
HAL Id: jpa-00210136
https://hal.science/jpa-00210136

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A renormalization group analysis of ternary polymer
solutions

L. Schäfer, Ch. Kappeler

To cite this version:
L. Schäfer, Ch. Kappeler. A renormalization group analysis of ternary polymer solutions. Journal de
Physique, 1985, 46 (11), pp.1853-1864. �10.1051/jphys:0198500460110185300�. �jpa-00210136�

https://hal.science/jpa-00210136
https://hal.archives-ouvertes.fr


1853

A renormalization group analysis of ternary polymer solutions

L. Schäfer

Fachbereich Physik der Universität Essen 4300 Essen, F.R.G.

and Ch. Kappeler

Institut für theoretische Physik der Universität Hannover, 3000 Hannover, F.R.G.
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Résumé. 2014 Nous calculons les trajectoires du groupe de renormalisation à l’ordre d’une boucle dans le cas d’une
solution comportant deux espèces de polymères dans un solvant commun. Ces trajectoires pourraient être observées
par la mesure des rapports d’interpénétration, et nous discutons les fonctions de crossover pour ces quantités à
l’ordre d’une boucle. Le flot du groupe de renormalisation détermine également le diagramme de phase du système
et nous présentons une analyse détaillée de la courbe spinodale limitant la région de stabilité de la solution homo-
gène. Déjà à l’approximation en arbres, la théorie renormalisée conduit à des résultats significativement différents
à la fois de la théorie de Flory-Huggins ou de simples considérations de lois d’échelle.

Abstract. 2014 We calculate to the order of one loop the renormalization group trajectories for a solution containing
two polymer species in a common solvent. These trajectories could be observed by measuring the interpenetration
ratios, and we discuss crossover functions for these quantities evaluated to one loop order. The renormalization
group flow also determines the phase diagram of the system, and we present a detailed analysis of the spinodal
limiting the region of local stability of the homogeneous solution. Even in tree approximation the renormalized
theory yields results markedly different from both Flory-Huggins theory or simple scaling considerations.
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1. Introduction.

Physical properties of solutions containing two che-
mically different polymer species in a common solvent
have been extensively studied both experimentally
and theoretically. In particular, much effort [1] has
aimed at the determination of the phase diagram, the
experiments being usually interpreted within the
frame work of a Flory-Huggins approach. Since

phase separation often occurs at quite low concen-
trations, the validity of such an interpretation is

doubtful, and this paper is mainly devoted to an
analysis of the spinodal by means of the renorma-
lization group [RG]. This method has been applied
to ternary solutions only recently [3-5], all but the
work of Joanny et al. [5] being restricted to an analysis
of the second virial coefficient. In reference [5] the
interpenetration function is calculated and the osmotic
pressure in the semidilute limit is discussed with

special regard to corrections to the excluded volume
behaviour.
The work presented here in some respects parallels

that of reference [5]. To give an adequate discussion
of the spinodal, we, however, have to stress the non-
linear crossover behaviour of the coupling constant
flow. Indeed we will find that not only the inter-

penetration function but also the spinodal is governed
by the RG flow in all the accessible range of the

coupling constants. Two properties of the RG flow
are of special importance : first, as noted before [5],
among the numereous fixed points found for this

problem the globally stable ode corresponds to the
excluded volume limit where all renormalized coupling
constants become equal to the same fixed point
value g*. Second, the renormalized coupling among
different polymer species is found to be bounded from
above which leads to the existence of a well defined
limit of strong incompatibility. These two features
of the RG flow give rise to phase diagrams which
differ considerably both from the Flory-Huggins
theory and from simple scaling results.
The organization of this article is as follows :

in section 2 we calculate and analyse the RG flow.
In section 3 the second virial coefficient and the
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interpenetration function are determined to one loop
order, and the latter is analysed numerically for typical
situations. In section 4 the spinodal is discussed.

Being interested here in principle features, we restrict
ourselves to the simplest (tree-) approximation and
to a special type of « symmetric » solutions. Only
the excluded volume limit and the 0-limit are discussed
in full generality. In section 5 we summarize our results
and touch on the question of possible experimental
verification.

2. Renormalized coupling constants.

We consider two monodisperse polymer species dis-
solved in a common solvent, which is a good or
moderate solvent for each species separately. We
denote by (a) or N (a) the polymer number concen-
tration or chain length of the a-th species. The mono-
mer size I is taken to be the same for both species, an
allowed simplification since a difference in I can be
absorbed into nonuniversal scale factors. The dimen-
sionless unrenormalized coupling constant for a - b
contacts is denoted by gab,o = fab,o 9*1 where g* is
the usual fixed point coupling constant.

Renormalization is a way to analyse the influence
of a change of the microscopic length scale I -+ 1A-’.
Since this can be studied in the dilute limit the RG

equations for the renormalized quantities N R (a)(A),
C(pR)(A)5 faa(A) are not influenced by the presence of
other polymer species and can be taken from previous
work [6] (1).

Here d = 4 - e is the space dimension, and co and v
denote critical exponents. So,. = SO(f..,O) is some

microscopic scale factor. 
The new feature of the present problem is the

renormalization of fl 2. A one-loop calculation yields
the differential RG equation

If both diagonal couplings take fixed point values
(0-point : faa = 0, or excluded volume limit : f. = 1)
this equation can easily be integrated to yield

(1 ) We use the massless renormalization scheme of
reference [7].

the values of fl*21 (012 , and T being collected in table I.
In addition, equation (2.4) allows for a closed solution
in two other cases :

Equivalent results derived in a somewhat different
renormalization scheme are given in reference [5].
For a comparison of the correction to scaling expo-
nents given in that reference to a) 2 as given in table I,
we note that the surface S used there scales like À.2.
We explicitly discuss the symmetric case (2.7). The

flow diagram (see Fig. 1) in the 112 - I plane exhibits
four fixed points : A (fl 2 = f = 0); B (112 = 0,
f= 1); C(I12 = 2, f =0); D(I12 = 1=1). Only
the fixed point D is stable, which implies that under
renormalization the difference between species 1 and 2
ultimately vanishes [5]. The lines fl2 0 connecting
(A, B), f - 0 connecting (A, C), f = 1 connecting
(B, D), or f12 - f connecting (A, D) are exact tra-
jectories of the RG. The separatrix connecting (C, D)
to the present accuracy is found as

In the neighbourhood of the separatrix connecting
(A, D) the flow is unstable. Points starting slightly
above or below this line will reach point D along
singular trajectories fl2 ± (I _ f)1/2 "-I ±
(1 - J)1012(D)/- from opposite directions. It is only
for the separatrix (A, D) itself that D is approached
in a regular fashion.
Flow lines like those shown in figure 1 can expe-

rimentally be realized by changing the chain lengths or
the concentrations at fixed temperature. A temperature
change influences fo and fl2,o, and therefore the system
follows lines different from the RG flow. In discussing
temperature effects we will restrict ourselves to the

Table I. - Values characterizing the RG flow of the
coupling between different polymer species, calculated
to one loop order. f1*2 : nontrivial fixed point. col2 or
- TS : correction to scaling exponent for the nontrivial
or trivial fixed points, respectively.
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Fig. 1. - f,, versusf for a symmetric solution 111 = f = f,,.
The flow lines depend on the parameter folf,,,O, and the
corresponding values are indicated in the figure.

« two-parameter» regime fo  1, taking z =

fo(So N)E’2 as a, linear measure of (T - 0)/0.
(N(l) = N (2) = N in all cases analysed numerically).

Z12 = fl2,o(So N)£/2 is parametrized accordingly as

The temperature variation of physical quantities is

quite sensitive to the values of A and B as will be
shown in the next sections.

In closing this section we note that all this discussion
is by no means restricted to systems containing two
monodisperse polymer species only. For more species,
or polydisperse species, no new renormalizations
occur and the results hold unchanged.

3. Interpenetration ratio.

Up to a constant of proportionality the interpenetra-
tion function fj¡(ab) is defined as the ratio of the second
virial coefficient A2ab) of a pair of chains divided by an
appropriate combination of the radii of gyration a).

Here A2 is determined from the virial expansion of the
osmotic pressure

In reference [5] the leading corrections to t/1(ab) near
various fixed points have been evaluated to order 82,
and a crossover function is given for the « symmetric »
solution f.. = fbb. We therefore can be here very
short, mainly evaluating the crossover functions to
illustrate the typical behaviour reflecting the coupling
constant flow.

Within our renormalization scheme, a one-loop
calculation yields

where yEu = 0.577... denotes Euler’s constant. To order s, equation (3.3) is consistent with the result of refe-
rence [3]. Fixing the scale factor A by imposing the constraint N,( ). N,( 2) = 1 and introducing the notation

we find
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We note that the choice (3.5) is not adequate for discussing the limits y - 0 or y - 00. Within a somewhat
different approach these limits have been analysed in references [3, 5]. At the fixed point fb = f,,. = fbb = 1
and for y = 1 the interpenetration function takes a universal value [8]

independent of the renormalization scheme. [For a
comparison to previous calculations [9, 10] we note the

value of g (4 n)dl’ F(dl2),618 I + 5 g+o(g2) .

By virtue of the prefactor lab in (3.6), t/J(12) It/J , if

plotted as a function of t/J(aa) It/J*, will trace out curves
qualitatively similar to the RG flow lines (Fig. 1),
provided faa and f22 are changed by increasing the
chain lengths at fixed temperature. Experimentally it
may be easier to increase temperature with the chain
lengths held fixed. We have evaluated our analytical
results for this case, assuming a fully symmetric
situation faa = ,f6b = f Y = 1. The temperature varia-
tion is described by the two-parameter scheme,
explained above. Typical results are shown in figure 2.
In this figure, curve (0) represents the extreme limit
of incompatibility : A - oo in equation (2.9). In this
limit f12 for given f reaches its maximum value, and
therefore this curve gives an upper bound to t/J(12)/t/J*
for given V/ (calculated here only to one loop order, of
course.) It is the direct image of the separatrix connect-
ing (C, D) in figure 1, and its very existence is a non-
trivial consequence of RG theory. Line (6) is the only
other RG trajectory in figure 2. It represents the trivial
case fl 2 =- f where the polymer species are indistin-
guishable. Lines (1) or (2) correspond to systems which
are strongly incompatible for T = 0 : A &#x3E;&#x3E; 1. For
curve (1) the system stays incompatible for all z(B &#x3E; 1)
whereas for curve (2) (B  1) it reaches the region of
compatibility for finite z. Thus V/(l 2)lql* crosses line (6)
and approaches the fixed point from below. Lines (3)
or (4) show the corresponding behaviour for a system
which near z = 0 is only weakly incompatible.
Finally curve (5) represents the limiting case B = 0.
Here the fixed point D (fl 2 = f = 1) is not reached
but the curve in a singular fashion approaches point B
(f12 = 01 f = 1). Thus figure 2 demonstrates that even
the special case of a symmetric solution shows a rich
variety in the functional dependence t/J(12)( t/J).

where ({Jl’ T2, or T. denote the volume fractions of the

polymer species or the solvent, respectively. To
reproduce the experimental results one has to allow
for a dependence of the Flory-Huggins parameters

Fig. 2. - qf"/tp* plotted as function of t/! It/! * for a symmetric
solution f 11 = f = 122’ N(1) = N(2). The interpenetration
ratios are changed by changing the temperature. The dif-
ferent curves are explained in the text

4. The spinodal.

4.1 TRADITIONAL APPROACH. - According to the
Flory-Huggins theory the spinodal is determined
by an equation of the structure [2]

Xsal X12 on temperature, concentrations, and chain
lengths, and to explain these variations one needs new
concepts going beyond Flory-Huggins theory. (In the
related problem of the phase separation occurring
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below the 0-temperature in a binary solution, empi-
rically successful improvements of the Flory-Huggins
theory have been presented See, for instance, refe-
rence [12].) We here relate the difficulties of the
traditional approach to the observation that for long
chains the phase separation often occurs at low
concentrations where Flory-Huggins theory cannot
be trusted and where a renormalization group
approach is appropriate.
Using concepts of scaling theory, De Gennes [13]

has analysed the chain length dependence of x12
for a symmetric system Xsl = Xs2’ N(l) = N(2). In the
good solvent limit he predicts

where X12,O is some « unrenormalized » Flory-Huggins
parameter. In the 0-region he finds

This prediction is claimed to be in good agreement
with the experimental results of reference [11]. We will
point out in the concluding section that our work
raises some doubts in this interpretation.

4.2 LOWEST ORDER APPROXIMATION OF THE RENOR-
MALIZED THEORY. - In the renormalized theory the
spinodal obeys the equation

where p (a) is the renormalized chemical potential of species (a). In tree approximation ,(a) takes the form

If substituted into equation (4.4) this yields an equation of the same structure as the Flory-Huggins result.

We have here introduced the renormalized monomer concentration

Comparing equations (4.1) and (4.6) we can deduce expressions for the Flory-Huggins parameters in terms
of renormalized quantities :

The renormalized theory is valid only for small concentrations of the polymers where CPs can be replaced by 1.
The volume fraction (p. is related to c(a) =c(a) N(a) by a factor of the volume v sr ld of a monomer, CPa = v. c(a),
and C(a) can be expressed by renormalized quantities by virtue of equations (2. 1)-(2. 3). This yields

We should stress that these relations hold only in the tree approximation of the renormalized theory and refer to
x-parameters extracted from a determination of the spinodal. Other experiments may yield other effective para-
meters.

Since (2 - vd)lv(o is positive, equation (4.9i) shows that a small value of(l20132 xsa) does not necessarily
imply that we are in the 0-regime. It also vanishes in the excluded volume limit faa --+ 1. The same holds true for

XI 2- In particular for a symmetric solution/11 = f22 = f equation (4. 9ii) reduces to

This effect will render the simple scaling considerations invalid in the excluded volume regime.
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To proceed we need to fix the renormalized length scale A. The choice of section 3, viz NR(l)(A) NR()(A) = 1,
is not appropriate here since the spinodal will be seen to extend into the region of large overlap where A is to be
determined by concentration rather than by chain length. In our previous work on binary solutions [6] we have
fixed A to be of the order of the monomer density correlation length ç, a choice which both was successful empi-
rically and could be justified on theoretical grounds.

Searching for a generalization of this condition we here are faced with a matrix of density correlations

replacing the single function I(q) of reference [6]. In tree approximation we find the renormalized expression

where

is proportional to the Debye function. Diagonalizing J -1 we can extract a correlation length from each of the two
eigenvalues. One of these diverges at the spinodal and therefore corresponds to the critical mode of phase separa-
tion. The other length stays finite and is given by the lengthy expression

It is this length which tends to the density correlation
length of the binary system if either the two polymer
species become identical or one c (a) vanishes. Genera-
lizing our work on binary systems we therefore impose
the condition

Equations (4.14) (4.15), if combined with the RG

equations (2.1) to (2.4) and the spinodal equation
(4.6), provide a closed scheme to calculate the spinodal
in renormalized tree approximation. The result clearly
will not be quantitatively correct. We, however,
expect it to give a good qualitative impression. Unfor-
tunately, even for this simplest approximation, the
system of equations has to be solved numerically.
To show the principal features we restrict ourselves to
a symmetric solution N (1) = N (2) = N, f11,0 -f22,0 = foe
In addition we choose C(1) = C(2) = c, and we thus
concentrate on the line of critical points where the
spinodal surface and the surface of the first-order
phase transition touch. As a result the equations
simplify considerably. The spinodal is determined by

and A implicitly is fixed by

i12 being given by equation (2.7), of course. We will

evaluate these equations in the domain of the two-
parameter theory : fo  1, where simple scaling
variables including temperature can be found.

Introducing the scaled concentration

we can rewrite equations (4.16) and (4.17) as

Thus the spinodal takes the scaling form

and similar results hold for the Flory-Huggins para-
meters. Specifically, x12 is found as

whereas X. takes the scaling form

We should stress that these scaling expressions hold
only along the spinodal.
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Fig. 3. - Spinodal curves z(x) for values of the parameter
A = 4.0 and B values B = 1.5, 1.0, 0.9 as indicated. Broken
lines represent the corresponding Flory-Huggins spinodals.
The fat line represents the limit of strong incompatibility
calculated according to the renormalization group. The
dotted horizontal line gives the asymptote for B = 0.9.

In figure 3 we have plotted the scaling form (4. 20) of
the spinodal for several values of the parameters A, B
in the parametrization (2.9) : z 12 = A + Bz, and in
figure 4 we have shown the corresponding curves in the
RG flow diagram fl2 versus f In figure 3 we also
included spinodal curves as calculated from the
unrenormalized (Flory-Huggins) theory :

The figures show typical examples illustrating the
three different cases B &#x3E; 1, B = 1, or B  1 distin-

guished by the behaviour in the excluded volume
limit z &#x3E;&#x3E; I (f , 1), where equations (4.19), (4.22)
reduce to

Fig. 4. - Flow lines 112 versus f corresponding to the
renormalized spinodals of figure 3. The dotted lines indicate
the points z - 10.

Taking A &#x3E; 0 always, we now discuss the three cases
separately.

In the asymptotic regime Bz &#x3E; A, equations (4.24)
to (4.26) yield for d = 3

Equation (4. 27) is to be compared to the unrenor-
malized result

For B &#x3E; 1, the spinodal asymptotically tends to

x = 0, the approach being much slower in renor-
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malized theory than in Flory-Huggins theory. In the
f, 2 - f diagram the spinodal approaches fixed point
D singularly from above

and the x-parameters in the renormalized theory take
the form

In the f12 - f diagram the spinodal approaches
point D along the regular RG trajectory fl2 = f

dominant influence, its zero zo = AI(I - B) defining
the temperature above which the polymers mix for
all concentrations. In the renormalized theory this
limit is approached as

The unrenormalized theory yields

In the fl2 - f diagram the spinodal may come close
to the nontrivial fixed point D but finally turns around
and approaches the trivial fixed point A along the
separatrix fl 2 = f.
Independent of B = Cost we may consider the

limit of strong incompatibility A - oo. In this limit
equations (4.19) yield a well defined curve x = x.(z)
limiting a region 0  x  x.(z) where the two species
are always compatible. In renormalized theory this
region is of finite width, in contrast to the unrenor-
malized result x - I /A - 0. In the excluded volume
limit, equations (4.24)-(4.26) yield

X12 or X. being given by equations (4.28). In the RG
flow diagram the spinodal coincides with the sepa-
ratrix connecting points C and D.

These considerations qualitatively explain the shape
of the spinodal curves shown in figure 3. It is obvious
that renormalized theory and Flory-Huggins theory
widely differ in their predictions. It seems appropriate
to add a few words concerning the region where the
limiting results (4.24), (4.25) hold. They are valid for

For B &#x3E;, 1 this can be fulfilled for large enough z,
and this is reflected by the fact that in that case the
spinodals in the fl 2 - f diagram end at fixed point D.
On the contrary for B  1 the spinodal does not
reach point D but bends backwards towards the
trivial fixed point. This is due to the screening of the
effective interaction which occurs if the concentration
increases (c - N -1/2 X _+ CC if z -+ zo). Thus equa-
tions (4. 32), (4. 33) have a region of validity only at
intermediate z-values and only if zo &#x3E;&#x3E; 1. More pre-

cisely equation (4.36) leads to the condition

In the excluded volume limit we can easily extend our
discussion to cover the concentration dependence
of the spinodal in the symmetric case f, 1, 0 = f2 2, 0 = fO ,
N (1) = N (2) = N, but c(l) #- c(2). A general discussion
of the excluded volume limit is presented in the next
subsection. We therefore here only quote some results.
In tree approximation we find

where x(") is defined by equation (4.18) with c replaced
by c(a) . A simple reduced form of this result is found by
extracting the critical concentration xcr (defined by
x(l) = X(2) = xcr) which has been discussed exten-

sively above.

In the present approximation this is a universal form
valid in the excluded volume limit. x(’)Ixr = c(a) I Cer
is independent of chain length or temperature. These
parameters are absorbed in the critical concentration

C,,r- We should compare this to the Flory-Huggins
result which takes the form

depending on the parameter
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Clearly expressions (4. 39) or (4.40) give rise to quite
different shapes of the spinodal surface. In particular
equation (4.40) predicts that c(a) I ccr diverges at the
finite value c(’)Ic,,:,r = (y + 2)-1, whereas in the renor-
malized theory the extreme wings of the surface

approach c(b) ICcr = 0 :

At this point, however, we should recall that all our
work holds only for dilute solutions ld C  1, so that
these results are relevant only for very long chains
(c,,, - NP-l -+ 0). In figure 5 we have plotted the
universal curve (4.39), and we have compared it to
the Flory-Huggins result with y = 2 p/(1 - 2 p) - 3.2
chosen such that both curves have the same curvature
at the critical point.
We finally exhibit the concentration and chain length
dependence of the Flory Huggins parameters. In
terms of the reduced concentration X(a)IXr we find

consistent with our previous expressions. Since in the semidilute excluded volume limit A, and thus f, depends
only on a weighted mean of the concentrations, most simple expressions are found if equations (4. 43) are rewritten
in terms of c(a).

In tree approximation these parameters depend only on the total concentration and temperature.

4. 3 GENERAL DISCUSSION OF THE EXCLUDED VOLUME
REGIME. - The excluded volume limit can be dis-
cussed analytically, the analysis not being restricted
to tree approximation or to symmetric solutions.
We start from equation (4.4) written in a form sug-
gested by the tree approximation :

The functions H and G depend on the renormalized
chain lengths, concentrations, and coupling constants.
Inspection of the RG flow shows that in the excluded
volume limit the system is driven to a fixed point
where it cannot differentiate among the two species.

E- Fig. 5. - Concentration dependence of the spinodal surface
in the excluded volume limit. Only the sector c(’) &#x3E; C(2) is
given. The fat or thin lines represent renormalized or Flory-
Huggins theory, respectively. The asymptotic behaviour
of the Flory-Huggins theory is indicated by the broken line.
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At the fixed point no phase transition can occur and the
spinodal has to run away into the region of infinite
overlap c) NRa)vd-1 00. This strongly suggests that
G( l, 2) vanishes at the fixed point whereas H(1, 2)
stays finite, a behaviour which is found in tree approxi-
mation : G12 = 111./22 - Il2’ H(I,2) = 122. It is
the basic assumption of the following derivation that
this identifies the fixed point behaviour of Hand G
correctly.
To proceed we expand G( 1, 2) around the fixed point.

The leading contribution is due to

whereas corrections 1 - faa f8000I A’, (o - 2 (J)12 can be
neglected (compare Fig. 1 !). We thus write

A is still fixed by equation (4.15) with f evaluated in
tree approximation. There is no need to consider

higher order terms in fixing t This yields

where we have used that for f - 1 the large overlap
limit is reached where terms of order IINR vanish.
Using the RG mapping we find

By virtue of equation (4.49) we can express the
variables c(Ra) in terms of y and of

Furthermore the functions H, G’ should be well
behaved in the semidilute excluded volume limit

Nia) -+ oo, y = Cost and after this limit has been
taken, the variables NR(a) occur in H, G’ only in the
combination y. Finally we note that the first term on
the r.h.s. of equation (4.46) is of order I INR compared
to the other terms and thus drops out. With all these
considerations equation (4.46) takes the form

and with the help of equation (4.51) our final result

where H is a combination of H, G’ and c(Ra). Reducing
this result to its essential content we may write

To check the consistency of the derivation we note
that for 21 "-I Z2 --+ oo we find i (’) -j (2) _+ 0 so that
the excluded volume limit is reached properly. Also,
the overlap diverges as

For fixed temperature (fab,0 = Const., a = Const.),
fixed relative chain length y and fixed concentration
ratio w equation (4. 57) predicts the power law

which decreases less rapidly than c- (X12 N) - I -
N l-v4 suggested by the scaling argument (compare
Eq. (4.2)). It is easily seen that the scaling argument
ignores the fact that at the fixed point the system is
compatible so that G(l, 2) - 0. It thus misses the
factor A’12. In terms of equation (4.10) for x12 it
takes care of the contribution (I _ f)(2 - vd)/v(D but
omits the factor f12/f -1 N (I _ f)Wl2/W. Compa-
rison of equations (4.24) and (4. 57) yields a scaling
relation for the exponent p

which by virtue of co 12 = co f + 0(82) is consistent
2

with equation (4.2bi).
The corresponding result for Q reads

Of most interest is the variation of the spinodal with
temperature. Unfortunately this cannot be extracted
from (4. 57) without knowledge of Il since all the
variables c, g w, y, a depend on temperature. A great
simplification occurs in the symmetric case fll,o =
f2 2, 0  1 , where w and y become independent of
temperature and where we can easily estimate a.

Replacing in equation (2.7) the exponent 1/2 by its
exact value 0012/00 we find for 112 -+ 1 :
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which yields

It is now easily seen that with this form of a the
discussion of the excluded volume limit given in the
previous subsection remains valid in the symmetric
case 111 0 = fi2,o beyond tree approximation and
for arbitrary y or w.

4.4 THE 0-LiMiT. - In the 0-limit f11,o = ,f22,0 = 0
the analysis of section 4.2 can easily be extended to
cover the full dependence of the spinodal on concen-
trations and chain lengths. We, however, are still
restricted to lowest order (tree-) approximation in f12
The RG equations (2 .1-2 . 3, 2.5) reduce to

where c12 = 8 + éJ( 82) is the exponent corresponding
to the fixed point C of figure 1. Combining the equation
for the spinodal

Thus A along the spinodal is independent of concen-
tration. As an immediate consequence the spinodal
takes a universal form in terms of reduced variables

The concentrations at the critical point are easily
found to obey the relation

Using this result together with equations (4.64),
(4.65), (4. 67), (4.68) we find an equation for Cp,,vr :

With c12 === s, f,2,0  1, equation (4.66) can be
solved analytically :

which leads to the final result

A particularly simple expression is found for the

Flory-Huggins parameter :

where in the last line we used the approximate value
co 2 = s. We note that x12 along the spinodal surface
is independent of concentrations or the ratio of the
chain lengths.

In the limit of weak incompatibility z,2  1

equations (4.74), (4.75) reproduce Flory-Huggins
theory. In the opposite limit z12 &#x3E; 1 they are con-
sistent with De Gennes’ scaling result (4. 3). Analysing
this derivation we find that this scaling behaviour is
a consequence of the existence of a fixed point (point C
in Fig. 1) representing the strongly incompatible
0-system. It therefore holds independent of tree

approximation. The cross-over between the ()-flXed

point A and fixed point C, as described by equations
(4.74) or (4.75), will be subject to higher order cor-
rections, of course.

5. Summary and conclusions.

In summary, we have presented an analysis of the RG
flow for a solution containing several polymer species,
and we have worked out the consequences of this
flow for the interpenetration function (to one-loop
order) and for the spinodal (in tree approximation).
Whereas results on the interpenetration function have
been recently published [5], the spinodal is treated
here for the first time. New qualitative aspects arise
from the fact that the renormalized coupling constant
i12’ giving the interaction among different species,
is bounded from above. This gives rise to the existence
of a well defined limit of strong incompatibility. The
interpenetration function ql(1,2) is bounded from
above, and in appropriately scaled variables
x - cN’ - E/2, Z  (T - ()) Nel2 the spinodal does
not collapse on the line x - 0, even for infinitely strong
incompatibility. Other important qualitative aspects
result from the fact that the symmetric fixed point
i12 = ill = i22 = 1 is the attractive one [5]. As a
consequence the spinodal in the excluded volume
limit tends to the region of infinite overlap and does
not show the behaviour suggested by simple scaling
ideas.
We believe that it should be possible to verify

experimentally some part of the behaviour predicted
here. It may be rather difficult to test the results for
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the interpenetration ratio. Determination of ql is

notoriously difficult, and furthermore experiments in
6-solvents cover only a small range in the z-variables
(according to previous analysis [6] the range of z in
our normalization typically is restricted to z _ 10).
In good solvents one might be able to explore the
interesting region near ql - ql*. .
We believe that our results for the spinodal could

be checked more easily. Again experiments in good
solvent and for a strongly incompatible system would
be of most interest, giving rise to a determination
of the exponent Q)12 governing the excluded volume
behaviour. In this context we want to comment on
the experimental findings of reference [11] which have
been taken as support [13] of the scaling law (4.3)
valid in the strongly incompatible 0-limit. From our
analysis in section 4.4 we find that the experimentally
observed concentration dependence of x12 is at

variance with this interpretation. Furthermore we
know [6] that the binary subsystem polystyrene-
toluene is in good solvent conditions. On the other

hand our analysis of section 4. 3, assuming that the
total system is close to the excluded volume limit,
also does not apply : the observed chain length depen-
dence of X12 at the critical point seems to be too strong.
We suppose that the second binary subsystem, viz.

polyisobutylene-toluene, is in moderate solvent con-

ditions, so that a calculation in the (unsymmetric)
cross-over regime would be necessary. Unfortunately
we have not been able to find data for this second

subsystem which are of comparable quality to those
available for polystyrene-toluene.

Being restricted to tree-approximation, our qua-
litative discussion of the spinodal can only be a first
step. The one-loop corrections certainly have to be
calculated. Also, to put the RG equation for fit
on the same level as those for the faa, we should use
a two-loop calculation similar to that given in refe-
rence [5]. Work in that direction is in progress. For a
quantitative test of such calculations, experiments
on ternary systems with well characterized binary
subsystems would be most welcome.
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