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Résumé. 2014 La densité d’états et la conductivité en présence d’un champ magnétique fort sont calculées par des
développements perturbatifs pour des potentiels aléatoires Gaussiens corrélés en des points spatialement séparés,
en dimension deux. Ce rapport de la longueur caractéristique des corrélations du potentiel d’impuretés et de la
longueur magnétique définit un paramètre ~. Pour ~ grand la conductivité est nulle et reste nulle dans le développe-
ment en 1/ ~. Pour ~ petit on retrouve des résultats compatibles avec ceux du modèle 03C3 non linéaire.

Abstract 2014 The density of state and the conductivity in the presence of a strong magnetic field are calculated by
perturbation expansions for a Gaussian random potential correlated at different positions in two dimensional space.
A parameter ~ is introduced which characterizes the ratio of the length defined by the impurity potential correlations
to the magnetic length. For large ~, a 1/~ expansion shows that the conductivity vanishes. For small ~ one recovers
results consistent with that of the unitary non-linear 03C3 model.
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1. Introduction.

Anderson localization by impurities under the
influence of a strong magnetic field in two dimensions
has drawn recently a considerable interest in view
of the relation with the quantized Hall effect. The
existence of extended states at the centre of the Landau
bands is an important problem which has been
studied by theoretical calculations [1-7] and numerical
simulations [8, 9].

In the usual approach of a white noise random
potential the impurities at different points are sta-
tistically independent. The typical length related to
the impurity potential correlations is zero. However
in a strong magnetic field, in which the magnetic
length 1 eB is small, the model of a white noise
random potential is questionable. Therefore we have
allowed for some spatial extent of the random potential
correlation function. It is known that some materials

such as GaAs-AlGaAs heterojunctions are indeed
described by such correlated random potentials [10].
In a strong field the electrons occupy the lowest
Landau bands. The conductivity, as given by Kubo
formulae, involves matrix elements mixing nearby
Landau levels. However in the strong field limit, one
can calculate the conductivity as a matrix element
of an operator in the lowest Landau level n = 0 and
in fact obtain it through Einstein relation from a
diffusion constant which may be entirely calculated
within the n = 0 subspace.
The calculation is simpler for the lowest Landau

level since the unperturbed Green function is a simple
Gaussian. For the white noise potential an exact
expression for the density of states has been derived
by F. Wegner [11, 12]. In addition to a direct applica-
tion to the physical systems mentioned above, it is
useful to consider these correlated random potentials
since they provide a new expansion parameter in the
theory of localization. In the white noise case the

only parameter in which one can expand is 1 /N,
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N being the number of orbitals per site [5, 6, 13].
For the problem considered in this work we have an
extra-parameter q which is defined from the ratio
of the length, related to the impurity potential, to
the magnetic length. In the limits of large and small q
the density of states and the conductivity are exactly
calculable and they can be expanded in powers of
1/yy and q respectively. (The white noise limit cor-
responds to the intermediate case q = 1.) The conti-
nuation to values of q smaller than one, though it

corresponds to an unphysical situation, can be made
formally term by term in the expansion. In fact though
it is not apparent at this stage, the q - 0 limit is
related to the 1 /N expansion about the white noise
limit.
The diffusion constant has been investigated for the

white noise random potential by Borel-Pade analysis
[4, 7], and by an 1 /N expansion [5, 6]. From these
new q and 1/ r¡ expansions, we have obtained the
diffusion constant which does not show any indication
of the existence of extended states at the band centre.
The possibility of expanding both inn and 1/ r¡ may
be useful if one wants to investigate the presence of
exponentially small terms such as e-1~~ in the theory,
suggested from the non-perturbative topological term
of Levine et al. [1, 3]. Throughout this work we have
restricted ourselves to zero temperature and infinite
systems. The problem of edge state [14] is thus not
considered in this paper.

2. Spatially correlated random potential

The lowest Landau level n = 0 is spanned by the
orthogonal wave functions [15]

These are the eigenfunctions of the constant magnetic
field problem in the gauge in which

for the eigenvalue heB/2 m. In the following we have
worked in units in which h = eB = 1 ; we have
denoted z = x + iy.
The one-particle Green function restricted to the

lowest Landau level, in the absence of impurities is
obtained by a sum over the eigenstates (2.1) and is
equal to

The random potential due to impurities is assumed

to be Gaussian, with the following characteristics

It is the effect of this new length d that we want to
explore. The usual white noise problem corresponds
of course to the d = 0 limit.

Let us recall here some of the elements of the white
noise problem. The expansion in powers of w yields
a series of graphs. The propagator (2.2) being a
Gaussian, any graph may be calculated from deter-
minants of p x p matrices, at order wp. The gene-
ralization to the random potentials (2.3) is very
similar : the propagator and the correlation functions
of the random potential being Gaussian, a graph
is again related to the determinant of a quadratic
form. However since the correlation function of the

potential is not a 6-function, there are twice as many
integrations and at order wP we have now to consider
2 p x 2 p matrices. For instance for the one particle
Green function averaged over the impurity potential,
the expansion in powers of w at finite d leads to

with y = 1 /[2 ~(E - ~CC~/2)]. For example the matrix
for the graph of figure 1 is

with a = 2/d 2. The determinant of the above matrix
is equal to

Fig. 1. - An impurity scattering graph of order w2.
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and we have (with w = 2 new) from this graph

In fact the combination d2/2 + 1 always appears in
this expansion. Therefore we denote this quantity
by y

In the white noise case il = 1, the determinant may
be calculated by a direct inspection of the corres-
ponding graph, since it is known to be equal to the
number of Euler trails of the graph [11] (an Euler trail
goes through each line of the graph once, in the
direction of the arrows). For crossed ladder graphs
the number of Euler trails is a polynomial in the
number of parallel impurity lines. For instance for the
graph of figure 2a,

For the same graph, with an arbitrary il, an explicit
calculation shows that

In fact there is a rule which allows one to find the
determinant of the graph from the il = 1 result

immediately : one replaces ni by nd r¡ and multiply
by a power of n related to the order of the graph.
The expansion in powers of w is an asymptotic

series. We follow the approach to the white noise
case and perform a Pade-Borel resummation [4]
of the series. Then we parametrizes the one particle
Green functions as

An infinitesimal s is introduced in order to distinguish
the retarded and advanced Green functions. The

angle 0 is related to the value of the energy. At the band
centre 0 is - n/2.

Calculating all the diagrams up to fourth order in w
we obtain

in which

The two-particle Green function may also be
calculated by the same technique. Defining

it may be expanded in powers of w, and since all the
integrals are Gaussian one obtains

The factor v’ in the exponent of (2.15) is another

determinant, again given by a simple counting problem
for q = 1, and generalized to arbitrary by a simple

replacement. For instance, for the graphs of figure 2,

From K (q) one obtains an expansion of the diffusion
constant in powers of w

in which p is the order of the graph and I the difference
between the numbers of advanced and retarded

propagators in the graph. The expansion parameter x
is related to the modulus square of the’propagator;
since the imaginary part is the density of states one
may also write

in which
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Fig. 2. - Graphs of order 1/ N 2.

An explicit calculation yields

In the white noise case, these series have been ana-

lysed by the Borel-Pade method At the band centre,
the sign of the successive terms of the series are

alternating and the procedure leads to accurate values
(compared to the exact solution) for the density of
states [4, 7]. The same method was then applied to the
diffusion constant, or rather the ratio D/AZ of equa-
tion (2.19) ; this gave a value of about 1.4 and therefore
a conductivity u (namely 03C3xx) at the band centre

’)

where it has a peak of 1. mho.

From the series (2. 19) for arbitrary q, one first sees
that D roughly decreases like 11 r¡ at large q (as explain-
ed in 4). If we take numerical values of d - 300 A,
and a cyclotron radius 1 ~ 100 A, i.e. r¡ close to five,
one finds by Borel-Pade 2 D N 0.2 and 03C3xx ~ 2.8 xY 

A 2 xx

10- 6 mho.
For q - 3, one has Uxx ’" 5.6 x 10-6 mho. These

estimates should be useful for a comparison with the
experimental values of the peak of the conductivity.
In the white noise case, there is an excellent agreement
between the calculation and the observation in Si-
MOSFET [16] which gives 03C3xx ~ 1.7 x 10-5 mho.

3. 1/N and small" expansions.
The 1 /N expansion of the white noise problem, in
which one introduces an internal index n = 1,.... N

which labels the atomic orbitals at a given site, is also
applicable to a random potential with arbitrary 1.
This generalization does not involve any new technical
procedure and the details of the method may be found
in reference [5]. The 1 /N expansion has a logarithmic
singularity at order 1 /N 2. At the band centre one
finds

neglecting constants over N 2 versus In 81 N 2.
This logarithmic behaviour is similar to that found

in a field theoretic approach based on the non-linear
a-model for the unitary group [17-19]. These a-models
lead to a localized behaviour.
The small parameter suggested by equation (3.1)

is in fact the ratio r~/N. Therefore instead of taking a
large N limit at fixed ~, one may consider a small q
expansion at fixed N (at N = 1 for instance). The
small I expansion of equations (2.12) and (2.19) may
be performed after rescaling x (i.e. w) as

In this limit equation (2.12) gives simply y = 1.
Furthermore in the small q limit all the diagrams for
Z~ = Re Z+ vanish. Hence for small q, A1 =

(see Eq. (2 .11 )). From y = 1 one
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obtains ~-t-~=27cw~. The density of states

which is proportional to A2 C2 is then given by a
simple semi-circle law

in which

The small il expansion is similar to the 1 /N expan-
sion, and in fact simpler. The factors v and v’ in (2 .1 ~
are simply expanded in powers of yy. By this method
keeping only logarithmic terms and neglecting cons-
tants, one finds

Comparing with equation (3.1) one verifies that (3 . 5)
agrees completely with the 1 /N expansion at N = 1.

This logarithmic behaviour is identical to that which
was found in the unitary non-linear 6-model, which
predicts a localized behaviour at all energies. However
non-perturbative effects due to a possible additional
topological term [1] would not appear in this small
expansion. Similarly new interaction terms in these
a-models such as Wess-Zumino terms [20, 21] can
produce an infra-red stable fixed point and may
explain the presence of extended states at the band
centre.

If non-perturbative effects, such as (exp - I/il)
terms, are important, they would of course not be
visible in a small q expansion, but they would contri-
bute to the large q-lhnit which will be considered
below.

4. 11" expansion.
The large ?I limit will provide a complementary
approach to the localization problem. In the large
limit, with w and hence x, proportional to q, one reads

from (2.12) and (2.19) that A and 2 nD have the) ~ ) 
A 2 A 2

same expansions in powers of xlq (using identities

such as sin 3 6 - 2 cos 2 0 + 1 . This is true to all
sm 0 /

orders and may be seen either from the fact that the

diagrams simplify in the large q limit (the determinants
become a simple power of ~) or from a path integral
formulation given below. Therefore D and the conduc-
tivity vanish and in the leading large ?I limit all states
are localized Physically, in this large ?I limit, there
is no more potential gradient and therefore the

conductivity should vanish.
The algebra of the large q limit may be done simply

by noticing that in the large d limit, the impurities
correlation approach a constant independent of the
positions.

and the series in powers of w for the Green’s function
becomes

w o , ’

with 
-"

At higher orders, there are several effects but in
2 zd . is re laced - 

1 2 + 1.p 2 is replaced n= 1/2 d2 + 1.

Taking the imaginary part of (4 .1 ) one obtains a
simple Gaussian for the density of states

with the reduced energy v of equation (3. 4).
It is instructive to compare the exact result of

Wegner for the white noise case q = 1, with the
average of the small q and large q results (3. 3) and
(4.2). For instance at the band centre v = 0, it gives

whereas the exact result is

A comparison for the whole range of energies is

depicted on figure 3.

Fig. 3. - A normalized density of state p ~ as a function
of v = J2 1t r¡/w(E - 1iwc/2). A smooth curve represents the
exact solution for q = 1 and another curve is an average
of q = 0 and r¡ = 00 solution.
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Summing all the diagrams for the density of states
in the large il limit was easy (Eq. (4.1)); an algebraic
approach is much more convenient if one wants to
calculate the conductivity. Let us first consider the

Green’s function again and write it as a Gaussian

integral over commuting variables, normalized by
a Gaussian integral over Grassmannian (i.e. anti-

commuting [12, 22]) variables

The averaging over the random potential is easy since

One obtains therefore, in this large d limit,

One still has to express that ~o and belong to the lowest Landau level, i.e. using the basis (2.1)

in which the c. and bm are commuting and anticommuting variables respectively. This leads to the representation

Therefore

which coincides with the result (4 .1) since

The I Id2 expansion is generated from the representation

with

by expanding in powers of f. At first order this leads to) I
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or equivalently to the replacement of A by

The two-particle Green’s function, obtained by averaging the product of a retarded and of an advanced
propagator, is given by the same technique

in which

In the large ?I limit, the integrals (4 .13), after projection (4. 8) into the lowest Landau, can easily be performed
and yield the result

for the Fourier transform of (4.13).
This function does not show any diffusion pole; indeed a diffusion pole would appear in the small q, small

(o = E 1 - E2 limit as a contribution of the form

A systematic 1 / r~ expansion may be obtained by expanding w(r - r’) in powers of )j’(r - r’), defined in
equation (4 .11 )

Starting from (4.13) and representing the fields by the operators c,. and bm of (4.8), one obtains a pertur-
bation series

with

The coefficient of (1 / r¡)n is a polynomial of degree n in A’ = 2 7rw/ r¡. It is thus possible to obtain (4 .16)
directly from the series (2.19), for the diffusion constant. Indeed using the definition (4.15) of D and Einstein’s
relation Qxx = eDp, one obtains
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The real part of u(w) is then equal to

The function Re u(w) is not singular at the band centre (8 = 0, and it vanishes as W2 in the small c~ limit;
thus the 1 I r¡ expansion does not indicate any sign of extended states. At the band centre we obtain

However the imaginary part of u(w) is divergent at small co; at the band centre for instance

The divergence of Im u, which is already present
at order 1 I r¡, is a bit difficult to interprete within this
framework. Whether it is a true divergence, or a

manifestation of the change of the behaviour of
Im a((o) from a linear law in m to some other power
is unknown. However, from the perturbation for
some particular graphs, we have certainly logarithmic
singularities such as In (W2 ~). Such logarithmic terms
lead to the logarithmic divergence the dielectric
constant which is proportional to Im a((o)l(o of the
small w limit. The divergence in equation (4. 20) may
be interpreted as the existence of In (W2 ?1) term in.
The density of states may be recovered from equa-

tion (4.16) in the limit of small momentum q - 0
at fixed w. One obtains, at the band centre,

Putting q = 1 in this 1 I r¡ - expansion, it yields

p./w= 0.140, whereas the exact value is 1/2 ~2=0.143.TC"

5. Discussion.

We have discussed an arbitrary value of q. For small 1,
we recover the behaviour for the unitary non linear
u model. For fixed large tl, the diffusion constant has
still a In 8 behaviour if we restrict ourselves to order
- I/N2 graphs. The introduction of q, therefore,
does not change the class of universality. Indeed, for
large q, we can replace the summations of the number
of impurity lines by integrals in the 1 /N expansion.
The large q limit has been discussed before as a

classical limit in which an electron moves along an

equipotential line and these equipotentials [23, 24]
become extended only at the band centre. In our

treatment, the change of q leads to scaling of the
conductivity and we have not obtained any indication
of extended states within the 1 /N expansion for the
large q case.
The case of infinite il becomes equivalent to no

gradient of the random potential and it leads to

vanishing conductivity. By the 1 I r¡ - expansion, we
have obtained a systematic method to calculate the
density of states. For the conductivity, we find a
divergence in the small w limit. This is interpreted
as due to the In (W2 q) term in the expression of
Im a((o). From the renormalization group analysis,
in analogy with the treatment of reference [25], this
suggests that

However, this equation should be corrected due to
the existence of a divergent term in equation (4.20).
If this divergence is proportional to In (cv2 q), then
the dielectric constant becomes logarithmically diver-
gent for small m.

In our 1 I r¡ expansion, we have neglected possible
tunnelling terms which would behave like e-n and
there is a possibility that the conductivity u xx behaves
like e-n at the band centre. It is interesting to perform
a higher order Borel-Pade analysis for the large q case
in order to see whether 6xx does decrease as e-n.

However, as we have discussed, the change of q is just
a change of scale, and we must take into account more
diagrams to decide. For infinite q, the system has no-
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potential gradient although the density of state has
a Gaussian form. In this case like for a free electron
gas, under a magnetic field, there is no finite con-

ductivity, but simply a diamagnetic current at the edge
of the sample. It is interesting to consider the relation
of this diamagnetic current and of the Hall current
in the large q case.
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