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Squeezing in the many atom resonance fluorescence
emitted in the forward direction : application to photon noise reduction

A. Heidmann and S. Reynaud

Laboratoire de Spectroscopie Hertzienne de 1’Ecole Normale Supérieure (*), 24, rue Lhomond,
F 75231 Paris Cedex 05, France

(Reçu le 24 mai 1985, accepté le 25 juin 1985 )

Résumé. 2014 Nous montrons que les fluctuations du champ dans la fluorescence de résonance émise vers 1’avant
par un grand nombre d’atomes sont plus petites que celles du vide de rayonnement. Nous calculons, par un traite-
ment quantique du champ et des atomes, cette « compression » des fluctuations et la réduction du bruit de photons
qu’il est possible d’obtenir en entrant ce champ dans un détecteur homodyne ou hétérodyne. Cette étude théorique
est restreinte à un milieu atomique mince et dilué, composé d’atomes à deux niveaux immobiles. Cependant nous
étudions tous les cas d’excitation faible ou saturante, résonnante ou non résonnante et de détection homodyne ou
hétérodyne. Nos résultats montrent qu’il est important de prendre en compte les propriétés de cohérence spatio-
temporelle du champ pour évaluer correctement la réduction du bruit de photons.

Abstract 2014 We show theoretically that the resonance fluorescence field radiated in the forward direction by an
ensemble of many atoms exhibits squeezing. In a full quantum treatment we quantitatively evaluate this squeezing
and the photon noise reduction which can be obtained by entering this squeezed field in a homodyne or heterodyne
detector. The study is restricted to a dilute and thin atomic medium containing motionless two-level atoms but it

includes all the cases of weak and saturating excitation, resonant and detuned excitation, homodyne and heterodyne
detection. Our results show the importance of taking into account the field coherence properties for a correct
evaluation of photon noise reduction.
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1. Introduction.

Resonance fluorescence from a single two-level atom
is known to reveal the non-classical properties of the
electromagnetic field [1-4]. Some of them have been
experimentally observed : photon antibunching [5-6],
sub-Poissonian photon statistics [7], correlation
between the photons emitted in the two sidebands of
the fluorescence triplet [8]. The phenomenon of squeez-
ing [9] has been shown to be present in single atom
resonance fluorescence [10-14] but has not yet been
observed
The non-classical properties usually vanish when

the field is radiated by many atoms. In this paper,
we want to point out that it is not always true.

1.1 SQUEEZING IN THE FORWARD MANY ATOM RESO-
NANCE FLUORESCENCE. - More precisely, we will show
that the resonance fluorescence field radiated in the
forward direction by an ensemble of many indepen-
dent two-level atoms exhibits squeezing [15].

(*) Associe au C.N.R.S. (U.A 18).
JOURNAL DE PHYSIQUE. - T. 46, N° 11, NOVEMBRE 1985

The situation considered in this paper is sketched
in figure 1. An atomic medium containing a great
number of two-level atoms is irradiated by a mono-
chromatic pump laser. We will look for squeezing in
the fluorescence field in the forward direction. We will
treat the cases of resonant excitation (pump frequency
(OP equal to the atomic frequency coo) as well as
detuned excitation (d = (op - coo :0 0), of weak exci-

Fig. 1. - The system studied in this paper : the atomic
medium M is irradiated by a pump laser (monochromatic
classical field 8p). The quantum fluorescence field emitted
in the forward direction is denoted E.
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tation (low pump intensity) as well as saturating
excitation and finally of homodyne as well as hete-
rodyne detection (see below).

In this paper the study will nevertheless be restricted
to a simplified model for the atomic medium. First,
atomic motion will be neglected (Doppler effect can be
avoided in atomic beam experiments for example).
Then we suppose that the two-level atoms are inde-

pendent and we ignore any collective effect. This

corresponds to the approximation of a dilute atomic
medium (low density limit). Furthermore we consider
only the case of a thin atomic medium where the inci-
dent pump laser is not appreciably modified when
going through the medium (small optical depth
limit).
1.2 APPLICATION TO PHOTON NOISE REDUCTION. -

Squeezing may have interesting applications for pho-
ton noise reduction [16-18]. Such a photon noise
reduction is obtained by entering the squeezed field
in one input port of a homodyne or heterodyne
device (Fig. 2). The double detector device sketched
in figure 2 suppresses excess noise due to local oscilla-
tor fluctuations when the power transmission and
reflection of the beam splitter are equal [19-20]. Note
that the beam splitter of figure 2 can be replaced by a
Michelson interferometer adjusted so that its trans-
mission and reflection are equal. The device of figure 2
therefore describes also photon noise reduction in an
interferometric device [18].

In a previous paper we have given a quantitative
evaluation of the expected reduction factor [21]. We
now recall the results which will be used in the follow-

ing. The signal is the difference (N, - N2) between
the numbers of photons detected on the two detectors

The variables t and t’ run over the detection time T,
and r and r’ over the detection area S. The local
oscillator field is assumed to be in a Glauber coherent
state [22] and it is represented by classical fields 6j§
( + or - for the positive or negative frequency com-
ponents). The multiplicative constant C includes
the quantum efliciency q of the photodetectors :

Expressions (1.2) and (1. 3) appear to give the factor
C in terms of space time integrals of the correlation
functions F - + and F + + of the fluctuations bE =

E -  E) of the forward fluorescence field E which

Fig. 2. - Homodyne or heterodyne detection of the squeez-
ed field E with a local oscillator &#x26;,. is achieved by mixing
the two fields through a 50-50 beam splitter BS and by
detecting the mixed fields on the two photodetectors D 1
and D2.

of figure 2. The variance A 2(N 1 - N2) of this diffe-
rence thus measures photon noise. Using photodetec-
tion theory [22], one shows that [21 ] :

where the term C describes the deviation from Poisson
statistics due to intensity correlations and can be

expressed as [21 ] :

enters the device of figure 2 :

The main motivation of this paper is to evaluate these
correlation functions and the corresponding photon
noise reduction.

1.3 OUTLINE OF THE PAPER. - We first show (§ 2)
how the statistical properties of the forward field can be
calculated. We then discuss the weak excitation limit
where the results are particularly simple (§ 3). We
finally include the saturation effects (§ 4) and treat
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non-degenerate heterodyne detection (§ 5). Our results
are compared with previous works in the last sec-
tion (§ 6).

2. Calculation of the forward fluorescence field :

general framework.

In this section, we want to show how the statistical
properties of the forward fluorescence field can be
calculated. As in usual resonance fluorescence theo-

ry [23-25], we first relate the fluorescence field to the
dipole operators associated with the emitting atoms.
We then discuss the expressions obtained for the two
correlation functions F - + and F + + which describe
squeezing.

2.1 RELATION BETWEEN THE FIELD AND THE EMITTING
DIPOLES. - The field E transmitted by the atomic
medium is obtained as a superposition of the incident
pump field Ep and of the fields En radiated by the
atoms (n = 1 to N, where N is the number of atoms) :

(same relation for E -, Ep-, En ). Using the fact that the
evolution of these dipoles is quasi-monochromatic
and supposing that the observation point r is far

enough from the emission volume (distance much
greater than the wavelength) one gets the simple
relation :

where rn is the position of the n-th atom and Dn the
lowering part of the dipole operator associated to this
atom :

(I g,, &#x3E; and I e,, &#x3E; denote the ground and excited states
of the n-th atom and d the dipole moment). The cons-
tant K is equal to :

in the case studied in this paper of forward fluores-
cence (k = wlc wavevector of the pump field).

2.2 MEAN VALUE OF THE FLUORESCENCE FIELD. -

From equations (2.1) and (2.2), one gets the mean
fluorescence field :

The incident field is in a coherent state [22] and we
have replaced ( Ep+ (r, t) ) by the classical pump field
6; (r, t).

Consider first the weak excitation limit. Thus the
mean value of the dipole moment is proportional to
the incident field :

where a is the polarizability of the two level atom :

(A = Wp - cvo is the detuning and r the spontaneous
emission rate of the excited state).
One deduces :

 E+(r, t) &#x3E;&#x26; p + (r, t) + K cx p + (r., T,,)IR,, . (2.10)
n

This expression can be easily evaluated by compar-
ing it to the Huyghens-Fresnel formulation of the
propagation law of classical electromagnetics [26].
As a matter of fact, any classical field 8 obeys the
integral relation :

where the point ro is taken on a plane orthogonal to
the propagation direction of 6 separating the sources
of the field and the point of observation (we have used
the fact that all the directions of interest are inside a
small angle). In equation (2 .11), Ro and To are related
to r, t and ro in the same manner as in equations (2. 3)
and (2.4) and A is the wavelength (A = 2 nlk).

Transforming the discrete summation in (2. 10)
into an integral :

(p volumic density of atoms), and using equation (2 .11)
for the incident field 8p, one gets :

(1 is the length of the atomic medium). The field radiat-
ed by the atoms is exactly proportional to the incident
field and the action of the medium can be described by
the usual absorption dispersion theory [27]. Using
the expressions of K and a and the relation between r
and d2, one gets :

This shows that equation (2.13) gives the usual

absorption cross section (3 Z 2/2 n for L1 = 0).
Consider now the case in which the atomic transi-

tion is saturated by the excitation. The mean dipole
can thus be calculated by solving the optical Bloch
equations [23]. It is no longer proportional to the field
so that the radiated field has not exactly the same
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structure as the incident field But the Huyghens-
Fresnel principle remains useful for expressing the
result The forward fluorescence field indeed obeys the
integral relation (2 .11 ) with a « source » field in the
plane of the atomic medium given by :

where a - (ro, TO) is the mean dipole corresponding to
an incident field t; (r 0’ T o).

2. 3 CORRELATION FUNCTION F + . - From (2.1),
the correlation function F - + can be decomposed
into :

The summation (2.16) includes the incident pump
field (i = 0 or j = 0) as well as the radiated fields
(i = 1 to N or j = 1 to N). But, as the incident field
is in a coherent state, one easily shows that any
term corresponding to i = 0 or j = 0 is zero. More-
over, the crossed terms (i :0 j) are zero since the fluc-
tuations of two different dipoles are supposed uncor-
related (assumption of a dilute atomic medium).
It thus remains :

(Rn and T. (resp. Rn’, T’) are related to r and t (resp.
r’, t’) through (2. 3) and (2.4)). The dipole correlation
function C+ is well known in resonance fluores-
cence theory since it is associated to the inelastic part
of the fluorescence spectrum [28]. It can be calculated
from optical Bloch equations and quantum regression
theorem [28]. We will use the corresponding results
in the next sections.
The result (2.17) is quite similar to the result of

classical coherence theory [29]. In particular, it will be
useful in the following to compare it with the Van
Cittert-Zemike theorem [26] which describes the

propagation of a classical correlation function Y - ’
(defined as F - + in classical electromagnetics). This
theorem is easily deduced from the Huyghens-Fresnel
principle (2 .11 ) : :

The expression (2.17) can be given this form with a
correlation function in the plane of sources :

(the discrete sum (2.17) has been transformed into an
integral). The Dirac function expresses the fact that
the sources of field fluctuations are point sources.

2.4 CORRELATION FUNCTION F + + . - The correlation
function F + + can be decomposed as F - + in equa-
tion (2.16). The fact that the incident field is in a
coherent state implies that all the terms with j = 0
are zero but not necessarily the terms with i = 0.
The crossed dipolar terms (i = 1 to N, j = 1 to N,
i =A j) are still zero so that it remains :

It can be shown by careful inspection of the commuta-
tion properties between the free incident field and the
« source field » operators [ 15] that equation (2 . 21 ) can
be transformed into

where l3 acts as a time ordering operator : it rearranges
the order of the two dipole operator so that the former
emission time is at the right and the latter one at the
left. Time ordering comes out in connection with the
fact that the dipole operator commutes with the
vacuum fluctuations located in its future but obviously
not with those located in its past (causality condition).
The correlation function C - - is less usual in reso-

nance fluorescence theory than C + - but it has also
been studied since it describes the squeezing of the
field radiated in single atom resonance fluores-
cence [10-14].
The relation (2.22) is analogous to the relation

describing the propagation of a classical correlation
function Y+ + (Eq. (2.19) with a multiplicative cons-
tant ( - I IA’) instead of(I/À.2)). The source term is :

3. Coherence properties of the forward fluorescence
field and photon noise reduction at the weak excitation
limit.

We now discuss the weak excitation limit where the
results are particularly simple. As we shall see, they
have an intuitive interpretation in terms of coherence
time and coherence area which will be helpful for
discussing more general situations in the next sections.
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3.1 DIPOLE CORRELATION FUNCTIONS. - In order to
find F - + and F + +, we have first to evaluate the dipole
correlation functions C + - and C - -.
The first one, C + -, is negligible at the weak excita-

tion limit. As a matter of fact, it is associated with the
inelastic fluorescence which appears only at the second
order in the laser intensity [23].
We now discuss the second correlation function

which can be written from equation (2.23) :

where T is the former time of T n and T’ n and r the delay between them :

When the delay i is larger than the atomic lifetime 1 IF, the values of the dipole at T and T + r are uncorrelated
and C - - vanishes (the mean value of the product is equal to the product of the mean values). But four 1 = 0,
the first term in equation (3. 1),  Dn (7) Dn-(1) ) is zero (the operator identity Dri Dj = 0 is easily deduced
from Eq. (2 . 5)) and C - - is therefore equal to :

where a is the linear polarizability of the atom (see Eq. (2.9)). The transition from T = 0 to i infinite can be
deduced from the optical Bloch equations through the quantum regression theorem. One finds :

(evolution of the dipole at the atomic frequency wo and damping with a time constant 21F). Using the definition
of T and the fact that gp oscillates at the frequency rop = coo + d, one finally gets :

3.2 COHERENCE PROPERTIES OF THE FORWARD FLUORESCENCE FIELD. - The field correlation function F +
vanishes at the weak excitation limit (since C + - = 0). The second function, F + +, can be computed from the
integral equation (deduced from (2.24)) :

and from the expression (3 . 5) of C - -. This integration is easily performed when using the paraxial approximation
(all directions of interest included in a small angle) and the quasimonochromatic evolution (all evolution fre-
quencies included in a narrow band). We suppose that the transverse structure of the incident pump beam is
Gaussian with a beam waist wo and no curvature in the plane of the emitting medium. The observation points
are supposed to be in the same plane, orthogonal to the propagation direction and located at a distance R from
the sources. We will denote r.1 and rl the transverse part of the vectors r and r’. For R large compared to the
divergence length of the incident beam (far field observation), one gets :

In this equation, N is the number of contributing atom :

atoms :

and 81 is the mean value of the field radiated by one
(t1 is calculated at a distance R of the emitting medium
and 8p is the incident field in the plane of this medium ;
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both are taken on the axis). The factor N6f which
gives the magnitude of the function F + + could be
guessed from the fact that the fluctuations of different
dipoles are not correlated The three exponential
functions appearing in equation (3.7) describe the
spatial and temporal structure of F + + and they also
have a clear interpretation. The first one means that
F + + has a curvature radius R due to the fact that
fluctuations are radiated by point sources at a distance
R. The second one describes the spatial coherence
of the field Maximum coherence occurs for two points
symmetrically located with respect to the axis and the
coherence area ar is given by :

where 0 is the angular divergence of the incident
pump beam :

In other words, the coherence solid angle Dc of the
fluorescence field is equal to the divergence solid

angle of the pump laser :

It can also be considered as the diffraction limited
solid angle for a source having a surface (nw’12).
Finally, the third exponential function in equa-
tion (3.7) corresponds to the temporal coherence of
the field, directly associated with the temporal cor-
relation of the emitting dipoles (see Eq. (3 . 5)).

3.3 PHOTON NOISE REDUCTION. - We come now to
the evaluation of photon noise which can be expected
in a homodyne device (see Fig. 2). The factor Co of
equation (1. 2) is zero since F - + = 0. By adjusting
the phase between the fluorescence field and the local
oscillator, one can thus get a negative value for C :

This shows that the fluorescence field emitted by many
atoms in the forward direction is squeezed which
allows to reduce photon noise (A’(Nl - N2) 
N, + N2 ; see Eq. (1.1)).

In order to get an important photon noise reduc-
tion, we have to look for conditions where C2 is as big
as possible. We first choose a detection time T and a
detection area S greater than the coherence time Tc
( c&#x3E;5 1 I r) and coherence area a,, of the fluorescence field
(see the discussion in [21 ]). We have also to match the
time and space dependence of the fluorescence field
and of the local oscillator.
For discussing this problem, we introduce a new

notation t ’ ’ through the definition :

From equation (3 . 7) one sees that t ’ ’ only depends

on the two reduced variables i = (t - t’) and p =
(rl + rl). The matching is obtained when the local
oscillator frequency (resp. curvature radius) is equal
to cop (resp. R). Under these conditions, the local
oscillator field is a spherical wave having its centre
on the emitting medium :

The double time (resp. space) integration in equa-
tion (1. 3) thus gives the detection time T (resp. detec-
tion area S) on one hand and an integral over T (resp. p)
on the other hand :

The expression (1.1) of the photon noise becomes :

(N1o (resp. Nf) is the number of local oscillator (resp.
fluorescence) photons which could be detected;
we have used the obvious result N, + N2 = N10 +
Nf). When the local oscillator field is much more
intense than the fluorescence one, the factor Q2
appears as the photon noise reduction factor due
to the presence of the squeezed field
The quantitative value of Q2 is deduced from

equation (3 . 7) :

where T, appears as an effective coherence time :

and where cc is the coherence area (see Eq. (3 .10)).

3.4 MAGNITUDE OF THE REDUCTION FACTOR. - It
is interesting to transform the expression (3.19)
of Q2 in order to discuss its magnitude. We first note
that e I &#x26;l 12 a": is the number of photons emitted
by one atom which could be detected on an area a,
in a unit time :

where rne is the number of photons emitted per
atom (nr population of the excited state for an atom
located on the axis), il the detection efficiency and
(3 Dc/8 n) the solid angle factor (which is different
from Oc/4 n because the radiation pattern is non

spherical). Then, one gets from equations (3 . 8), (3.11)
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and (3.12) :

and from equations (3.19), (3.21) and (3.22)

where Do measures the on resonance optical depth
of the atomic medium :

The reduction factor Q2 appears as the product of
four dimensionless parameters. It has been calculat-
ed in the weak excitation limit and in the case of a
thin optical medium. The first assumption implies
rce  1. The second one requires that the field radiat-
ed by the medium is negligible inside the medium
itself. From equations (2.13), (2.14) and (3.20),
this condition can be written (Do FT,,)  1. As the
last factor in equation (3. 23), the detection efficiency ’1,
is smaller than 1, one obtains a vanishingly small
value for the reduction factor.

In the next section, we will release the first assump-
tion by performing a non-perturbative calculation
of Q2 in the case where the medium remains thin.
Releasing the second one is out of the scope of this
paper.

4. Saturation effects.

When the atomic dipoles are strongly excited, the
coherence properties of the field are not so simply
described as in the weak excitation limit The time

(resp. spatial) coherence is no longer associated to
a mere exponential (resp. Gaussian) variation. Howe-
ver, the photon noise reduction can still be comput-
ed The first step in this calculation is to transform
the expressions giving photon noise.

4.1 A USEFUL TRANSFORMATION. - The photon
noise is given by expressions (1.1), (1.2) and (1.3)
through some integrals over the surface of the detec-
tors. Using the propagation law for the local field
oscillator (Huyghens-Fresnel principle (2 .11 )) and
for the fluorescence field correlation functions (Van
Cittert-Zemike theorem (2.19)), one easily shows
that these integral expressions are conserved when
the detection surface is moved along the propagation
axis (using the assumption that the detection area
is much greater than the coherence area) [15]. It is

particularly interesting to bring the integration sur-
face back to the plane of the emitting medium since
spatial fluctuations of the field correspond to uncor-
related point sources in this plane (see Eqs. (2.20) and
(2.24)). One gets in this manner the expressions
(for more detail, see Ref. [15]) :

where rn is the position of the n-th atom and where the local oscillator field is virtually defined on the plane of
the emitting medium (in fact, &#x26;I. (r.) is the real field at the point symmetrical to rn with respect to the beam splitter
of Fig. 2).
4.2 EVALUATION OF THE PHOTON NOISE REDUCTION. - We now suppose that the local oscillator field evolves
at the frequency cop. Time matching is therefore achieved and the double time integration in equations (4.1)
gives the detection time T on one hand and an integral over r = t - t’ on the other hand :

with

The quantities C ’ - and C - - are nothing but the
Fourier transform at frequency a)p of the dipole corre-
lation functions C + - and C - -. They can be calcu-

lated by the methods of single atom resonance fluo-
rescence theory (see for example [23-25] for C + -
and [10-14] for C--). The results of these calcula-
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tions can be written :

with

where

The two complex dimensionless parameters e and 6
are respectively associated to saturation (the mean
dipole moment is just de at the weak excitation limit;
see (2.8) and (2.9)) and to detuning (6 = 0 at reso-
nance).

It now remains to perform the summation over
the atoms. Equations (4.2) can be written :

N10 is the number of local oscillator photons and
I J(r) its the normalized intensity distribution of the
local oscillator field
Two conditions are needed in order to optimize C2.

First we have to match the curvatures of the fields &#x26;,.
and tp so that no position dependent phase appears
in the term J(rn) 0 - - (r.) in equation (4.10). Then
the waist of t10 has to be much smaller than the
waist of 8p in order to avoid a spatial averaging of
C - -. As in the previous section, this situation cor-
responds to the case in which the local oscillator
field is a spherical wave centred on the emitting
plane. One thus gets :

where the correlation functions are calculated for

an atom located on the axis. A straightforward
transformation finally leads to :

where Do is the on resonance optical depth (see
Eq. (3.24)) and 17 the detection efficiency.

4.3 VARIATION OF THE REDUCTION FACTOR. - When
the relative phase between the pump laser and the
local oscillator is adjusted, one gets a reduction
factor for the photon noise :

One gets from equations (4.5) and (4.6) :

where S and R are two real parameters :

The choice of the « resonance parameter » R between
0 and 1 is equivalent to the choice of the detuning
(opposite detunings give the same value of R). The
choice of the « saturation parameter » S between 0
and 1 then determines the intensity of the pump
laser.
The variation of A versus S is represented in figure 3

for various values of .R. First consider the case of
exact resonance (A = 0 and R = 0) where A can be

Fig. 3. - The photon noise reduction factor Q is propor-
tional to the parameter A which is represented as a function
of the saturation parameter S. The solid line corresponds to a
resonance parameter R = 0 (exact resonance), the dashed
line to R = 0.5 and the dotted line to R = 0.75.
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written :

For small saturation parameters (S  1), A is nega-
tive and proportional to S (this is the result of § 3).
When S increases, the value of A passes through
an optimum, then comes back to zero and even
becomes positive for S &#x3E; 1/3. This behaviour is

explained by the variations of A + - and I A - - I
sketched in figure 4. The term I A ( responsible
for photon noise reduction increases less rapidly
than the saturation parameter S. But, the term A + -,
which is negligible in the weak excitation limit,
increases quickly when the transition is saturated
and becomes greater than I A - - I for S &#x3E; 1/3.

Curves calculated for excitation out of resonance

(R &#x3E; 0) are also represented in figure 3. It clearly
appears that the values obtained for A are less interest-

ing than for R = 0. The solid line of figure 5 represents
the variation versus R of the optimum value of A
(i.e. the more negative value) obtained when varying
S. It starts from (- 0.070) for R = 0 and goes to
zero when R increases.

Finally, we have shown in this section that the
reduction factor for a thin optical medium is pro-
portional to the on-resonance optical depth Do,
the detection efficiency ’1, and a factor A which
attains (0.070) in the best conditions (S = 0.15 and
R = 0).

5. Non-degenerate heterodyne detection.

Up to now, we have discussed photon noise reduction
in the case where the frequencies of the pump laser
and of the local oscillator are equal. We want to
introduce an extra degree of freedom by considering
the case of a non-degenerate heterodyne detection
which can be realized by a spectral analysis at fre-
quency v of the signals delivered by the photodetectors.
It can alternatively be realized by modulating at

frequency v the local oscillator amplitude (the local
oscillator field is thus a bichromatic field with two

frequencies cop + v and wp - v [21]). This extra

degree of freedom (choice of v) will be interesting if
the spectrum of the correlation functions responsible
for squeezing is important at non-zero frequencies.
Note that practical reasons, such as minimization
of other noise sources, can also lead to choose hetero-

dyne methods [30-31].

5.1 EVALUATION OF THE PHOTON NOISE. - We start
from expressions (4. 1) which remain valid but we
now suppose :

The local oscillator intensity, averaged over a time T
much greater than 1 /v, is I &#x26;-(r,,) 12.

In the same manner as in the previous section,
one shows that the reduction factor can still be

Fig. 4. - The parameter A (see Fig. 3) is the difference
between the two terms A + - and I A - - which are repre-
sented respectively on curves a and b as functions of the
saturation parameter S, in the exact resonance case (R = 0).

Fig. 5. - The best value of the reduction parameter A
attainable by varying the saturation parameter S is plotted as
a function of the resonance parameter R. Solid line corres-
ponds to the case of homodyne detection (pump laser and
local oscillator frequencies equal). Dashed line corresponds
to a non degenerate heterodyne detection, where the hetero-
dyning frequency is choosen such that A reaches its best
value.

written :

with

and

The only difference is that the Fourier transforms C ’ -
and C - - of the dipole correlation functions are
now taken at frequencies cop + v and cop - v. More

precisely, one gets :
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(T = t - t’ ; compare with Eq. (4 . 3)). These quantities
can still be calculated by the methods of single atom
resonance fluorescence theory. One gets :

One can now calculate the reduction factor from

equations (5. 2), (5. 3), (5. ) and (5. 8) for any values
of the pump laser amplitude (parameter B), detuning
from resonance (b) and heterodyning frequency ((p).

5.2 SPECTRAL VARIATION OF THE PHOTON NOISE REDUC-
TION. - In figure 6 we have plotted the variation of
A versus the heterodyning frequency v for various
saturation parameters S (defined in (4.18)) in the
case of a resonance excitation (b = 0 and so R = 0;
see (4.19)). For a weak excitation (curve a), the best
value of A corresponds to v = 0. For S = 0.15

(curve b), the value for v = 0 passes through an
extremum (see the discussion in the previous section).
For greater saturation parameters (curves c and d),
the best value of A is obtained for v :0 0.
The fact that squeezing can be important for non-

zero values of v is intimately related to the triplet
structure of the fluorescence spectrum [32, 33]. This can
be shown by studying the case of well separated
lines (r « 4 or d&#x26;plh), i.e. by putting R = 1 in our
formulae. One finds in this limit that A is important
only around v = + (,A 2+ 4(d&#x26; plh)2)112 which is
the position of the lateral components of the fluores-
cence triplet The variation of A is Lorentzian with
the same width as for the triplet Finally the peak
height is :

It tends to 0 as well for S --+ 0 (weak excitation) as
for S --+ 1 (strong resonance excitation).

5.3 OPTIMIZATION OF THE REDUCTION FACTOR. -

We have computed the optimum value reached by A
when v and S are varied. The dashed line of figure 5
represents its variation versus R.

It clearly appears in figure 5 that there are two
ways to get an optimum squeezing. The first one is
associated with resonance excitation (R = 0) and
homodyne detection (v = 0). The value A = - 0.070
can thus be obtained for the optimum saturation
parameter S = 0.15 (see the discussion in the previous
section). The alternative choice corresponds to non-
resonance excitation (R = 1 i.e. L1 &#x3E; F) and hetero-

where q, p’ - and p- - are polynomial functions of
the dimensionless complex parameters 8, 6 (defined
in Eqs. (4.7), (4. 8)) and :

One finds :

Fig. 6. - Variation of the reduction parameter A versus the
heterodyning frequency v (with a frequency unit T). Curves
a, b, c and d correspond respectively to a saturation para-
meter S equal to 0.05 (weak excitation case), 0.15 (the value
of A for v = 0 reaches its best value), 0.25 and 0.35. All
results correspond to a resonant excitation (R = 0).

dyne detection at the frequency of the lateral compo-
nents of the triplet The value A = - 0.067 can be
obtained for the optimum saturation parameter
S = 0.37.

6. Conclusion.

We have shown in this paper that the resonance
fluorescence field radiated by a collection of many
motionless two level atoms exhibits squeezing. This
can seem surprising since non classical statistical

properties are usually associated with single atom
fluorescence. Nevertheless, theoretical predictions of
non classical properties in many-atom resonance

fluorescence has already been reported in two papers
to our knowledge. For atoms distributed at regular
positions, squeezing is expected in the directions of
a diffraction pattern [34]. In the much more usual
case of randomly distributed atoms, antibunching
has been predicted for photodetection points sym-
metrically located with respect to the propagation
axis of the pump laser [35]. These directions are the
same as for the squeezing predicted in this paper and
the two effects are in fact closely connected
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We have first studied the perturbative limit and
we have given a simple interpretation of the coherence
properties of the field in terms of a coherence time
(related to the atomic lifetime) and a coherence area
(related to the emitting area through the diffraction
relation). We have calculated the photon noise
reduction which can be expected when the squeezed
field is entered in a homodyne detector. As expected
from a previous paper [21], the reduction factor is

very sensitive to the field coherence properties.
It takes the following form through some simple
transformations :

where q is the detection efficiency (0  q  1),
Do the on-resonance optical depth and A a dimen-
sionless factor depending on the correlation functions
of the emitting dipoles.
The main result of this paper is equation (6.1)

which has been shown to stand also in the cases of

saturating excitation and non-degenerate heterodyne
detection. The A factor has been calculated for any
values of the excitation or detection parameters.
It is vanishingly small in the perturbative limit and
reaches at best the value (- 0.070) for a given value
of the saturation parameter.

Equation (6. 1) is valid only in the limit of a thin
optical medium (small values of Do). When absorption
or dispersion becomes appreciable, the field expe-
rienced by the atoms is not only the classical incident
field but also the quantum field radiated by the other
atoms. This effect can be qualitatively discussed in
the case of resonance excitation where Do measures
the absorption of the pump beam (no dispersion in

this case). One may expect a variation of the reduction
factor as follows :

(same law as in equation (6.1) for Do  1 and expo-
nential decay due to absorption for Do &#x3E;.&#x3E; 1). The
optimum value of Q would thus correspond to

Do - I :

For the optimum value of A (A -- - 0.07) and for
an ideal quantum efficiency (q = 1), one would
reach in the best conditions :

This qualitative discussion leads to a reduction which
is of the order of 1 % at best.
More elaborate approaches have already been

proposed for treating the squeezing produced by a
thick optical medium [36-38]. Since they are based
on a few mode description of the electromagnetic
field, their results can hardly be compared with ours.

Finally, a more satisfactory solution would be to
extend the method developed in this paper to thick
optical media. This seems feasible although some
delicate points have not yet been elucidated
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