dislocation paths within the dislocation ensemble. In what follows we assume that averaging is possible
Accordingly, it depends not only on the applied stress on that scale and we focus on nonuniformities on
o but also on microstructural parameters which vary
in the course of deformation. As a result, both p_ (*) This description refers, in a strict sense, to single
crystal deformation but can be applied, for our purposes, to

_— polycrystals as well. A « cross-section » is generally oblique
(*) LA 131 CNRS. to the specimen axis.

Microscopic models of crystal plasticity usually
postulate that the macroscopic mechanical behaviour
can be described in terms of dynamic properties of
individual dislocations, the crystal lattice defects which
carry plastic deformation on the atomic scale. This is
furnished through the Orowan transport equation [1] :

& = pp, bvp 1)
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micrometer or millimeter scale as observed, e.g., by
optical methods. The quantities entering equation (1)
are then understood as averages over a cross-section.
The cross-sections never deform simultaneously in the
same manner, and only a small fraction of the crystal
volume (1/20 to 1/50, say) is active at a given mo-
ment [2, 3]. Plastic deformation is usually confined to
discrete bands with sharp boundaries (e.g., the slip
bands [2, 3]). Under certain conditions, deformation
bands propagate along the specimen in an orderly
fashion, plastic activity being continuously extin-
guished at the rear side by virtue of strain hardening
and ignited in the virgin material in front of the band,
in a kind of « relay race ».

Nonuniformity of plastic deformation is closely
related to nonlinearity of dislocation properties. It is
the aim of the present paper to demonstrate this
relationship. As a practically important example we
consider the Portevin-Le Chatelier (PLC) effect well-
known to metallurgists. Microstructurally, it consists
in repeated propagation of deformation bands along
the specimen ; this is accompanied by the appearance
of abrupt stress drops or steps on the deformation
curves. An insight into this phenomenon can be gained
with the help of far-reaching analogies with the pro-
perties of nonlinear oscillators. These analogies will be
discussed in the following, along with such a specific
feature of the PLC effect as the existence of propaga-
ting solutions.

In the next section, the essential features of the PLC
effect are briefly described. Section 3 deals with the
identification of the type of instability associated with
this phenomenon within a simple model. Section 4
discusses analogues of the PLC effect in various
physical systems.

2. The Portevin-Le Chatelier effect. Influence of the
mode of testing.

Review articles (e.g., [4] to which the reader is referred
to for details) mention that the effect was first disco-
vered by Le Chatelier in 1909, on mild steels at slightly
elevated temperature. It was later found by Portevin
and Le Chatelier on duraluminium alloys at room
temperature. To date, the PLC effect has been recorded
in a number of dilute interstitial and substitutional
alloys on Al, Cu, Ni, Fe, etc. basis, usually around
room temperature.

Since the mode of testing strongly affects both the
observed behaviour and the ease of modelling, we
discuss it first. In uniaxial straining, a constraint is
placed upon such macroscopic quantities as the rate
of variation of the applied stress, o, or the total plastic
strain rate, E, which is, by definition, an average over
the (generally nonuniform) local plastic strain rate ¢ :

L
E =Q1/L) f &(x) dx. )
0
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Here x is the coordinate along the axis of the specimen
with the gauge length L. The testing conditions are
specified through

&+ ME = &, 3

where the constants ¢, and M have the following
meaning in the different modes of testing of interest
here :

(i) 6o = Mg, = Const. under constant imposed
strain rate &, M denoting the combined elastic
modulus of the system « specimen + testing machine » ;

(ii) 6,=Const., M=0 (ie. 6 = 6,) under constant
stress rate conditions; equation (2) is still valid here,
but no external constraint is placed on E in this case;

(iii) creep conditions are obtained as a limiting
case of (ii) by setting o, = 0[5].

The distinctive macroscopic feature of the PLC
effect is the occurrence, within a definite range of
temperature and strain- or stress-rate, of pronounced
periodicities or quasiperiodicities in the deformation
curve o(E). These are illustrated by figure 1 obtained
for a polycrystalline Al-5 9, Mg alloy at room tempe-
rature. The samples were solution-treated (460 °C,
3 h, argon atmosphere) and tested immediately after-
wards to avoid decomposition. Serrated stress-strain
curves (« jerky flow ») appearing at constant strain
rate result from relaxation of the elastic strain when the
total plastic strain rate suddenly exceeds the imposed
strain rate : following equation (3) & is then negative.
At constant stress rate, the stress remains practically
unchanged within a short time interval (< 1 s) during
which a sudden change of plastic strain rate occurs, and
a stair-case deformation curve is recorded. As already
emphasized in previous publications [5, 6], constant
stress rate testing, although not so widespread in
practice, provides the simplest experimental conditions
for studying the PLC effect. The reason is that no
constraint is placed on the total, macroscopic strain
rate, and the macroscopic behaviour is determined
by the local behaviour in an individual cross-section.

On the optical scale, each jerk or step on the defor-
mation curve appears to be connected with the forma-
tion and motion of a deformation band (whose
thickness is typically a few millimeters) with well-
marked edges. Slip is concentrated within such bands,
as schematically illustrated by figure 4. Band initiation
usually takes place at one end of the specimen where
stress concentrations are available. The band then

Stress
10 MPa

Time

Fig. 1. — Serrated deformation curve associated with the
PLC effect in Al-5 9%, Mg deformed with constant strain rate
(room temperature; , = 2.5 x 10745~ 1),
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propagates continuously or by successive steps (hop-
ping bands) until it reaches the opposite end of the
specimen where it disappears. This is a recurrent
process, new bands being usually initiated at the same
end of the specimen. Passage of each band gives rise
to a jerk or to a step on the macroscopic stress-strain
curve.

Microscopic mechanisms of the PLC effect are now
well-understood, at least qualitatively [7-10]; they
involve a dynamic interaction between mobile dislo-
cations and diffusing point defects (see, e.g, the
review [4]). Even in the absence of a self-consistent
quantitative theory, one reaches a conclusion, sup-
ported by experiment, that in the domain of the PLC
effect the glide resistance should decrease with
increasing strain rate.

As discussed by Penning [11] (see also [5]), this
qualitative picture should be sufficient to account for
most of the macroscopic features described above.
The dynamic properties of dislocations averaged over a
cross-section can be expressed, with some approxima-
tion, through the state or constitutive equation [11] :

o =he + F(¢). @

Here the strain hardening rate h = (0o/0¢), that
characterizes the build-up of athermal stresses in the
course of deformation can be considered constant.
The function F(g) takes account of the interaction
between mobile dislocations and localized obstacles
which is strain rate dependent. The strain rate sensiti-
vity (SRS) of the flow stress is defined as

S = (90/0 log &), = #(dF/dE). ©)

In normal conditions, plastic deformation is thermally
activated which is often expressed by an Arrhenius-
type rate equation, meaning that S is a positive quan-
tity and, consequently, that F is a monotonically
increasing function of & As mentioned above, the
PLC effect is associated with the conditions when F ()
has a negative slope [9-11], implying negative strain
rate sensitivity (NSRS) of the flow stress.

The results of the measurements for Al-59% Mg
carried out at constant strain rate at 300 K are
depicted in figure 2. The function F(g) was extracted
from the strain rate dependence of the flow stress at a
fixed strain (¢ = 8 x 1072). As a matter of fact, the
result has to be independent of the choice of this
« reference strain » if equation (4) that contains no
cross-over terms in ¢ and ¢ is valid. This condition was
found to hold only in an approximate sense. The
approximately constant strain hardening rate /4 obtai-
ned is equal to 950 MPa at 300 K. As further discussed
below, the stress-strain curves are serrated in the
domain of negative apparent strain rate sensitivity
drawn dashed. The data points corresponding to this
domain represent some average stress between the
upper and the lower stress at a given strain rate.

The results of figure 2 indicate a correlation between

THE PORTEVIN-LE CHATELIER EFFECT

499
190
\
\
© \
o \J
2 180/~ \\
w‘ \
n \\
bed \
o
- AN
N
N 170 o
160 1 | |
10- 10°5 104 1073 10-2

Strain rate , s

Fig. 2. — The flow stress at ¢ = 8 x 1072 for Al-5% Mg
tested at 300 K under constant strain rate. The function
F(¢) is obtained by subtracting from the flow stress a
constant hardening term he.

the occurrence of the PLC effect and the condition
that the slope of F(g) be negative (cf, e.g., [10]). At
small strain rates (Le., at low dislocation velocities, cf.
Eq. (1)), point defects are dragged along with moving
dislocations which process requires high stresses. At
large velocities, ie., beyond the minimum of F(g),
dislocations are liberated from their point defect
atmospheres and can move under comparatively
small stresses. Between the two extrema, dynamic
interaction responsible for the occurrence of an
instability is effective. The dislocation ensemble is in an
intermediate state, while a single dislocation is either
in the pinned or in the unpinned state.

The model discussed below is based on this typical
nonlinear, S-shaped form of F(¢) found experimentally
in the temperature range where the PLC effect occurs.
We are not concerned here with a quantitative micro-
structural theory, still to be elaborated, that can give
the detailed shape of this curve. Similarly, we do not
discuss such features as an incubation strain for the
onset of the PLC effect or mechanical aspects dictating
the deformation band orientation in polycrystals.
In this brief survey, only a schematic view of the PLC
effect is presented. The model used relies on a few
simplifying assumptions, and, thus, is subject to some
limitations already discussed in [5, 6].

Finally, several other side effects which are not
considered here require further sophistication of the
model : for instance, at room temperature, the domain
of existence of the PLC effect does not coincide exactly
with the strain rate range of negative slope of F. The
strain hardening rate h is not exactly constant as
mentioned above. In some cases situations can be
found where nonuniformity arises from anomalies
both in the strain hardening rate (Liiders bands) and
in the SRS. In order to avoid a rather common confu-
sion between the Liiders bands and the PLC-bands we
adopt here a strict definition given by Kocks [10]
according to which the PLC-bands originate exclu-
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sively from SRS anomalies while the Liiders bands are
associated with strain hardening anomalies.

Some roughness of the present model notwithstan-
ding, it contains all the components to account for
the basic features of the PLC effect and provides a
suitable frame for further discussion.

3. Nonlinear aspects of the PLC effect.

Combining equation (3) with equation (2) and (4)
one obtains an integrodifferential nonlinear system
which, when solved for ¢ = &(x), yields the distribution
of strains, that may be uniform or nonuniform. The
knowledge of the corresponding integral quantity, E,
makes it possible to calculate the deformation curve,
o(E), for the bulk specimen.

Despite several attempts initiated in [11], no explicit
solutions could be found to date for the constant strain
rate conditions because of the coupling between &
and E introduced by the non-zero term ME in equa-
tion (3). By contrast, we have shown [5, 6] that simple
solutions can be obtained under constant stress rate
conditions.

We do not reproduce here in full detail the results
pertaining to the case of constant stress rate. We
rather consider the basic properties of the systems
underlying the PLC effect and establish their relation-
ship with well-known properties of certain classical
nonlinear oscillators.

The behaviour of an individual cross-section, at a
fixed position x [or, alternatively, of a hypothetical
unitorm solution E = & = ¢g(¢)] can be studied by
considering equation (4) differentiated with respect
to time ¢ :

& = hi + [dF()/de]%. ©)

3.1 STEADY STATE AND ITS STABILITY. — Four fol-
lowing properties of the model under consideration
are obtained readily.

(i) Due to the constancy of A there exists a uniform
steady state solution of equation (6) for the strain rate
(ie., &€ = 0). This reads

& = a/h = do/(h + M), ™

where the quantities , and M are specified by the
testing conditions, cf equation (3).
(i) We introduce in one cross-section a fluctuation
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from steady-state in the form 6 = £ — &, = (3&), exp At
where (¢), is a constant. The associated fluctuation
in the second derivative of strain rate with respect to
time reads J0¢ = Ads.

The system which globally controls the deformation
conditions is not able to respond to fluctuations.
Therefore, the latter will obey the constitutive equa-
tion, equation (4) or (6), but not equation (3) which
is related to the testing conditions.

Taking into account that he — 6 = h(¢ — &), line-
arizing equation (6) with respect to these small devia-
tions from steady-state yields :

A = — hi(dF/d3),..,, . ®

The strain hardening rate, A, is normally positive.
Hence the steady state solution is unstable with
respect to fluctuations in the strain rate when
dF/de < 0 (because then A > 0 leading to the growth
of the fluctuations with time), i.e. in the interval

& < E,< &y, 9

where &, and &, denote the positions of the maximum
and the minimum of F(g), respectively.

The condition that A given by equation (8) be
positive, and the inequalities (9) following from it,
express the criterion for the onset of nonuniformity.

(iii) Since the instability condition (9) holds both
for constant strain rate and constant stress rate
testing, equation (7) provides a means of checking
on the equivalence of deformation conditions in the
two modes of testing with respect to the occurrence of
the PLC effect. This equivalence was confirmed
experimentally on Al-5 9 Mg alloys at 360 K, as
illustrated by table L

(iv) We notice from equation (8) that when ¢,
reaches the boundaries of the interval (¢,, &,), ie.,
when it takes the values &, or &, so that dF/d& becomes
zero, the transition between uniform and nonuniform
deformation is connected with A turning infinite.
This is distinct from the situation when the vanishing
hardening rate gives rise to a change of sign of 4,
which case can be referred to as bifurcation. This is in
keeping with the observation by Kocks [10] that
instabilities stemming from NSRS exhibit a more
abrupt behaviour than those originating from strain
hardening features.

Table 1. — Experimental steady state strain rates, &, obtained at 360 K during constant strain rate and constant
stress rate tests. Values at which the PLC effect occurred are underlined. The domain of the PLC effect is determined
by 9 x 107*s™! < & < 1072 s~ 1. Broken underlining indicates an intermediate situation where the PLC effect

occurred occasionally or was not well-pronounced.

Constant Strain Rate Test

g (™1 | 24 x107* 48 x 107* 9.6 x 10°*

24 x 1073

48 x 1073 9.6 x 1072 24 x 1072

Constant Stress Rate Test
g (™Y |1.96 x 1074 337 x 107* 942 x 107% 206 x 1073 372 x 1073 9.85 x 1073
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3.2 RELAXATION OSCILLATIONS. — We now consider
the behaviour of an individual cross-section in non-
uniform conditions with the help of equation (6)
expressed in the form
€ = h(g, — &)/(dF/dg). (10

When & = &, or & = &,, the derivative dF/d¢ vanishes
implying that & undergoes an instantaneous jump.
Such a jump necessarily takes place at constant
strain, but also at practically constant stress, for
stress changes cannot be transmitted faster than the
sound waves in the material. As a result, the trajectory
followed by the system in the F vs. & diagram involves
two jumps, as illustrated by figure 3. This trajectory
is necessarily periodic if the (unstable) steady state
strain rate, &, lies within the «forbidden gap »,
(¢4, &,). The system permanently tends to reach
steady state [note that beyond the interval (g, &,)
the sign of ¢ is opposite to that of ¢ — &,], but it finds
itself thrown onto the opposite ascending branch of the
curve F(g), over this interval, each time it reaches one
of the boundaries.

The mathematical expression for the cyclic tra-
jectory can be written in the form

€

where the first term originates from a regular inte-
gration of equation (6) and describes the parts of the
orbit which are covered with finite velocity, ie.
correspond to the ascending branches of F(g), while
the second term corresponds to the « jumps » Chang-
ing variables, &t — ¢ =2z y =2z and introducing
F(&, — z) = hf(y) we rewrite equation (11) as :

[z — f(»)].dz/dy = 0. 12

Equation (12) is formally identical with the equation

an

SN //
‘\ Ve
\
o \
2 ~
AN
0 €4 €2
Strain rate

Fig. 3. — Relaxation oscillations associated with the PLC
effect. The closed trajectory indicated by the arrows is
periodically followed by the strain rate in a specimen
cross-section; the double arrows denote the fast jumps
occurring when the boundaries of the « forbidden gap »,
& or &,, are reached.
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describing the motion of the Van der Pol oscillator
in the limiting case of very large coefficient in the
damping term. The typical cycles of slow-fast-slow-
fast motion along a closed orbit characteristic of this
limiting case are referred to as relaxation oscillations
[12, 13]. Furthermore, we notice that the graph y(z),
or (&), represents the familiar cusp catastrophe [12, 14]
as recently suggested by Blanc and Strudel [15].

Summarizing the behaviour of an individual cross-
section, we can state that it can be represented by a
nonlinear equation of the first order in & which can
be transformed into an autonomous one. There exists
one steady state which acts as an attractor when it is
situated outside the interval (¢,, &,) or as a repellor
otherwise. In the latter case a periodic orbit exhibiting
relaxation oscillations is obtained. An important
property of such a system is that all of its solutions
differ by a phase shift only : if &(¢) is a solution then
&(t — t,) is a solution either (¢, is an arbitrary shift
in time) [16]. This implies that once the origin of time
is fixed (e.g. at the moment when the system enters
the domain of oscillatory behaviour) the solution is
unique.

3.3 SPATIAL ORGANIZATION. — The fact that the
spatial coordinate, x, does not explicitly enter the
differential equation (4) implies that properly speak-
ing this constitutive equation is not a local equation.
This is why the growth of spatial fluctuations with
preferential wavelengths could not be investigated.
However, the system discussed has a simple kind of
self-organization. Since all cross-sections follow the
same orbit, with the accuracy of a time shift 7, = #,(x),
one is left to search for the form of #,(x). This is easily
done for the case of constant stress rate testing.
Differentiating both sides of equation (4) with respect
to x and combining with the corresponding form of
equation (6) we get, with the use of the condition
do/dx =0,

g+ [ —-8fE]leg =0 (13)
where the prime means differentiation with respect
to x. The solution of equation (13) reads

E— g = —ve 14
where v is an arbitrary constant with the dimension
of velocity. Differentiating with respect to time yields

£ = —v¢ (15

meaning that the strain rate has the form of a propa-
gating solution & = &x — vf). The spatial behaviour
can be thus obtained from the temporal behaviour of
an individual cross-section by setting ¢, = x/v. Accor-
dingly, the strain rate profile has the form of a succes-
sion of propagating bands with spatial periodicity
reflecting the periodicity in time found for a single
cross-section. Each band has two abrupt edges cha-
racterized by the strain rate jumps and traverses the
specimen with a constant velocity v (cf. Fig. 4).
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Fig. 4 — A PLC band and the corresponding strain rate
profile reflecting the time periodic behaviour shown in
figure 3. Depending on the ratio L//, no band, one band or
several bands can be active in the specimen at a given time.

3.4 PHYSICAL INTERPRETATION AND EXPERIMENTAL
CONSEQUENCES. — In the above considerations, the
propagation velocity v appears as an arbitrary cons-
tant, since no interaction between the cross-sections
was introduced. In practice, v is determined by the
material and the testing conditions and has a typical
order of magnitude of cm/s [17]. To our knowledge,
there exists no model to date that would be able to
predict the magnitude of v [5, 10}, and one can only rely
on experimental evaluation of it.

The occurrence of a gap in plastic strain rate stems
from the fact that a single dislocation cannot stay,
even for a limited time, in a situation between being
pinned or being free. If the plastic strain rate averaged
over a cross-section or over the entire specimen
happens to have a steady state value that lies within
the gap, the local values on the dislocation scale are
either much lower (dislocations dragging along their
point defect atmosphere) or much larger (free dis-
locations within a band). The macroscopic behaviour
thus appears as a complex composition of two kinds
of behaviour obtained in uniform conditions, ie. for
&€ <t andé > é,.

A practical consequence is that, contrary to a com-
mon belief, there is absolutely no point in attempting
to extract values of simple relevant microscopic
properties from the data pertinent to the instability
domain. What is measured in such cases is rather
a complex mixture of a large number of parameters.
The quantities having the real significance in con-
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nection with the PLC effect are the values of ¢, and &,,
the boundaries of the forbidden gap which are often
interpreted in terms of activation energies or diffusion
coefficients [8].

The present considerations point some new direc-
tions for experimental investigations.

(i) To take advantage of the simple solutions
obtained here, constant stress rate tests should be
employed preferentially. It is worth mentioning in
this connection that no simple solutions of the dis-
cussed type that would propagate with a constant
velocity are associated with the constant strain rate
mode of testing [5].

(ii) Periodicity with respect to time and to the
coordinate can be fully characterized by experi-
mentally determining the band velocity. As an example,
figure 5 shows a preliminary comparison of the
calculated and the experimental time intervals between
two successive steps (i.e., in practice, the period of
the PLC effect) for Al-59, Mg. The tests were per-
formed with constant stress rate at 360 K. The values
of the stress rate were chosen in such a way as to
correspond to steady state strain rates falling within
the forbidden gap. The comparison demonstrates that,
despite the roughness of the model, it appears to have

30
(7]
l-
<
20—
[ )
[ ]
10
[ )
)
0 1 d
10°3 10-2

Strain rate, s™'

Fig. 5. — Time (AT) between successive strain bursts in
Al-5 9% Mg deformed with constant stress rate as a function
of &, the steady state strain rate, within the « forbidden
gap » (T = 360 K).
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a remarkable predictive capability, which could be
further improved by relaxing restrictive approxi-
mations mentioned above.

(iii) From the results presented in figure 5 one
cannot infer whether the period remains finite or
becomes infinite when &, approaches the lower boun-
dary of the PLC domain, & =& =5 x 1074 s~ 1,
More generally, it would be interesting to investigate
the critical points where & = &, or & = &,, in order
to determine whether or not PLC bands appear with
finite width and in finite number, in particular, at
& = &y

(iv) Depending on the relation between the speci-
men length L and the spatial period of the propagating
strain rate profile, no band, one band or several bands
may be present in the specimen at a given moment.
A very particular situation would be found if the
distance / between the rear edge of a band and the
front edge of the next one is commensurate with L,
cf. figure 4. In this case, the discontinuous character
of the deformation curve would disappear because,
within a translation, the strain rate profile in the spe-
cimen undergoes no change with time. It appears of
interest to design an experiment for checking this
feature.

Concluding this section, we would like to stress
again the two basic properties of the PLC effect which
in combination provide a clue to the understanding
of this phenomenon. First, it is the periodic behaviour,
identified as relaxation oscillations, within a single
cross-section. Second, it is the existence of propagating
solutions unfolding the relaxation oscillations into
a spatially periodic band pattern moving with a
constant velocity. A large number of physical systems
can exhibit a similar behaviour, and no wonder that
there exists an extensive literature about analogues
of the PLC effect. In the next section a brief critical
review of this literature is given.

4. Analogues of the PLC effect.

Relaxation oscillations belong to a particular class
of nonlinear oscillatory phenomena, distinct from
bifurcational type of oscillations. Many examples of
this class are treated in classical textbooks, related
mainly to mechanics and electrical circuitry [18-21]}.
Here we only collect examples of systems which have
been considered explicitly as analogous to the PLC
effect.

A more general discussion, in terms of feed-back
processes, is found in [22], showing examples where
spatial periodicity of a property is connected with
propagation processes. However, contrary to the
statement by Frank [22], oscillations including elec-
trical transport processes are not strictly bound to
heterogeneous interfacial structure as demonstrated
in the next section.

4.1 ELECTRICAL ANALOGUES : THE GUNN EFFECT. —
The basic concept is the notion of negative differential
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resistivity (NDR) analogous to the negative strain rate
sensitivity (NSRS) [21, 23]. This point can be illus-
trated by various electrical circuits [18, 21] or inter-
facial devices (see, e.g., [24]) such as the tunnel diode.
An electrical circuit has recently been developed to
simulate the PLC effect; its properties have been
investigated with regard to similarities between the
NDR and NSRS [25].

In most of these examples (except, perhaps, in [25])
the analogy with the PLC effect appears somewhat
superficial since such a basic feature as band pro-
pagation is not considered. A much closer analogy can
be found with the electrical behaviour of bulk semi-
conducting devices exhibiting the NDR associated
with the Gunn effect.

According to Ohm’s law, charge carriers drifting
with a velocity v under the action of the electric field
e produce a current density

Jj=qnv 16)

where g is the charge and n the density of the carriers.
In certain bulk semiconductors, such as, e.g., n-type
GaAs or InP, the electric characteristic, j vs. €, exhi-
bits a range of NDR, cf. figure 6. The conditions
for this shape of the characteristic to occur as well as
a theoretical explanation are given by the RWH
(after Ridley, Watkins, and Hilsum) theory [26, 27]
which relates this effect to the field dependence of the
drift velocity.

From a comparison of figure 2 and figure 6, one can
easily establish a correspondence j <> ¢ and € « & (%).
In the regime of NDR (e.g, at a point A in Fig. 6),
any local charge fluctuation is bound to grow because
of the feed-back higher charge (higher field) — smaller

>d

Drift velocity

€a
Electric field

Fig. 6. — Negative differential resistance and the Gunn
effect. Electron drift velocity under an electric field (compare
with Fig. 3).

(® Note that this is not the kind of correspondence that
might be expected from a direct consideration of equation (1)
and (16), since one of the effects (Gunn) is force-driven and
the other (PLC) is flux-driven (cf. Ref. [22] for terminology).
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current — higher charge (higher field). Growth stops
when stable states on the ascending branches are
reached (e.g., points 1 and 2). Such devices can be
operated in various modes which would correspond
to various modes of mechanical testing in the PLC
case. In the so called dipole layer mode, there exists
propagating solutions for the field € which behave
quite similarly to the PLC bands under constant stress
rate conditions, as illustrated by figure 7 based on the
results of reference [28]. Band propagation is the
essence of the Gunn effect. Due to a diffusion term
incorporating interaction between the « cross-sec-
tions » the propagating bands in the Gunn case have
smooth edges, however, which distinguishes them
from the sharply edged PLC bands.

A band forms at places where doping fluctuations
or space charge accumulation facilitate nucleation,
very often near the cathode ohmic contact. Under
the bias voltage the band moves with a constant
velocity keeping its shape until it disappears at the
anode. The field then begins to rise uniformly until it
reaches a threshold value at which a new band can be
formed. Under other operation conditions, e.g., when
the bias voltage drops below the threshold value while
a band is moving, hopping bands can be obtained.
The latter conditions are analogous to constant strain
rate testing in the PLC case.

As in the PLC effect, the major properties of the
Gunn effect are the oscillatory behaviour within an
individual cross-section and propagation of this
behaviour into the adjacent bulk. In both phenomena,
the oscillatory output results from the periodic for-
mation of solitary bands. Nonuniformity arises from
the drive to achieve an average located within the
forbidden (unstable) part of the characteristic, through
a distribution of states in the stable part.

€ IX,t)

Fig. 7. — Propagating electric field (¢) waves in the Gunn
effect. The specimen length is L; the cathode ohmic contact
is located at x = 0. Successive profiles are shifted along
the vertical axis for clarity (after [28]).
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4.2 CHEMICAL AND MECHANICAL ANALOGUES. — Fol-
lowing Nicolis and Prigogine [13], an oscillatory
system is associated with autocatalytic reactions of
the form A — B, with hidden intermediate products
X, Y, ... not entering the global balance. Interesting
nonlinear features only appear with cubic forms, i.e.,
the model should be at least trimolecular. The analogy
with the PLC effect worked out recently [29] is based
on identifying A, B, X, Y, ... with certain dislocation
states (e.g., free, pinned, multiplying, sessile) connected
by simplified reaction constants. Although stepped
deformation curves could be simulated (without any
spatial organization), the physical relevance of the
underlying dislocation reaction mechanisms appears
questionable.

Usually quoted [30, 31] is the system consisting of
a mass connected to a spring and placed on a rolling
belt where a friction force is exerted. Another model
[32] introduces, in addition, a normal force increasing
with the displacement to account for strain hardening.
All of these systems exhibit relaxation oscillations,
and these instability mechanisms are known in the
field of mechanics under the name of « stick-slip ».

5. Concluding remarks.

In the present work, the PLC effect has been des-
cribed in terms of dynamics of a nonlinear system.
A comparison with analogous physical systems has
been given. A simple frame chosen made it possible
to use as a basis the properties of a nonlinear first-
order differential equation to obtain the time periodic
behaviour. This treatment is complemented with a
demonstration of the existence of moving deformation
bands.

A more elaborate description of experimental
behaviour in a wide range of control parameters
(temperature, composition, etc.) can be given using
this frame, provided that a reliable microstructural
model is available. Presently existing micromodels
do not appear to possess the required reliability,
however.

It should be desirable to elaborate more sophis-
ticated constitutive equations by including the inter-
actions between the deforming cross-sections. This
would yield local equations, the response of which
to spatial fluctuations could then be examined. On
the experimental side, simple tests proposed in section 3
to check on the predictions of the present model
would be useful for judging whether it can be used
as a basis for future development.
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