
HAL Id: jpa-00210146
https://hal.science/jpa-00210146

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Loss of affineness in gels and melts
J. Bastide, J. Herz, François Boué

To cite this version:
J. Bastide, J. Herz, François Boué. Loss of affineness in gels and melts. Journal de Physique, 1985,
46 (11), pp.1967-1979. �10.1051/jphys:0198500460110196700�. �jpa-00210146�

https://hal.science/jpa-00210146
https://hal.archives-ouvertes.fr


1967

Loss of affineness in gels and melts

J. Bastide (+), J. Herz (+) and F. Boué (*)

(+) Centre de Recherche sur les Macromolécules, 6, rue Boussingault, 67083 Strasbourg Cedex, France
(*) Laboratoire Léon Brillouin, CEA Saclay, 91191 Gif/Yvette Cedex, France

(Reçu le 3 août 1984, révisé le 28 mai 1985, accepté le 26 juin 1985)

Résumé. 2014 Nous discutons des mesures, par diffraction de neutrons aux petits angles, du facteur de forme d’une
longue chaîne (M &#x3E; 2 x 106) dans deux milieux déformés, de déformation comparable :

(i) Un fondu étiré 4,6 fois (soit en direction perpendiculaire, une déformation 1/~4,6 ~ 0,46). La longue chaîne,
deutérée, est dissoute dans de longues chaînes hydrogénées.

(ii) Un gel, réticulé en solution, déformé par séchage (dégonflement de 10, soit dans une direction, une déforma-
tion de 10-1/3 ~ 0,46). La longue chaîne deutérée est réticulée avec les autres chaînes.
Nous pensons qu’une comparaison directe des deux facteurs de forme est intéressante, pour les temps considérés

(« plateau caoutchoutique ») : la chaîne est un chemin marqué obligé à passer, pour le gel, par de nombreux points
de réticulation, pour le fondu, par de nombreux points d’enchevêtrements équivalents, dans ce domaine de temps,
à des points de réticulation (les mailles sont comparables).
En plus de cette comparaison directe nous comparons aux deux modèles classiques de l’élasticité caoutchoutique

(affine et fantôme), pour lesquels nous avons calculé le facteur de forme.
Malgré certaines différences les données pour les deux systèmes sont plus proches entre elles qu’elles ne le sont

des modèles classiques : le désaccord avec ceux-ci suggère une perte d’affinité à des échelles plus grandes que la
maille.

Abstract. 2014 We discuss measurements by mean of small angle neutron scattering of the form factor of a long chain
(M &#x3E; 2 x 106) in two comparably deformed materials :

(i) A melt, stretched 4.6 times (leading, in a perpendicular direction, to a deformation 1/~4.6 ~ 0.46). The long
chain, deuterated, is dissolved in the matrix non-deuterated chains.

(ii) A gel, crosslinked in solution, deformed by drying (deswelling of 10, leading in one direction to a deformation
of 10-1/3 ~ 0.46 too). The long chain was crosslinked with the other non-deuterated chains.
We believe that a direct comparison of the two form factors is interesting for the times here involved (« rubbery

plateau ») : the chain is a labelled path which is obliged, for the gel, to pass across numerous crosslinks and, for the
melt, to pass through numerous entanglement points (meshes are comparable in the two cases).

In addition to this direct comparison, we compare the two classical models of rubber elasticity (affine and phan-
tom), for which we have calculated the form factor.

In spite of some differences, data for the two systems agree more between them than they do with classical models :
the disagreement with those suggests a loss of affineness at larger scales than the mesh.

J. Physique 46 (1985) 1967-1979 NOVEMBRE 1985,

Classification

Physics Abstracts
46.30J - 61.12 - 61.40K

1. Introduction.

The purpose of this paper is to set up a scientific

background and to use preliminary data for compar-
ing two media.
- A gel is synthesized by crosslinking a semi-dilute

solution (T = 0.1, T polymer volume fraction) of
large polystyrene chains in a 0 solvent (cyclopentane,
see below). The deformation considered is a deswelling
from 10 times in volume to the dry state.

- A melt is constituted by large polystyrene chains
in bulk. The deformation process is the following :
first the sample is stretched rapidly in the molten state,
above the glass transition temperature; then, it is kept
in a constant shape and after a time t quenched in the
glassy state, which freezes the relaxation. 

Though different, both systems have a common
feature : a state of elastic deformation, i.e. one that is
highly recoverable when the constraints are released.
For the first system, the constraint is to impose the
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density of bulk chains upon the sample. Swelling the
sample at the initial concentration in the same solvent
would release the constraint. The deswelling is iso-
tropic : in any direction, the deformation ratio is
therefore (1/10)1/3 = 0.464. For the second system,
the constraint is to impose a new length L = 4.6 Lo,
with Lo being the initial length. Since the deformation
is performed at a constant volume, the deformation
ratio in a perpendicular direction is 1/(4.6) 1/2 = 0.466.
In this paper, we consider only small values of time
in the case of the melt

Tter being the maximum time of relaxation of the
system. The strong dependence of Tter upon the
molecular weight M of the chains (Tter oc M 3.4)
allows condition (la) to be verified if the chains are
large (here M - 2.5 x 106). This leads to a quasi-
total recovering when the constraint is released :
that is, if after the time t, the sample is unclamped
instead of quenched, its length returns nearly to Lo.
An additional condition

is satisfied, where’ { r } represents the short time
spectrum. (In other words, the rheologists would call
the range of times corresponding to bulk (la) and (lb)
the « rubbery plateau regime » [1].) The short time
spectrum also exists for permanent networks : since
the duration of the deswelling, t’, is very large, condi-
tion (Ib) is fulfilled for our dried gel. On the other hand,
condition (1 a) for t’ is also verified, since the maximum
time of relaxation of the gel is infinite.

Thus, a close relationship exists between the two
systems in spite of their apparent differences. More-
over, a parallel can be drawn between these systems
in the sense that both are labelled, a requirement for
small angle neutron scattering experiments. In the
case of the melt, we mixed deuterated chains with
undeuterated chains : this allowed us to measure the
form factor of the deuterated chain [2, 3] modified by
the deformation. In the case of the gel, instead of
labelling the elementary mesh as was done previous-
ly [4, 5], we labelled a path in the network : i.e., the
same deuterated chains as used for the melt were
mixed into a solution of undeuterated chains. After

crosslinking, a gel in which these chains were statisti-
cally linked to the network structure at a large number
of points was formed (see below). Following the same
treatment as for the melt, we could measure the form
factor of this labelled path in the deformed state.

In addition to making a direct comparison between
the two form factors, we were able to test the theories
usually applied to those kinds of systems.
An essential feature of the rubberlike elasticity is

the loss of affineness of the deformation when the scale
is decreased. The deformation of these materials

appears to be classically homothetic to the deforma-
tion of the sample down to the scale of the micron.

On the other hand, at the very local scale, the mono-
mer unit is not deformed. Consequently, the deforma-
tion « needs » to be progressively lost at a semi-local
scale. The textbook model of the conformation of one
chain linked by its extremities to fixed points but free
to rearrange between them shows such a loss of
affineness. Thus, a first satisfactory explanation of the
rubber elasticity was obtained by identifying a network
with a collection of such chains, i.e. connected to
fixed crosslinks the positions of which are displaced
affinely in the macroscopic strain [6]. This considera-
tion of the crosslinks as such particular points is less
important in a second model called the « phantom
network ». An additional freedom is given here : the
crosslinks are assumed to fluctuate freely around
affinely transformed mean positions [7].

These models were originally developed for per-
manent networks and for slow deformation (i.e. those
with condition (la) for the time t’ characteristic of the
deformation). But they should also apply to polymer
melts under certain conditions. These conditions
must fulfil both (1 a) and (1b). Then the melts of long
chains are described as temporary networks, the tem-
porary crosslinks being attributed in modem theories
to the entanglement points. In the range of times
considered here, this network of entanglements cannot
be destroyed by Brownian motion, so the melt should
be considered comparable to a permanent rubber and
be described by the same theories.

First we want to establish whether both systems
undergo the same loss of affineness and, second, to
test classical theoretical descriptions of process. Small
angle neutron scattering conveniently furnishes infor-
mation on pair correlations at any scale along the
labelled chain. As the labelled objects are large, we
can probe the deformation on a large range of dis-
tances. These distances cover the whole semi-local

range, which is the pertinent region in which to observe
the loss of affineness. The theoretical description of
this region will finally be tested by comparing the
experimental data to the theoretical form factors
which we have evaluated numerically.

2. Experimental.

2.1 SYNTHESIS OF HIGH MOLECULAR WEIGHT POLY-
STYRENE SAMPLES. - Polystyrene and deuterated

polystyrene samples were prepared at low tempera-
ture ( - 70 OC) in tetrahydrofurane solution by anio-
nic polymerization. The synthesis was carried out in a
glass reactor under a slight argon pressure. Anhydrous
tetrahydrofurane (THF) was obtained by distillation
from a sodium benzophenone solution and kept
under argon. The monomers were distilled on sodium-
wire. A monofunctional carbanionic compound in
THF solution, phenylethyl potassium, was used as the
polymerization initiator.
The anionic synthesis of polymers in the high

molecular weight range (above 106 g . mol -1) requires
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extreme experimental conditions excluding the pre-
sence of even minute traces of proton-donating
impurities capable of « killing » the growing polymer
chain-ends. Therefore the solvent is first introduced
into the reactor and the impurities are deactivated by
the addition of some drops of the initiator solution
until persistence of the characteristic red colour of the
initiator-carbanion. About 10 % in volume monomer
is then added, and the very small traces of impurities
still present in the styrene are neutralized by the addi-
tion of a few drops of a diphenylmethyl potassium
solution in THF until persistence of a pole red colour.
The latter organometallic compound is able to react
with the impurities but does not initiate the polyme-
rization reaction of styrene. Polymerization starts

only after the very small amount of initiator solution
required to obtain samples in the high molecular
weight range is added.

After the reaction, the carbonionic chain ends are
protonated by the addition of methanol. The polymer,
obtained in an almost quantitative yield, is then

precipitated in methanol, washed and dried.
Polymers in a molecular weight range between 106

and 4 x 106 g . mol -1 were thus prepared. Their
molecular weight distribution ranged between 1.3
and 1.8, and some of the samples were fractionated.

Deformed melt samples. - Strips of polystyrene
of 2 cm x 8 cm x 1 mm were made from a mixture of
deuterated chains dispersed in ordinary polystyrene
chains of smaller molecular weight (see Sect. 3). The
mixture was then cast and moulded [8-10]. The strips
were stretched uniaxially, at a constant temperature
of T = 140 OC (well above the glass transition tem-
perature of 100 OC) in a silicone oil bath; the elonga-
tion ratio was 4.6 and the duration of elongation was
5 s. The samples were left at constant length for a
time t, then taken out of the bath and brought to room
temperature (quenching). Some of the samples were
first observed after a first relaxation (t = tl), then
dipped again in the oil bath for a time t2 : this is taken

to be the equivalent of a total duration t = tl + t2.
For the purpose of this paper we observed only the
values of t = 10 s, 1 min, 10 min, and 40 min ; we give
data for two values of t, 1 min and 10 min. The elonga-
tion ratio was tested by marks on the samples by
comparing the distance between the marks before and
after the deformation relaxation. It was verified that
the macroscopic deformation was such that

In the same way we took care to observe a part of the
stretched strip where no change of shape occurred
during the second relaxation. The obtained samples,
ready to be put into the neutron beam, were then kept
at room temperature. Different features about the
molecular weight will be discussed in section 3.
Gel samples. - Gels were prepared from mixtures of

1 % (in volume) of the same deuterated chains as
used in the melt and 99 % of a protonated matrix (see
Table I) dissolved in cyclopentane at a polymer
volume fraction of 0.1. Cyclopentane is a 0 solvent for
polystyrene at T = 20°C. At T = 25°C (- 20 OC),
the statistics of the chain are Gaussian at short scales

(i.e. shorter than the size of the « thermal blob » [11]).
On the other hand, since the concentration 0.1 cor-
responds to the semi-dilute regime, the statistics are
Gaussian at large scales too (because intrachain cor-
relations are screened by interchain interactions [12]).
These polymer mixtures were radiation crosslinked
by exposure to a gamma ray source (Co 60) at 25°C.
The description of the mechanism of the reaction will
be published elsewhere [13]. It is, however, important
to note that the solvent molecules on which radicals
are initiated not only act as a diluant but also play an
active role in the chemical linking of the chains. The
practical consequences are the low doses of irradiation
necessary to achieve crosslinking (10 % of that required

Table I. - Molecular weights of polymers (measurements of C. Strazielle, A. Lapp, C.R.M.).

(*) For deuterated chains, the real masses are given (i.e. oc mp = 112 instead of mH = 104 for the mass of the monomer).
JOURNAL DE PHYSIQUE. - T. 46, N° 1 l, NOVEMBRE 1985 121
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to crosslink bulk polystyrene) and the very small rate
of chain cutting. Depending on the time of irradiation,
gels with various crosslinking densities were obtained
and studied by SANS. In this paper we will focus on
one sample, R54. It can be characterized by its swell-
ing degree Q = yvdry (V equals the volume of the
swollen sample, Vdry equals the volume of the dry
sample), measured using an optical method [14], [39]
by its elastic modulus G (measured in uniaxial com-
pression) in pure toluene, and by its cooperative diffu-
sion constant Dc, again in pure toluene, determined
in Dr. Candau’s laboratory by quasielastic light
scattering spectroscopy analysis [15]. The obtained
values

are very comparable to those of calibrated gels synthe-
sized by endlinking elementary chains with molecular
weight Mw = 35 000 [15]. Though the crosslinking
is undoubtedly less regular for the present gel, we
believe that the value M = 35 000 is a reasonable
estimation of the average molecular weight of the
network mesh. To study the deswelling mechanism,
we dried the samples and cut them in the shape of
small disks which were then polished; from the state
of preparation where the chains are Gaussian, the
deswelling is ten times in volume. An isotropic disk of
the uncrosslinked mixture (melt) was prepared at the
same time.

Neutron experiments. - The two measurements

were performed at two different periods, once using the
D I I spectrometer and the other the D17 spectrometer
(both of ILL reactor, Grenoble), in a setting giving
approximately the same q characteristics (q is the

scattering vector). The detectors are bidimensional.
Thus, in the case of stretched samples the scattering
was anisotropic and cells of the same q modulus
regrouped by sectors of 20 (resp. 10) degrees for

parallel (resp. perpendicular) direction to the elonga-
tion axis, giving S(qll) (resp. S(q.1)). For deswol-
len gels the scattering was isotropic (as was the

deswelling), and the regrouping was annular.
In both cases the signal was subtracted from the

incoherent part due to hydrogen nuclei and normaliz-
ed by transmission thickness. The obtained quantity
is called normalized coherent scattering and will be
noted S(q).

3. Problems associated with the difference between
the molecular weights of the labelled chains and the
matrix.

In an ideal experiment, the molecular weights of the
deuterated and the non-deuterated chains should be

equal. This would have the following two advantages :
- For the melt sample, the characteristic relaxa-

tion times would be the same for labelled and matrix
chains and fulfil equations (la) and (lb) in the same
way.
- For both gels and melts which belong to the

case of uncompressible binary mixtures, it has been
shown [3] that the normalized coherent scattered cross
section S(q) can be expressed, within the framework
of a good approximation, as follows :

sent respectively the (intramolecular) form factor of
the deuterated and undeuterated chains. NH and ND
represent the polymerization indexes of these chains
respectively. This relation can also be put in the form

and if NH now equals ND, the equation reduces to

and this allows us to extract SD(q) from one measure-
ment.

Here H and D masses are different in both the melt
and the gel before crosslinking. The precise values of
the masses are in table I. For the gel before cross-
linking, MD = 2.6 x 106 and MH = 7.6 x 105 ; for
the melt, before annealing (see below), MD = 2.6 x
106 and MH = 1.6 x 106.

3.1 EXTRACTION OF THE FORM FACTOR. - We now
use equation (3) with different SH and SD. This would
make necessary to do at least two experiments (for
two values of OD) with exactly the same deformation
history, which is difficult. Here we have just used
equation (4) to obtain SD(q) ; thus our result is spoiled
by the form factor of the non-deuterated chains. The
error s(q) that it produces is evaluated in appendix 1.
There we give the form factor for a chain of mass
8 x 105 deformed under same conditions (by drying
a gel). At high q, the curves are rather close together;
the error is maximum at the lowest q. For the gel,
because OD is small it will never be more than 1 %. For
the melt, it will be 5 % for q = 1 to 2 x 10-2 A-’,
but less than I £ for q = 6 to 8 x 10-2 A-’.

3. 2 RELAXATION TIMES AND PLATEAU BEHAVIOUR.,,
The difference between MH and MD has no rheological
effect for the gel since we are far above the gelation
point (see Ref. [13] ; MH/M.erh &#x3E; 20). However it has
an effect for the melt. As explained in the introduction
we need to obey

often called the « rubbery plateau regime ». The left-
hand inequality (i.e. Eq. (lb)) allows us to assume
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that only the terminal time is relevant - that is, the
modulus is well described by a single exponential
G(t) = G’ exp(- tiTter). The right-hand inequality
allows us to assume a very weak decay of G(t) : it

appears close to a plateau in log G(t) - log t repre-
sentation. Estimation of the maximum time of the T’ trl
2max is done in references [1] and [8, 9] as follows. The
Rouse model (free chain in a viscous medium) is in
agreement with the data for t  ,max - Tmx appears
equal to the maximum Rouse time of a chain of mass
Me. Me is the molecular weight between entanglement
as pulled from G§$ = kB TIMe’ as detailed in refe-
rence [1]. In addition, all times depend on the tempe-
rature by the same prefactor (WLF superposition) [26].
We made various estimations of the different times in
earlier [8, 9, 30] papers. At a standard temperature
of 117 °C, we gave

and we checked the value of terminal time for M =

7.6 x 105 in different ways [8, 9,10, 40] :

Taking a M 3 dependence (weaker than the actual
M’-’), we obtain

for the matrix chain, and

for the labelled chain. Times t used in the experiment
are 60 s and 600 s at T = 140 OC, which gives 3 x 104
and 3 x 105 s at 117 °C using WLF superposition
coefficients [1]. Thus, condition (1 b) is fulfilled (3 x
104 s, 3 x 105 s &#x3E;&#x3E; 10 s), as is (1 a) for Tterlab as well as
for Ttermat’

3.3 EFFECT OF ANNEALING. - Before performing the
step strain and relaxation experiment the melt sample
must be perfectly relaxed. That is, after moulding
(which induces strains) it must be annealed. The dura-
tion of this process is proportional to the maximum
relaxation time. When both the matrix and the labelled
chain are very large, the latter is very long, even at high
temperature (e.g., Tter &#x3E; 10 hours at 180 °C for
M = 2.6 x 106). At such temperatures another pro-
cess becomes important : the chemical degradation.
Therefore, in order to reduce the time of annealing,
we chose a lower molecular weight (by a factor of 2)
for the matrix. In spite of this choice, a final G.P.C.
analysis of the samples after annealing revealed an
increase in the polydispersity from 1.15 to 1.5 for the
matrix chains (there is no information about the
deuterated chains because they are in too low a con-
centration). We believe that this is not too substantial
a modification. A possible check for the deuterated

chain is that of the form factor for the isotropic case :
it is close to the theoretical one for a monodisperse
chain and also close to that of the same chain dissolved
in the smaller matrix chains used for the gels, for which
the melt wafer was annealed ten times less. Recent

experiments to be reported soon allowed the degrada-
tion to be sensibly reduced.

4. Measured form factors.

4.1 DIFFICULTIES IN QUANTIFYING THE DEFORMATION
AT THE SCALES EXPLORED. - How can the rate of
deformation at intramolecular distance from our S(q)
data be appreciated ? Can we summarize this set of
values by a simple number which would characterize
the deformation at the length scale which we are

exploring ? The answer to the second question is
« no » for this experiment. It would be yes if, for
example, we had measured the radius of gyration
Rg mesh of only one mesh labelled : for the usual mole-
cular weight of a mesh in a rubber (3 000 to 100 000),
it is easy to measure it by SANS. Dependence of
Rg mesh upon A is given for classical models such as the
junction affine one (resp. the phantom network model),
which leads to Rg(A) = ((A’ + 1) Rgiso/2)1/2 (resp.
((A2 + 3) Rgir ,./4)1 /2 ). This has indeed been attempt-
ed [4, 5] for usual meshes, where Rg is small enough to
have qRg  1 in the available q range. When one
labels a path of several meshes Rg becomes a complicat-
ed function of À. (tending to Rg oc A at very large Rg),
but it is still calculable. In our experiment, however
the radius of gyration is so large that the condition
q  1IR9 is impossible inside the measurable range.
This is also indeed an advantage : the form factor
of a single chain will never give any information at a
scale larger than Rg ; by having q &#x3E; 1/Rg inside the
whole measurable range, we exploit it at its best.

In order to compare experimental data and the form
factors predicted by the models, we evaluated them
numerically. First we will describe the data qualitati-
vely.

4.2 REPRESENTATION OF S(q). - To represent S(q),
we use the representation q2 S(q) versus q (Kratky
plot). This leads to a plateau at high q for a Gaussian
chain (qRg &#x3E; 5). A totally affine deformation (Eq. (2)
at all scales) would also tend, at high q, to a plateau
of ordinate IlAq’ where Aq is the macroscopic defor-
mation in the direction of q - in our case, 1/(0.464 )2
4.6 (we recall that Aq is the same for the gel and the
melt).

Melt data. - Figure 1 shows the plot obtained for
the smallest values of t. In the parallel direction, the
curve increases continuously with q up to the level of
the isotropic sample; in the perpendicular direction
we observe a maximum in the curve. A simple explana-
tion for this is as follows. Over long distances, the
conformation is very different from the isotropic one.
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Fig. 1. - Kratky plot (q2 S(q) versus q) for measured single
chain form factors : x deswollen gel; 0 isotropic melt,
measured in the same measurement period than the gel;
0 stretched melt, t = 60 s in both parallel (below) and per-
pendicular (above) direction; D stretched melt, t = 600 s;
0 isotropic melt, same measurement period as the stretched
melts.

In the parallel direction the q2 S(q) curve falls below
the isotropic plateau, whereas in the perpendicular, it
lies above it At small distances the chain is no longer
anisotropic, and S(q) goes back to its isotropic values
for both directions. In the perpendicular this leads to a
maximum which attests to the loss of affineness. The
curve for t = 10 min, &#x3E; t = 1 min, is slightly more
relaxed (closer to the isotropic curve) than the curve for
t = 1 min. In contrast, the curve of t = 40 min (not
shown here) remains equal, within the accuracy, to the
one for 10 min.

Gel data. - In figure 1, data for the dry gel are also
shown. A good test of consistency with the experiment
for stretched melts would be to compare the scattering
from the two isotropic melts measured in each set of
experiments. The superimposition appears satisfac-

tory in this figure. For the dry gel, we observe a shape
similar to that observed for melts in the perpendicular
direction. We argue that the chain has been deformed
on deswelling according to an isotropic compression
similar to a perpendicular compression in uniaxial
stretching. The difference between the dry gel and the
isotropic Gaussian chains decreases as the distance
decreases (i.e. as q increases) and the hump attests
similarly to this loss of affineness.

5. Comparison with theories for the deswollen gel.
The chain conformation in a strained elastomer is

generally believed to depend on macroscopic defor-

mation in a manner intermediate between the predic-
tions of two theories [6, 7,17] : the so-called « junction
affine » model and the « phantom » model. In the
first one, the crosslinks are supposed to be fixed in
space and their positions to be affinely transformed
in the macroscopic dimensions of the sample. In the
second, the junctions are assumed to fluctuate around
affinely deformed mean positions. The difference
between the two models arises from the hypothesis of
independence on the strain of the fluctuations around
the mean positions. The contribution of these fluctua-
tions to the end-to-end vectors of the elementary chain
is independent of the deformation. As a result, the
affineness is partly lost at the scale of the mesh.
For the junction affine model, a general mathema-

tical expression of the scattering function of a labelled
path running through affinely displaced junctions was
recently derived by R. Ullman [18]. A slightly sim-
plified version of this derivation, but one adapted to
the present case (high q regime), is briefly reported
in appendix 2. The corresponding calculated curve (i.e.
for a path of mass 2.6 x 106 linked to a deswollen
network of mesh 35 000) is plotted in the q2 S(q) versus
q representation in figure 2. It is immediately seen that
this curve cannot fit our results. This corroborates the
conclusion of several researchers [19, 20] who have
already noticed that the «junction affine » model
overestimates the chain deformation in loose net-
works.
The question is now to determine whether the

smaller lower deformation we observe here can be
accounted for by the fluctuations of the junctions

Fig. 2. - Comparison of gel data with calculated form
factors, in a Kratky plot, for the same deformation ratio :
isotropic Gaussian (plain line below) ; junction affine model,
Mmes, = 35 000 (plain line above); phantom network model,
Mmegb = 35 000 and Mmesh = 50 000 (below), dotted lines.
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assumed in the phantom model. The expression of the
scattering function of a labelled path statistically
linked to a « phantom network » has been calculated
by Warner and Edwards. It is also given in appen-
dix 2. The corresponding calculated curve obtained
from the same parameters as in the preceding case
(mesh now being an average value) is also plotted
(dashed line) in figure 2. Though it is undeniably
closer to the experimental points than the «junction
affine » curve, the figures are not in good agreement
at either low q or at high q values.

First we will discuss the low q region. For q 
2.5 x lO- 2 A-l, the experimental hump characteris-
tic of the observed loss of affineness is far less pro-
nounced than the phantom network curve. In other
words, in the range of distances probed by the above
scattering vector regime, the affineness is lost more

rapidly than expected from any theory. However, this
behaviour can be understood qualitatively as a mani-
festation of the rearrangement mechanism of neigh-
bour junctions that was proposed recently [22].

Let us recall the basic idea. At the concentration of

preparation, the average distance between crosslinks
is roughly 110 A, very comparable to the average end-
to-end distance of the estimated mesh (125 A). There-
fore most of the first neighbour crosslinks are connect-
ed by an elementary chain, and the gel can be visualiz-
ed as a close packing of excluded meshes. After de-
swelling to the dry state, the average distance between
the junctions is reduced to roughly 50 A. Within the
framework of the junction affine model, the average
end-to-end distance of the mesh would be reduced to
this value. Reference [22] proposes another way of
escaping the constraints imposed macroscopically
when the scale decreases. A network is a nearly one
dimensional object filling space, and the relevant
distance may not be the spatial one but the one along
the chains as the latter themselves propagate the
constraints. We may call it the « chemical » distance,
and two junctions may be called first chemical neigh-
bours if the shortest connection is one elementary
chain, second chemical neighbours if it corresponds
to two elementary chains, etc. Then, instead of the
homogeneous folding of the junction affine model
which keeps the spatial first neighbours, one can
imagine a kind of tridimensional accordion-like fold-
ing which exchanges the spatial neighbours. After
deswelling, some of the high order chemical neigh-
bours may occupy spatially closer positions than first
chemical neighbours, whose relative positions have
been only slightly modified. In other words, a density-
imposed average spatial distance between two first

spatial neighbours of 50 A does not necessarily mean
that these are first chemical neighbours. The spatial
distance between two junctions reaches the affine
value only if they are connected by a larger number of
elementary chains.
We have not yet succeeded in making this mecha-

nism quantitative for a prediction of path deforma-

tion at different scales. However, two experiments
can be explained by this model :
The first is the measurement of the radius of gyra-

tion of the mesh for different concentrations in osmotic

deswelling of a gel (different from the deswelling con-
cerned in this paper) [4]. When decreasing the concen-
tration of the gel, starting from the equilibrium swell-
ing value, the variation of the radius is nearly a pla-
teau on a large range of concentrations. The mesh
size appears very slightly deformed in this range.
The second is the measurement of the form factor

of the elementary chain for uniaxially deformed
PDMS rubbers with labelled meshes [5]. The relative
deformation of the elementary chain decreases when
its molecular weight M increases, while the classical
models predict no dependence on M.

Let us now discuss the discrepancy between expe-
rimental and theoretical curves at higher q values
(q &#x3E; 2.5 x 10-2 A-1). The situation is different :
the experimental curve crosses the phantom network
prediction. The actual network seems therefore to be
more deformed there than the phantom network.
Since the typical range of distances probed by the
experiment in this regime of q is 10-40 A, it can be
understood that the capability of rearrangement
begins to be reduced by uncompressibility. In this
case it is not the fact that the mean positions of the
junctions are affinely displayed which is in question,
but rather the idea of chains with no volume (in other
words chains of an axial diameter equal to zero). In
short, the experimental result at low q is indicative of
a large freedom of the network at semilocal scale
(Rmesh  d  R p.1h), but the result at high q shows
that the freedom is weaker at lower scale, where the
volume of the chain becomes relevant. The residual
orientation is larger than predicted by any theory;
this situation lasts when decreasing the scale down to
the order of magnitude of the statistical unit It is diffi-
cult to give quantitative results for that scale because of
the low signal-to-noise ratio [23] at high q, but similar
behaviours appear in other data. This can also be

compared to results obtained from other techniques,
such as fluorescent depolarization [24].
Remark. - Instead of fitting the different models

for the real value of Q, the deswelling ratio, or of A,
the stretching ratio, we can, very simply, make A
(or Q) vary in order to obtain a best fit of the models
for A* (or Q *) (the concept of A* has been used by
several authors, as Ullman). Such fits will be discussed
for gels as well as for melts in a following paper.

6. Comparison with theory for melts.

As we have shown in section 3, the duration of
relaxation of the melt samples obeys equations (la, b)
and thus lies in the « plateau regime ». One can thus
consider the melt as a transient network : consequently
we will compare it first to the permanent network
and second to the same expression of the form factor
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calculated for the crosslinked medium (with the appro-
priate mesh size) as it is indeed suggested by the cur-
rent theoretical « tube » model.

6. 1 COMPARISON WITH DESWOLLEN GELS. - The ful-

filling of condition (lb) can be used first to compare
results from deswollen gels and from melts with iden-
tical mesh size and deformation ratios directly. The
molecular weight of the mesh « elementary chain » in
the melt transient network is Me, given as 20 000 for
polystyrene [1]. The value for our gels, 35 000, is of the
same order of magnitude. The perpendicular defor-
mation for the melt is 1/ 4.6 = 0.466; it can be com-
pared to 1/3 10 = 0.464, the deformation ratio of the
deswelling for gels. In figure 1, the curves are similarly
shaped in both cases but if the figures are examined in
detail, some differences appear. In the case of the melt,
the ordinate of the peak is smaller and the « tail »
at high q is higher. It would be unrealistic to explain
these differences by a difference in mesh size, which
would in fact lead to the opposite effect. Other results
in the same set of experiments on gels (to be published)
indicate a decrease of the peak for a larger mesh size :
gels with elementary chains of molecular weight
20 000 would give a curve lying above the one cor-
responding to gels with larger mesh size (M = 35 000),
and thus even further away from the curve observed
for melt.

6.2 COMPARISON WITH AVAILABLE MODELS. - The
old idea of the transient network has been used in
different theories up to the most recent ones such as the
« tube » theories using the de Gennes concept [27, 28]
of reptation. In the Doi-Edwards model [29], most
successful in describing the viscoelastic properties
upon deformation, the relaxation at constant strain
is described through three processes.

In the first process the chain moves as free for times
smaller than T tr ma, = T R....(Me) - that is, for dis-
tances smaller than DMe. At larger times, the entangl-
ed medium is depicted as a fixed tube in which each
chain moves. Consider a chain passing through some
sliplinks. These are permanent crosslinks, but the
chain can slip inside them as it « reptates » in the tube.
The stress is calculated from that model using the
classical theory of rubber elasticity, assuming the
affine deformation of the mean positions of the junc-
tions (i.e. the sliplinks). This leads to the second and the
third processes. The second process is the equilibra-
tion of the chain inside the tube; we will return to it
in the discussion. In the third process the chain

disengages from the sliplinks at its two ends, so the
number of sliplinks of decreases. Condition ( 1 a, b)
allows to assume that the third process is not relevant
here.

Following that picture, the tube model indeed sees
the chain under (la, b) as a labelled path in a network.
We could thus calculate the functions S,(q) in range (2)
assuming the junction affine model with a mesh size

corresponding to Me = 20 000. The calculated curve
is presented in figure 3 : for the perpendicular direc-
tion the comparison of the data to the model shows
a disagreement similar to that of the case of the
deswollen gels with the same model (with M= 35 000).
Using the phantom network calculation, we observe
another bad agreement in figure 3, although it is better
than for the junction affine model. The use of both
classical elasticity models inside the sliplink model
thus leads to a disagreement with SANS measure-
ments (1).

Fig. 3. - Comparison, for perpendicular direction, of
stretched melt data with calculated form factors, in Kratky
plot, for the same deformation ratio : isotropic Gaussian
(plain line below); junction affine model, M mesh = 20 000
(plain line above); phantom network model, Mmesh = 35 000
(dotted lines).

6.3 DISCUSSION. - The classical elasticity models
do not quite describe the qRg &#x3E; 1 regime for the
strained melt in the plateau regime as well as for
deswollen gels which are strained rubbers. Though
there are some unforeseen discrepancies in the direct

(1) We used a cruder model, previously [9, 10], one that
we call a sliding mesh model, and it is described in appendix 2
(Sect. A. 3).
The comparison with experimental data on melts shows a

larger disagreement than for either the junction affine or the
phantom models. In a previous work [9, 10], we compared
data using the sliding mesh model in parallel as well as in
perpendicular directions. The agreement was much better in
the parallel direction than we observed here. In the perpen-
dicular direction it was less satisfactory but better. This
might be due to the fact that the elongation is here 4.6, while
it was only 3 in the previous work. This will be discussed
elsewhere [30].
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comparison of data for the two materials, we are
tempted to keep the idea of a similarity between these
two deformed networks and to point out the weakness
of the theoretical treatment of such a network. A

theory giving predictions closer to our experimental
SANS results could be used to hypothesize more about
the dynamics of melt in particular. It may also help
develop ideas about reptation theories such as Doi
and Edwards’ theory.
At this point we would like to return to the second

process, that of equilibration. At this stage, in the
fixed tube, the linear density along the centre line can
be calculated. It appears that it has a lower value than

any found in the isotropic melt because of the geome-
trical properties of an affinely deformed path in more
than one dimension. The return to equilibrium density
via slipping in the links (or the tube) corresponds to a
contraction. This model allows us to explain an
overstress in high deformation cases and a decrease
in stress in a time proportional to M2 [31-33]. This
contraction should also lead to a decrease in the radius
of gyration in the same time; however, our detailed
measurement of that radius [8, 9, 10, 40] failed to
observe the contraction. We can now propose an

explanation for this failure : it could be possible if the
tube is no longer completely fixed. The motion of the
tube would be parallel to the reptation processes;
and it has been proposed that this would be due to the
motions of the other chains which would destroy
some of the entanglements (o tube renewal »). Howe-
ver, we propose that the entanglements are still per-
manent (so that there would be no difference with
a crosslinked melt), but that the tube moves via some
« rearrangements », escaping the affine deformation
of the tube. This would explain the smoothed and
widened loss of affineness observed here, and possibly
correspond to the interpenetration effect discussed
in section 5 as well.

7. Conclusion.

Let us summarize the results we put forth in this paper.
In a deswollen gel, the deformation of the chain on a
semilocal scale presents a loss of affineness that does
not correspond to the predictions of the classical
theories. It is interpreted as a manifestation of a non-
affine reorganization of junction positions. In a range
of times sufficiently small compared to characteristic
time associated with terminal processes, a deformed
melt is believed (in reptation theories, for example)
to behave as a network of temporary entanglements.
Such a melt should also escape the affineness in the

macroscopic strain by the rearrangement of temporary
junctions. In fact, the experimental curves for the melt
cannot be fitted by using the classical theoretical cal-
culations, whereas they are more comparable to those
of permanent networks. The dynamics of this reorga-
nization mechanism could play an important role in

the relaxation process of melts. Moreover, this parti-
cular loss of affineness could lead to an equilibrium of
the linear density of the chain without the help of the
unobserved contraction along the tube.

Finally, we insist on the fact that the data interpret-
ed here are preliminary; we recently obtained better
data by comparing a stretched melt directly with a
stretched crosslinked melt with the same deformation

history. Representative results, which tend to support
these findings, are given in reference [30] and they will
be published in detail.
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Appendix 1.

DISCUSSION OF THE SYSTEMATIC ERROR ASSOCIATED
WITH THE DIFFERENCE BETWEEN THE MOLECULAR

WEIGHT OF THE LABELLED CHAIN AND THAT OF THE

MATRIX IN NEUTRON SCATTERING EXPERIMENTS. -

In this paper, unless the molecular weight of the matrix
and deuterated chains are different (NH 0 ND), we
have postulated the use of equation (4) instead of (3).
This is right only for Sp(q) = SH(q). Doing that, we
therefore committed a systematic error

We want in this appendix to estimate the order of
magnitude of this error in the different cases we consi-
dered.

(i) T he gel. - In addition to considering the case of
very large deuterated chains A (M = 2.6 x 106), we
performed the same experiment (deswelling, of a net-
work by a factor of 10) on deuterated paths B of
molecular weight close to that of the undeuterated
chains (M = 8 x 105). The results concerning this
type of paths will be discussed in greater detail else-
where [39]. We shall use only the crude data here in
order to estimate NH PH(q) in the case of paths A which
is very close to NH PH(q) for paths B. Since the mole-
cular weight of the matrix chains and the paths B are
rather close to each other, we can write :
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where Np PD(q) (resp. NH PH(q)) represents the scatter-
ing function of the path B (resp. of the matrix chain)
and SB(q) the normalized coherent cross-section
scattered by the mixture. Therefore the normalized
cross-section scattered by path B gives us an estimation
of the scattering function NH PH(q) of the matrix
chains for both A and B.

In figure 4 we have plotted in a Kratky plot repre-
sentation ND PA(q) and ND PD(q) = NH PH(q). The
ratios of the corresponding ordinates of the curves will
lead to an estimation of 6 = N A PDA(Q)IN PH(q). At
the very beginning of the curves 6 is of the order of 2,
and then, in the asymptotic regime, it decreases to 1.2
or even less. We can conclude that e(q) will be nearly
one percent at the beginning of the curve and even less
at larger q. Consequently e is, in this case, completely
negligible.

Fig. 4. - Comparison, in Kratky plot, between the form
factors of two different labelled paths in matrices crosslinked
and deswollen under the same conditions (deswelling ratio
of 10). A Molecular weight of the labelled path MW = 2.5 x
106 (same data as in Figs. I and 2, same symbols). 1 Shorter
path 8 x 105).

(ii) The melt. - In the case of the melt, we did not
measure the intensity scattered by a chain of same
length as that of the matrix. Nevertheless, since the
polymerization index is closer in the case of the melts
(by roughly a factor of 2), it can be reasonably postu-
lated that 6 will be closer to unity, ranging between 1.5
in the small q regime and 1.2 in the high q regime. 8(q)
will therefore be of the following orders of magnitude :

We observe that this systematic error s is not impor-
tant enough to modify the conclusions of this study in
the smaller q regime, and it is negligible in the larger q
regime.

Appendix 2.

CALCULATION OF THE INTENSITY SCATTERED BY DEFORM-
ED LABELLED PATHS. - The scattering of a deformed
Gaussian chain has been studied in several works.
To interpret neutron scattering experiments, very
simple predictions were made some time ago [35].
Calculations were done for chains stretched by their
ends only. The « Gaussian approximation » for scatter-
ing, which just needs the mean square value r 
(rij vector between monomers i and j), was used. For
the classical model in which the ends were affinely
displaced, one used the Katchalski [36] expression of
y. For the model in which the ends were the crosslinks
of a phantom network, one obtained an expression of
r# very close to Katchalsky’s [37]. For a labelled path,
i.e. a chain deformed by several points, only the simple
sliding mesh model was calculated [38].

A. 1 Affine deformation of the junctions. - The me-
thod we use is that developed by R. Ullman [18].
Unfortunately this author did not consider the
« intermediate » regime (qRg &#x3E; 1), which is of interest
here. We had, therefore to make the calculation
again. It can be notably simplified by taking into
account the large number (greater than 50) of elemen-
tary meshes involved in the labelled paths. Thus the
fraction of scattering centres located on the loose ends
is low, and the contribution of the correlation between
them or with other points of the chain is weak. It is
therefore reasonable to perform the calculation as if
the chains were terminated by crosslinks.
A second approximation can be made by assuming

the paths to be divided in a succession of regular
elementary meshes. Actually, because of the statis-
tical linking of the chains, the lengths of the sequences
will be distributed around their average value. This
distribution (which is not known) should be taken into
account; however, we are not convinced that this
would lead to an improvement in handling the physics
of the problem. The assumption of affine deformation
of the crosslink positions, while crude for a regular
network, is far more difficult to admit in the case of
irregular meshes. Taking into account the whole
distribution should not introduce more than a slight
change at high q values. Since we observe a more
fundamental disagreement with experimental data

(in the whole domain of the scattering vector), such an
improvement would be useless. We simply examined,
at first, in this paper, the following question : is the
deformation of a real network of average mesh M and

average functionality f comparable to the deforma-
tion of an ideal network of monodisperse mesh M and
functionality f whose junction positions are affinely
deformed ? We performed the calculation again, using
a slightly simplified approximation. We have consi-
dered a path beginning and ending at a crosslink -
that is, we neglected the loose ends that exist in the case
of statistical linking. Since the molecular weight of
the path (Mn - 2.6 x 106) is very large compared to



1977

that of the mesh, the proportion of dangling segments
is weak (- 2 x 10- 2) and can be neglected.
The intrachain correlation function of a labelled

path can be expressed as

where N is the number of scattering centres on the
path and
n the number of subunits along the path corres-

ponding to elementary chains (meshes),
p the number of diffraction centres in a subunit,
- Greek letters index the junctions, and
- ia, j p index the centres i and j in the subchains

beginning at a and P respectively.
In the case of affine deformation of junction posi-

tions, the vectors ri,.(,, + ), r0152+ lP, rpjp are independent
variables, so (A. .1) becomes the following :

where

correspond to intrasubchain correlations. In the case of affine deformation of the junctions, these functions
are given by the Katchalsky expression [36], which reads in Ullman’s notation as

In the case of an isotropic deformation,

and the modulus of q is involved. The remaining
function C(q)

luate. The assumption of affine deformation of cross-
link points results in a Gaussian form for the distribu-
tion function of vectors raE connecting them. Only the
second moments are changed in

The series A(q), B(q), and C(q) are easily calculated
using a desk top computer. In practical terms, we have
taken a spacing of the scattering centres correspond-
ing to a molecular weight of 100. In the undeformed
state (A = 1) with the q2 S(q) representation, we
obtain the plateau shape, typical of the Gaussian

character of the chains. As seen in figures 2 and 3,
it is a good fit of the experimental undeformed melt.
For the deformed state, we give three calculated
curves in figure 5 corresponding to the same labelled
mesh (M = 2.6 x 106) and differing by the lengths of
the subunit (Mmesh = 20 000, 35 000, 50 000), which
can be compared to the isotropic curve for the same
molecular weight
A. 2 Phantom network model. - In the so-called phan-
tom network model, only the mean positions of the
junctions are affinely transformed in the macroscopic
strain. The junctions are assumed to fluctuate around
their mean positions independently of the state of
strain. As a result, the instantaneous values of the
end-to-end vectors are not transformed affinely.
Theoretical expressions of the intensity scattered by
labelled paths in the phantom network have been
given by Warner and Edwards [21] and Ullman [18].
We have performed numerical evaluations for both of
them. A slight difference between the systems has been
observed, and we attribute it to an approximation in
Ullmann’s formulation : a vector rij connecting mono-
mers is written as a sum of three vectors which are
considered as independent variables (in the same man-
ner as in the preceding paragraph before equa-
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Fig. 5. - Kratky plot for calculated form factor for the
junction affine model, with a deformation ratio of 0.464.
Curve 1 : M mesh = 20 000 ; curve 2 : Mm,,.h = 35 000 ; curve 3 :
M mesh = 50 000 ; curve 4 : isotropic Gaussian.

tion (A. 3)). The correlation of the fluctuations of
neighbour junctions in the phantom model contra-
dicts this assumption of independence and introduces a
slight underestimation of the deformation. The curves
we report below are numerical evaluations of the
expression obtained by Warner and Edwards using a
direct, elegant application of the replica method.
Within our notations, this expression has the

following form :

The first term in the exponential corresponds to a
chain affinely deformed at any scale, while the second
represents the non-affine fluctuation that the chain
executes. The curves which are plotted in figure 6
within the Kratky Porod representation have been
obtained for three values of the elementary mesh of
the network, corresponding to molecular weights of
50 000, 35 000, and 20 000. The sums have been

changed to integrals and calculated using the Simpson
method.

A. 3 Sliding mesh model. - In addition to the two
preceding models we can also consider a different
calculation, one which ignores the fact that the junc-
tions have definite positions on the chains by intro-

Fig. 6. - Kratky plot for calculated form factor for the
phantom network model, with a deformation ratio of 0.464.
Curve 1 : Mmesh = 20 000 ; curve 2 : Mmesb = 35 000 ; curve 3 :
Mmesh = 50 000; curve 4 : isotropic Gaussian.

ducing only a cut-off of the affiness in terms of che-
mical distance along the chain between two points.
We will see that it illustrates the role of the fluctuations
of the chains in networks especially well.

Let us suppose that for any pair of points located at
distances along the path larger than a certain critical

Fig. 7. - Kratky plot for calculated form factor for the
sliding blob model, , with a deformation ratio of 0.464.
Curve 1 : M,,., = 20 000 ; curve 2 : Mblob = 35 000 ; curve 3 :
Mblob = 50 000 ; curve 4 : isotropic Gaussian.



1979

threshold l, the deformation is affine in the macro-
scopic strain

On the other hand, at distances shorter than I the
affineness is progressively lost. We need an expres-
sion for that loss of affineness, and we take the simplest,
the Katchalsky function given in equation (A. 3).
Within the framework of these assumptions the
scattering function of the path reads as follows :

The first sum is calculated using the same method
as A(q), while the second is easily integrated. S(q)
has been calculated for three values of I corresponding
to the preceding meshes of 20 000, 35 000 and 50 000.
The results are reported in figure 7. The humps are
much more pronounced here than in the junction
affine model : the deformation is larger. This arises
from the fact that when the junctions are affinely
deformed, the chains partly relax between them, and
this effect also diminishes the deformation for pairs
which are not located on the same subunits. This
effect is cancelled for I i - j I &#x3E; I in the sliding mesh
model.
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