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Résumé. 2014 Nous proposons un modèle qui décrit les interactions électrostatiques dans le coeur aqueux d’une
micelle inverse sphérique. Nous supposons que certains contre-ions sont situés à la surface du coeur aqueux, les
autres étant répartis à l’intérieur suivant une loi de Boltzmann. L’équation de Poisson-Boltzmann non linéarisée est
résolue et nous donnons un développement asymptotique de sa solution près d’une divergence logarithmique mise
ici en évidence. L’enthalpie d’association d’un contre-ion, à la surface du c0153ur aqueux est évaluée. Quand la surface
par tête polaire reste constante, l’énergie électrostatique par monomère est une fonction du nombre d’agrégation
de la micelle.

Abstract. 2014 We propose a model for describing electrostatic interactions in the aqueous core of a spherical reversed
micelle. Some counterions are located at the surface of the aqueous core, the others are distributed inside the core

following a Boltzmann law. The nonlinearized Poisson-Boltzmann equation is solved in spherical geometry; an
asymptotic expansion of its solution is found near a logarithmic divergence. We give an evaluation of the enthalpy
of association of a counterion to the surface of the aqueous core. Assuming that the area by polar head remains
constant, we obtain the electrostatic energy of the micelle and we show that the electrostatic energy by monomer
is a function of the aggregation number.
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1. Introduction.

In nonpolar solvents, water can be dispersed by
adjunction of suitable amphiphilic surfactants. Large
amounts of water can be solubilized in a ternary
system of oil-water-aerosol OT, giving a stable
solution (L2) of monodisperse reversed micelles [1] :
water is then confined in spherical pools limited by
the hydrophilic ionized polar heads of the surfactant
molecules while the lipophilic chains are directed
towards the solvent.

Last years extensive studies have been carried out

by different experimental techniques to determine
the structural parameters of the socalled L2 phase,
especially the size and the shape of the micelles [2-5].
The nature of water contained in reversed micelles
has been tested by fluorescence probing [6] or by

(*) Laboratoire associe au C.N.R.S.

N.M.R. studies [7]. It was found to be different from
ordinary bulk water especially at low water content.

Theoretical investigations of the stability of micro-
emulsions differ by their description of the different
contributions to the free energy of the system [8-11].
In the case of ionic surfactants the electrostatic energy
is one of these contributions. For direct charged
micelles (oil in water microemulsions) the electro-
static interactions between micelles depend on the
degree of binding of the counterions to the micellar
surface. Assuming spherical micelles, the ionic dis-
tribution around each micelle is obtained by solving
the Poisson-Boltzmann equation which can be
linearized : the electrostatic potential decreases far
from a micelle as exp( - rIAd), where Ad is the Debye
length. Furthermore the growth of spherical direct
micelles is limited by a geometrical constraint : the
radius must be shorter than the length of the extended
amphiphilic chain of the surfactant molecule. Upon
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further growing micelles are deformed into ellipsoids,
cylinders or disks with inhomogeneous curvature.
The case of reversed micelles (water in oil micro-

emulsion) is different. Since there is no electrostatic
interactions between spherical and overall neutral

micelles, the electrostatic energy comes from the
distribution of the counterions inside the aqueous
core of the micelles.
The aim of this paper is to give a detailed description

of this distribution and of the electrostatic energy of
a reversed micelle. After a presentation of the model
(section 2), we derive in section 3 the potential dis-
tribution inside the micelle by solving the nonlinearized
Poisson-Boltzmann equation. The expression of the
electrostatic energy is then obtained in section 4.

2. The charged hollow sphere modeL

We assume a spherical symmetry for the whole micelle
(Fig.1). The aqueous core is surrounded by N amphi-
philic molecules. The polar heads limiting the water
pool are ionized carrying the charge - e (anionic
monovalent surfactant).
As usual, the area by polar head 6 is defined by

where R is the radius of the aqueous core of the micelle.
We model the amphiphilic interface of a reversed

micelle by analogy with direct micelles and lamellar
systems : for them it is well known that an important
fraction of the counterions remains bounded to polar
heads, on sites which appear to be very close or inside
the polar region. In the same way, for a reversed
micelle, we assume that PN(O  p  1) counterions
are localized on the micellar interface. This hypothesis
is supported by geometrical considerations : a crude
evaluation of the area of the AOT head group gives
25 A2, which is about twice smaller than the cr para-

Fig. 1. - A schematic representation of the geometrical
model for a reversed micelle (AOT surfactant).

meter introduced by (1) and commonly given by
experimental techniques.
The effective charge of the micellar interface is

therefore - Ne(I - fl); the charge density is assumed
to be continuous and uniformly distributed on a

sphere. N(1 2013 /!) counterions are all solubilized in
the water core and one gets for them a Boltzmann
distribution; their local concentration varies with the
electrostatic potential and with the temperature T.
No ion is solved in the continuous aliphatic medium,
and micelles are supposed to be electrically neutral.

3. The potential distribution.

3.1 THE POISSON-BOLTZMANN EQUATION FOR REVERS-
ED MICELLES. - Inside the aqueous core, the elec-
trostatic potential Y(r) is solution of Poisson’s equa-
tion

where e is the ionic charge, c the dielectric permittivity,
and n(r) the local concentration of the (1 - fl) N
free counterions at the distance r from the centre of
the micelle.

Since the micelle is spherical and electrically neutral,
the potential vanishes outside the micelle. The boun-
dary conditions for V(r) are therefore

and from the Gauss theorem

On the other hand, the electric field must be conti-
nuous inside the micelle. From symmetry considera-
tions, it must be radial and therefore vanishes at the
centre :

For the ionic concentration we assume a Boltzmann
law :

where k is Boltzmann’s constant, T the temperature,
and n(R) is the value of n(r) at the zero potential
surface that is at the water core surface.
From equations (2) and (5), V(r) is solution of the

Poisson-Boltzmann equation :

with boundary conditions (3) and (4).
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In order to solve these equations, let us define new
dimensionless variables :

and

Equation (6) now writes :

and can be simplified by setting

or

K -I is the Debye radius corresponding to the ionic
concentration n(O) at the centre of the water core.

Equation (9) now writes :

From equation (8), condition (3) is always satisfied
Let us now point out that f(x) is defined by equa-
tion (8) up to a constant. We can adjust this constant
and set :

f(x) is now completely defined as

Using equations (4), (1) and (7), one easily finds :

4 ne2 
where LB = akT = 4 niB (l is the Bjerrum length,

7.15 A at 298 K for water with E = 78.3).
Equation (11), with the boundary conditions given

by equations (12) and (13b), completely determines a
universal function f(x). The actual scale for this
function is obtained by the knowledge of x or of
ç = R/K. ç is deduced from equation (13). Finally
the actual potential is obtained from f(x) by means of
equation (8).
The solution of equations (11)413) cannot be

expressed with the help of well-known mathematical

functions. An approximate expression is easily found
for small values of f, i.e. in the neighbourhood of
x = 0, using the « Debye approximation » : exp - f
= 1 - f. Equation (11) is thus linearized and the
solution is

This approximation is valid as far as f ’ remains
much smaller than one, i.e. in the range 0  x , 2.
From equations (11) and (13) it results that df/dx

is a decreasing function of x and, using equation (12),
that f is negative for x &#x3E; 0 and has no minimum.
A computer solution of equation (11), using a finite

difference method, suggests a discontinuity for a
finite value of x, x = A. A hyperbolic behaviour
f -- C(A - X)-n (C and n &#x3E; 0) is incompatible with
equation (11). On the other hand, the exp - f term
suggests a logarithmic divergence

This expression allows for the cancellation of higher
order terms in equation (11) for a = 2 and b = /2-.
Using an iterative procedure, one finally obtains the
following asymptotic expansion

The constant A has been fitted by a method of least
squares. One finds

Are plotted fO(x), fA(X), in figure 2 and the nume-
rical solution /M of equation (11). f A(x) appears
as a good approximation for f(x) if x &#x3E; 2.5.

Fig. 2. - Solution of the Poisson-Boltzmann equation; f 0
is the linearized solution near the origin, f’ the asymptotic
expansion of the numerical solution f.
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In order to determine the potential distribution
inside the micelle, one must calculate ç, from equa-
tion (13). For given values of Rand (1, ç depends
only on the association coefficient for counterions, P.

3.2 COUNTERION BINDING. - Counterion binding to
the micellar surface can be experimentally charac-
terized from quadrupolar relaxation data; NMR
spectroscopy has been successfully applied to study
the degree of association of the counterions in direct
micellar solutions [12-13] as well as in the L2 phase of
ternary systems (see [14] for CTAB-n hexanol-water).
On the L2 phase of AOT-water-heptane, taking
advantage of the difference in the relaxation rate of
sodium ions in two states, bounded to the micellar
surface and free in the bulk water, Wong and coworkers
[6] give an estimate of the degree of association of the
counterions. 72 % appears to be a lower limit.

In our model, the counterions are either located at
the surface of the water core of the micelle or free
inside the water bulk. We introduce the enthalpy
Ah’ of association of a counterion to the micellar
surface and write the equilibrium condition which
does exist between the two states of the counterions.
The electrochemical potential x(R) of a bound

counterion writes :

where X. is the standard electrochemical potential
of a counterion, and s the entropy per bound coun-
terion.
The value of s depends on the number of possible

sites for counterions on the micellar interface. Since
the area by anionic polar head (-- 58 A2) is much

higher than the area actually occupied by one polar
head ( N 25 A2) and since both anions and cations
are monovalent, the simplest assumption is that there
is one possible site for cationic counterions per anionic
polar head on the micellar interface. In this case,
a fraction P of these sites is occupied and the resulting
entropy is classically given by

In this case, there is no contribution of the electro-
static energy to x(R) since V(R) = 0.

Since we assume that the water core of the micelle
is a solution of free ions in water, the electrochemical

potential for counterions at r = 0 writes

where nw is the concentration of the water molecules,
n(O) and V(O) are the ionic concentration and the
electrostatic potential at the origin.

In equation (18), we have made an implicit assump-
tion of ideal solutions. This means that we take

account of the electrostatic interactions between ions
via a mean field approximation and that we neglect
any other kind of interaction. This is the basic assump-
tion for the Poisson-Boltzmann distribution.
The equilibrium condition writes

i.e. by equations (16)-(18)

By equations (5), (7) and (10), the value of ç is related
to n(o) : : 

Equating (19) and (20) and using equations (16)
and (13), one gets :

We have numerically solved equations (13a) and (21)
for values of P &#x3E; 0.72 using the experimental data of
R and Q obtained by Cabos and Delord [2] in the case
of dilute micellar solutions of the AOT-water-heptane
system. They measured Rand N with an accuracy of
10 % for different values of the hydratation number co,
ratio of the molar concentrations of water and AOT;
a is obtained by (1).
Taking fl as a parameter, equation (13a) is first solved

using the asymptotic expansion (15) of f ; one gets
a value of ç useful to determine Ah + from (21).

Results are given in tables I and II for T = 298 K,
8 = 78.3 ; they deserve a few remarks :

a) all values of ç have been found to be greater
than 2.7 which justifies a posteriori the use of the
asymptotic expansion (15) of f.

b) the last column gives the enthalpy of association
of a counterion to the micellar surface. Due to the

accuracy of the experimental data, the values of
Ah’ are given within an accuracy of + 0.05 kcal/mole.

c) we may compare the values of Ah + found here
with the activation energy of the 23Na relaxation
process evaluated by Wong et ale [6]. From the tem-
perature variation of the linewidth of 23Na, these
authors find, for reversed micelles of AOT with radii
of24.4A(co = 16.4), an activation energy Ea of 5.4 kcal/
mole, higher than that obtained in bulk water (2.5 kcal/
mole). The comparison between these results and the
value we have found for Ah ’ is not very simple. The
broadening of the NMR line is a complex process
which cannot be explained only by the presence of an
energy barrier AAB We therefore expect Ah + to be
of the same order as, but smaller than Ea, which is
effectively the case. Note finally that the value of
is in our model a parameter which may be different for
different values of co.
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Table I. - Radii R and aggregation numbers N are
experimental data [2] obtained in the case of dilute
solutions of AOT-water heptane micelles for different
values of the hydratation number OJ, ç is solution of
equation (13a). Ah + is the enthalpy of association of a
counterion. Results are given jbr fl = 0.8.

Table II. - The enthalpy of association Ah’ is cal-
culated from (21) for different values of p and of the
hydratation number OJ.

4. Calculation of the electrostatic energy.

The ionic distribution function is shown in figure 3.
Most of the counterions are found on the interface
or very close to it. It is therefore obvious that, to a
large extent, the electrostatic energy appears as a
surface energy. As far as we can consider the area per
anionic polar head as a constant, a surface energy will

Fig. 3. - Distribution of the counterions inside the aqueous
core of the micelle.

be proportional to the total number of surfactant
molecules and will not depend on the micellar size.

This is not an exact picture. Beside a huge « surface
energy term », the actual electrostatic energy will
include non-trivial terms which will depend on the
micellar size, and play a role in the determination of
the micellar radius.
We shall now evaluate these non-trivial terms. The

electrostatic energy of the ionic distribution is given
in a mean field approximation by

With the help of (5), (7) and (8) one gets :

The integral of (22) has been calculated using the
tabulated values of f(x) for 0  x  2.5 and with the
asymptotic expansion (15) for 2.5  x , ç.
One finds then

where :
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Plotted in kT units in figure 4, for fl = 0.8 and
f3 = 0.9 and a = 58 A2, the variation of Ge versus
the aggregation number N exhibits, as expected, a
preponderant term proportional to N (o surface
energy term »).
We can obtain a rough estimate of the variation of

Gc with R and a (or N from Eq. (1)), keeping onlv
the first term in the expression of f A(x) : 

In this case, equation (13) is easily solved and one
gets :

where

which leads to :

The first term in the bracket of the r.h.s. of equa-
tion (23) corresponds to the « surface energy term ».

Fig. 4. - Variation of the electrostatic energy versus the
aggregation number N for two values of P; (J = 58 A2,
T = 298 K, c = 78.3.

It will give no contribution in the minimization of the
free energy per monomer.
From figure 4, the « surface terms » appear to be

much more important than the non-trivial part 6.
of the electrostatic energy. One therefore has

and

Gel N is plotted versus N in figure 5. It will contribute
to the minimization of the free energy.

5. Conclusioa

The model developed here to describe the electrostatic
interaction in the aqueous core of a reversed micelle
is essentially based on a solution of the non-linearized
Poisson-Boltzmann equation. Its solution obtained
in terms of dimensionless variables is quite general
and can be used for any ionic surfactant aggregated
in water-in-oil microemulsion.
The electrostatic energy calculated for a micelle

is not strictly a linear function of the aggregation
number. The deviation to the linearity must give an
important contribution in the stability of a solution
of reversed micelles.

This model is in some aspects rather crude. The most
questionable points are the following :

a) we have used the Poisson-Boltzmann theory
which is not free from contradictions. The mean
electrostatic field introduced here is certainly an

Fig. 5. - Departure of the electrostatic energy per mono-
mer from its mean value, versus N, for P = 0.8 and P = 0.9:
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approximation. Anyway the logarithmic divergence
of the solution seems to be well described by an
asymptotic expansion of the reduced electrostatic

potential which can be used easily;
b) the localization of all the polar heads and most

of the counterions on a sphere without thickness is
probably an oversimplification. The actual situation
is certainly more complex. A part of water molecules
are bound to the polar heads and to counterions so
that the polar head region has a finite thickness;

c) the existence of « holes » (sites for counterions)
between polar heads can be assumed only if the area
per polar head is greater than 25 A2 ; our model cannot

then be used to describe micelles with a low hydra-
tation number (cm  10). Smaller hydratation numbers
seem to correspond to a different kind of aggregates
with no free ions inside the core;

d) the surface per anionic polar head, (1, has been
taken as a constant. Experiments show that a does
not depend on to, as long as m &#x3E; 10.

In a further step, the other terms in the free energy
(surface tension, entropic terms, etc...) should be
taken into account. Variation of a should be allowed
and a minimization of the total free energy should
lead to the stability condition of a solution of reversed
micelles.
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