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The validity of hyperscaling in three dimensions
for scalar spin systems

M. E. Fisher (*)

Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, U.K.

and Jing-Huei Chen

Baker Laboratory, Cornell University, Ithaca, New York 14853, U.S.A.

(Reçu le 28 mai 1985, accepte le 3 juin 1985)

Résumé. 2014 Nous calculons les exposants 03B3, 03BD et 03B1 à partir des développements en série de la longueur de corrélation
et de la susceptibilité magnétique dans les modèles double gaussien et de Klauder sur réseaux cubiques centrés.
Ces modèles interpolent en fonction d’un paramètre y entre le modèle gaussien pur (y = 0) et le modèle d’Ising
de spin 1/2 (y = 1). Une analyse à une variable suggère l’existence d’une valeur yc (pour chaque modèle) pour
laquelle la première correction non analytique à une pure loi de puissance s’annule. Ce résultat est en accord avec
une analyse antérieure utilisant des approximants différentiels à deux variables. Les hamiltoniens des deux modèles
ont des caractéristiques quasi universelles en ces points. Nous en déduisons une estimation pour les exposants
critiques : 03B3 = 1,2395 ± 0,0004, 03BD = 0,632 ± 0,001, 03B1 = 0,105 ± 0,007 : ceci implique d03BD - (2 - 03B1) = 0,001 ± 0,010
et indique que l’ « hyperscaling » est vérifié. Des déviations apparentes observées dans le modèle d’Ising pur peuvent
être attribuées à des corrections non analytiques petites, mais non négligeables.

Abstract 2014 The exponents 03B3, 03BD and 03B1 are estimated from susceptibility and correlation length series for the bcc
double-Gaussian and Klauder models, which interpolate, as a function of y, between the pure Gaussian model
(at y = 0) and the pure spin 1/2 Ising model (at y = 1). Single-variable analysis reveals a value, yc (for each model),
at which the leading, non-analytic corrections to pure power laws vanish, in accordance with expectations based
on prior partial differential approximant analysis. The Hamiltonians of the two models display quasiuniversal
features at these points. The corresponding exponent estimates are 03B3 = 1.2395 ± 0.0004, 03BD = 0.632 ± 0.001 and
03B1 = 0.105 ± 0.007 : these imply d03BD - (2 - 03B1) = 0.001 ± 0.010 and hence indicate the validity of hyperscaling.
Apparent violations seen in the pure Ising model are attributable to small but significant nonanalytic corrections.
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1. Introduction and summary.

The phenomenological scaling laws for critical expo-
nents fall into two independent classes. On the one
hand are the ordinary relations like

connecting the thermodynamic exponents, a, P, y, 5
and L1, the correlation length exponent, v, and the

(*) Permanent address : Baker Laboratory, Comell

University, Ithaca, New York 14853, U.S.A.

critical point decay exponent, ri [1]; on the other hand
are the so-called hyperscaling relations [2]

which depend explicitly on the spatial dimensionality,
d. The ordinary relations (1) are satisfied by all soluble
models, including mean field theory and the spherical
model for general d; the hyperscaling relations are
found to be valid for soluble two-dimensional models,
in particular for the pure, spin 2 Ising model but they
certainly fail in more than four dimensions where,
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e.g. for the spherical model, one finds the discrepancy

The (d = 3)-dimensional pure Ising model has long
been studied on the basis of series expansions [3]. The
ordinary scaling laws are well confirmed by estimates
of the exponents derived by extrapolating the series
but the most careful work prior to 1980 suggested that
hyperscaling failed Thus, using 11 or 12 terms for
various lattices the initial estimates were [3]

where here, as everywhere below, the quoted uncer-
tainties refer always to the last decimal place displayed.
These estimates yield the small but apparently signi-
ficant discrepancy

In later work Baker [4] tested the hyperscaling rela-
tion (3) for L1 by studying the fourth field derivative,
(a2x/aH2), which diverges as (T - T)-Y-2d; ; he

concluded that there was a discrepancy dv - (2d - y)
= 0.028 ± 3 which, through ordinary scaling, is consis-
tent with (6). The positivity of these deviations is also
in accord with the validity of the ordinary relations (1)
and the Gunton-Buckingham inequality, which repla-
ces = by in the first member of (3).
The apparent failure of hyperscaling for d = 3

became a sharper problem with the advent of renor-
malization group theory [e.g. 5, 6] since, at the purely
formal level, the theory necessarily entails hyper-
scaling. Furthermore, hyperscaling is verified expli-
citly to all orders of the 8 = 4 - d expansion for
exponents and hence is expected to be valid for
d = 3 [7]. Note that the failure of hyperscaling for
d &#x3E; 4 can be understood within renormalization

group theory in terms of a dangerous irrelevant

variable [6, 8] which enters into the scaling functions
for the free energy, etc.; however, there is no inde-
pendent evidence for the presence of any dangerous
variables in d = 3 dimensions. In addition, direct

application of field-theoretic renormalization group
techniques to Ising-like (n = 1) scalar spin systems
in d = 3 yielded the estimates [9, 10]

(which necessarily verify hyperscaling). Since most
theorists felt that the pure spin 2 Ising model should
be in the same universality class as the continuous,
scalar spin models the difference in the estimates for y
[compare with (5)] was disturbing and stimulated
further studies. For example, Zinn-Justin [11] reana-
lysed the existing high temperature series for the pure
Ising model concluding a = o.110 ± 4 and y = 1.245 ± 3

in more satisfactory agreement with (7). However,
since his estimate for v was unchanged from (5), a
discrepancy (J)* v = 0.024 + 10 remained. Nickel and
Sharpe [12] and Rehr [13] examined the renormalized
coupling constant (defined in terms of ’V"XIAH 2)
again casting doubt on the reliability of earlier extra-
polations ; consistency with hyperscaling was suggested
by Rehr but with no great conviction.
The situation changed dramatically in 1980 when

Nickel [14] derived high temperature series for the
bcc lattice to order 21 in the spin-spin coupling, for
models with a variety of single-spin weight functions.
In particular, Nickel showed, using the susceptibi-
lity series for the spin-S Ising models, that the shorter
series previously available were definitely not long
enough to reveal the true asymptotic trends or the
unambiguous presence of the leading nonanalytic
correction to scaling. This correction is characterized
by an exponent 0 and enters the asymptotic behaviour
for the susceptibility as

where

Nickel’s initial analysis suggested 0 -- 0.5 (in accord
with renormalization group estimates) and y = 1.237 ± 5
in better consonance with (7). Zinn-Justin [ 15] made a
very careful analysis of the spin-S series for x and
for the mean square correlation length, ç2. By assuming
that the exponent 0 was independent of S he was able
to convincingly justify the estimates y =1.2385 ± 25
and v = 0.6305 ± 15, both in remarkably good accord
with the field-theoretic results (7). A later analysis of
the same series by Ferer and Velgakis [16] attempted
to avoid assumptions about 0 and led to the somewhat
higher estimates y = 1.242( + 3, - 5) and v = 0.634( + 3,
- 4). These authors claimed that the nonanalytic
corrections for S=1 are « absent or at least unobser-
vably small ». We will take issue with that conclusion
and demonstrate that, even in the pure spin - 2 Ising
model, there are nonanalytic corrections which are
significant in that they yield relatively high effective
values of y and v such as found by Ferer and Velgakis.
More importantly, neither Zinn-Justin nor Ferer

and Velgakis estimates a or L1 so that no check of

hyperscaling per se has yet been presented on the basis
of the long series calculated by Nickel. The work to be
reported here closes this gap. In fact we claim more :
specifically, we conclude that if proper allowance is
made for the possible presence of nonanalytic correc-
tions to the leading power laws then the validity of
hyperscaling or, more concretely, the estimate

is indicated independently of any explicit assumptions
about the detailed form of the corrections or the
value of 0.
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The crux of our approach is the recognition [14,
15, 17] that in analysing one single series expansion
of any practically attainable length (say, 30 terms or
fewer) it is normally impossible to reliably gauge the
character, magnitude and influence of the nonanalytic
corrections at the requisite level of precision. It follows
that one should analyse more than one series for a
given model but also, and more importantly, one
should study a family of models (specified by some
auxiliary parameter) which are good candidates for
belonging to the same universality class. The spin-S
Ising models provide one such family but it is not

really an optimal choice : in the first place the spin
parameter is essentially discrete whereas continuity
is desirable, if as will be our aim, one hopes to locate
a parameter value at which the leading nonanalytic
corrections vanish. One can, in fact, formally regard
the spin as a continuous parameter since S enters
the series coefficients in a simple polynomial fashion;
however, the corresponding analytically-continued
single-spin weighting factors (for continuous spin
variables) necessarily vary rapidly with S and, in

between half-integral values, do not even remain

positive [18]. Secondly, the spin-S Ising family contains
no simple limiting models which might provide some
sort of an anchor in analysing the possible universality
classes. For these reasons we have preferred to study
the double-Gaussian (DG) and Klauder (Kl) models
[17] which are specified by (i) a nearest-neighbour
Hannltonian with coupling terms - J Si Sj and tem-
perature parameter

and (ii) single-spin weighting factors [17, 19]

in which y is the auxiliary model parameter which
also enters via

At y = 0 both models reduce to the simple Gaussian
model which is exactly soluble having y = 1, v = 2
and a = 2(4 - d) (although the model is undefined
for T  Tr ,). When y -+ 1 both models approach the
pure spin - 2 Ising model. Furthermore, the double-
Gaussian model can be transformed exactly into a
spin - 2 Ising model with further-neighbour but

exponentially decaying interactions [20] and this

provides an analytical and physically sensible conti-
nuation of the model to y &#x3E; 1 so that y = 1 is not a

singular case. The assignment (14) normalizes the
noninteracting single-spin moments, s’ &#x3E;0, to unity
for both models. The cross-model identification

ensures, in addition, the equality of the noninteracting
fourth moments, with  S4 &#x3E;Kl = 3 - 2 YKl [19].
Higher moments of the spin distributions do, of course,
differ but for y not too small, the two distributions (12)
and (13) are quite similar when (15) is used This may be
judged from figure 1 in which W(s ; y) is plotted for
yDG = 0.90 (bold curve) and yKl = 0.81 (thin solid
curve). (The significance of this choice of values will
appear below).

Fig. 1. - Single-spin weight factors for the double-Gaus-
sian (DG) and Klauder (Kl) models normalized to have the
same zeroth and second moments. The parameters used
here are yDG = 0.90 (bold solid curve) and yK’ = 0.81 (thin
solid curve) at which values the fourth moments of the two
models are also the same, and YKI = 0.87 (dot-dash curve),
0.75 (dashed curve) : see further in section 2.

The double power series in x and y to order 21 for
the susceptibility, x(x, y), of the DG and Kl models
on the bcc lattice have been studied previously [17]
using two-variable partial differential approximants
(PDAs) in order to achieve unbiassed estimates of
the correction exponent 0. The conclusions of this

analysis, inasfar as they are relevant to our present
purposes, are summarized in the next section. In

particular, both models (for y &#x3E; 0) belong to only
one Ising-like universality class but it is also clear that
the leading corrections do not vanish for the pure
Ising model. In section 3 we employ single-variable
inhomogeneous differential approximants [21] at fixed
y, to estimate the ferromagnetic critical locus, xc(y),
for each model using, first, the susceptibility series,
second, the series for the second correlation moment,
namely,

in which Roi is the distance from the origin site, 0,
to site i, and, third, the series for the mean square
correlation length,



1648

For general values of y the different series (and the
imposition of various constraints) lead to estimates
for xr ,(y) differing by up to one or two parts in the
fourth decimal place. However, for both models it is
found that all the various methods agree to within

only one part in 105 of Xc when y is in a narrow range
lying, for each model, essentially at the multicritical
point, y c’ as located in the earlier PDA analysis [l fl.
The agreement of different methods, all of which
make no special allowance for nonanalytic corrections,
at these special values of y confirms the PDA and
renormalization group expectations that the leading
nonanalytic corrections should vanish at yr.
The exponents of y and v are estimated in section 4

from the divergences x - t-Y, /t2 _ t-y-2v, and
l _ t-2v for positive, i.e. ferromagnetic x ; the spe-
cific heat exponent a, on the other hand, is estimated
from the behaviour at the symmetrically placed
antiferromagnetic singularity, x xr at which
one has

for f = X, 112 or ,2. This energy-like singular behaviour
follows from various general considerations including
the field-theoretic operator product expansion [1, 2, 7,
22]. The other point to notice is that such weak additive
singularities can be reliably estimated (in the absence
of further confluent nonanalyticities) by the use of
inhomogeneous partial differential approximants since
these allow naturally for an analytic background,
Ie + B f t + ... [21]. It is found that the exponents y,
v and a estimated in various ways also exhibit confluen-
ces close to the same special values of y. The corres-
ponding exponents found from the DG and Kl
models likewise agree with each other for these values

of y which, to well within the precision, also satisfy (15).
The overall estimates obtained are then

which, finally, lead to (10) and the confirmation of
hyperscaling. (It should be mentioned that the uncer-
tainties quoted here do not make full allowance for
uncertainties in the location of yr : see further in
Sect. 4).

Finally, it is worth remarking that the estimates (19)
apply for the whole range of the DG and Kl models
(for y &#x3E; 0) including the pure Ising limit, and are in
very satisfactory agreement with the field-theoretic
d = 3 renormalization group estimates (7) and, for
y and v, in even better agreement with Zinn-Justin’s
estimates [15] for the spin-S Ising models as quoted
after equation (8). Indeed, it seems likely that. the
lower estimates of y, close to 1.239 [see also 17], and
higher estimates of v, close to 0.631, are nearer the
true values than the d = 3 field-theoretic estimates.

Incidentally, the values(19) imply, via (1), tj = 0.039 + 4

whereas the field-theoretic calculations for d = 3 yield
q = 0.031 ± 4 [9,10]. More recently, however, George
and Rehr [23] have used a two-series approach to
partial differential approximants for the double-
Gaussian model and concluded y = 1.2378 +- 12 and
v = 0.6312 ± 6 and thence, tj = 0.0375 ± 10 (where
we have doubled the authors’ one-standard-deviation

quoted uncertainties to correspond better to the other
precision estimates here). For completeness one should
also note results based on the s expansion to fourth
and fifth orders [24]. The latter were extrapolated to
yield the surprisingly and, we suspect, unrealistically
low estimates y = 1.234 ± 3 and v = 0.628 ± 1,
which, via (1), imply tj = 0.035 + 8. Of course, these s
expansion results have hyperscaling built in. Lastly,
recent Monte Carlo renormalization group calcula-
tions [25], which likewise entail hyperscaling, yield
the estimates v = 0.629 ± 4 and q = 0.031 ± 5 and,
imply y = 1.238 ± 11. However, these calculations
also lead to an estimate of the correction exponent
of 0 -- 0.63 which is out of line with all previous esti-
mates, namely, 0 = 0.50 ± 2 (d = 3 field theory [10]),
0.52 ± 7 (spin S, [15]), 0.54 ± 5 (DG and Kl [17])
and 0.50 ± 1 { o(g5) [24] 1.

In summary, there no longer seem to be any grounds
for doubting that the three-dimensional spin -.L
lsing model obeys hyperscaling and, indeed, belongs
to the same universality class as the continuous spin
double-Gaussian, Klauder, and Ao’ models [19]
which are analytically linked to it : on the contrary,
our series analysis provides positive support for the
validity of hyperscaling !

2. Analysis by partial differential approximants.

In considering the double-Gaussian and Klauder
models (or any other similar family) the first question
to ask is how many distinct universality classes of
critical behaviour are embodied and what is the cha-
racter of the crossover between different classes as the

auxiliary parameter, y in the present case, varies.

Single-variable methods of series analysis are intrin-
sically unsuitable for answering this question in
unbiased fashion since, in any crossover regime such
methods necessarily predict effective exponents, /(Y),
etc. which vary smoothly with y instead of changing
discontinuoysly as unstable multicritical values, say
YO, yl, ..., are crossed.
The PDA technique [26-28] is not subject to

this limitation : on the contrary, it can represent pro-
perly multicritical behaviour in which the exponents
change discretely. Specifically, a function f(x, y) whose
power series is known to some order, is approximated
by the solution F(x, y) =- [J/L ; M, N K] f, satisfying
appropriate boundary conditions, of the defining
equation
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The polynomials UJ(x, y), etc., whose terms uj,j,
xi yi’,... vanish for ( j, j’) outside the specified label
sets J, etc., are found by solving the generating equa-
tion : this is the same as (20) but with F replaced by
f(x, y) and error terms of the form x" 1" allowed for
(k, k’) outside an appropriately chosen matching set
K [27, 28]. Then a common zero, (xo, yo), of 6M and
RN locates a multisingularity of the approximant.
Each distinct multisingular point describes a different
type of criticality (or multicriticality) specified, in the
first place, by exponents § and 0 which enter the
asymptotic scaling form

Here the multisingular deviations are given by

in which ei and e2 specify the slopes of the scaling
axes, while B f(x, y) represents a smooth background
and Z f(z) is the scaling function. The exponents §
and 0, the slopes ei and e2, and the background value
B f(xo, yo) follow from the values of U, P and the
derivatives of Q and R at (xo, yo). When the crossover
exponent, q5, is positive the multisingular point is
unstable and Ay represents a relevant perturbation :
this is the situation for the DG and Kl models at the
Gaussian multicritical point, (xo, yo) - (xG, 0), for
which one knows 0 = -21(4 - d) (for d  4) and
x b,,, = i. Conversely when l/J is negative the multisin-
gular point is stable and Ay corresponds to an irrelevant
variable : then one may put 0 = - 0 &#x3E; 0 and expand
the scaling function for small z to obtain

where Zo = Z(O) and wi = (d In Z/dz)z=o. Compari-
son with (8) shows that 6 has been properly identified
as the correction-to-scaling exponent. Furthermore,
the correction amplitude is given by

and should thus vanish linearly with y when the multi-
singular point is approached. Note that for a given
physical multicritical point the exponent 0 and the
slopes el and e2 should be independent of the parti-
cular function f studied while 1/1, Z f and B f will
depend on f.

It follows from the solution of the PDA defining
equation (20) by integration along trajectories, that
the same nonanalytic correction terms with non-

vanishing amplitudes, cof(y), must apply along the
whole open segment of critical locus, xr ,(y), which
passes through the stable multisingular point in

question, say (xo, yo) (xc, Yc)’ and which, in general,
is bounded by a pair of adjacent unstable multisingular
points. (Reference to Fig. 1 of [17] and Fig. 2 of [19]
should prove helpful.)
The strategy for using PDAs to elucidate univer-

sality classes is thus clear. In particular, if one cons-
tructs PDAs for the susceptibility, x(x, y), the sequence
and character, stable or unstable, of their multisingular
points in the vicinity of the physically anticipated
critical locus (or loci) provide an indication of the
various types of critical and multicritical behaviour.
This program has been implemented for the DG and
Kl models [17]. About 300 and 180, respectively,
PDAs were computed using coefficients of order
xi 8 to x21 (and corresponding orders in y) for different
choices of the label sets J, L, M, N and K. Details are
given in [17] and [19] : the approximants selected are
invariant or close-to-invariant under Euler transfor-
mations on x [28]. In addition, they embody exact
information regarding the Gaussian fixed point,
which serves as an anchor ensuring accurate beha-
viour for small y.
The first crucial result of the analysis is that the

overwhelming majority of the approximants for both
models exhibit one and only one stable multisingular
point, with coordinate y,, in the range 0  y  1.8.
The values of the exponent y (in the range 1.230 to
1.246)’and the fact that the critical behaviour of the
pure (y = 1) Ising . model are controlled by this

point enable us to identify it as Ising-like [17]. There
is no evidence at all to suggest any intermediate type
of critical behaviour, lying between Gaussian and pure
Ising as has been proposed for d = 2 [29] (but see
[19, 30]) : the whole critical locus, xc(y), for 0  y  1
is found to be of Ising character.
The observed distribution of the y estimates is

quite closely correlated with the distribution of esti-
mates of y, (and of 0). For the double-Gaussian model
this is illustrated in figure 2 which shows a histogram
of y c estimates and the corresponding ranges of y
and 0 estimates. The same plot for the Klauder model,
which is found to display appreciably less overall

dispersion, appears in [17] together with y and 0 his-
tograms for both models. The comparatively large
spread in Yc estimates is directly associated with the
stability(§  0) and weakly singular character (0 -- 0.5)
of the multisingular point; nevertheless, each estimate,
(x,r yr .), lies on, and determines a critical locus, xc(Y),
which displays very little scatter. By contrast, for

0 &#x3E; 0, one finds estimates for the multicritical point
which are precise in both coordinates [26, 27]. To
reduce the effects of the dispersion, the PDA data
were analysed by forming the mean, y,,,, of the three
central quartiles of the histogram and then examining
more closely the mean-centred quartile (shown cross-
hatched in the lower part of figure 2 and shaded in the
upper parts) [17]. On this basis the multicritical esti-
mates



1650

Fig. 2. - Partial differential approximant analysis of the
double-Gaussian model showing the histogram of multi-
critical point estimates, y c’ and corresponding mean esti-
mates for the exponents y and 0 together with standard
deviation limits (see [171). The open chain plot (circles and
dashes) represents the results of a single-variable analysis
not allowing for confluent corrections.

were obtained [17]. (The double-Gaussian estimate
of George and Rehr [23] is very similar). The corres-
ponding exponent estimates are y = 1.2377 ± 16 (DG),
1.2384 ± 15 (Kl) and 0 = 0.54 1: 5 (DG) and 0.546 1: 39
(Kl) [ 17].
The Klauder exponent estimates are probably to

be preferred because of the overall lower y c dispersion.
A revised DG central estimate y°G = 0.895, within
the range (26), would yield the same y estimate as
found for the Kl model. It is then remarkable, in the
light of the cross-model relation (15), that , 0.80
is very close to the central estimate yK’ = 0.81. Thus
one sees that the multicritical points in the two diffe-
rent models describe single-spin weight functions with
essentially the same fourth moments (the zeroth and
second moments, being identical by construction). The
actual numerical similarity of the two weight functions
for the Klauder range in (26) and corresponding
YC DG = 0.90, can be seen in figure 1. Since the corres-

ponding critical values of x for the two models agree
closely (to within 3 or 4 parts in 104), the effective spin
weight functions at criticality (see [19]) are also

closely similar. Evidently, we have unearthed a type of
quasiuniversality of three-dimensional scalar spin
models which supports the notion of a universal

Ising-like fixed point in the full space of scalar spin
Hamiltonians. (It should be noted, however, that
Hamiltonians equivalent to the fixed point under
redundant transformations must be eliminated by
appropriate normalizations of the cutoff, the range of
quadratic coupling, etc.; it is not entirely clear to us
what potential elements of Hamiltonian universality
then remain. The issue would seem to be related to the
universal block spin distributions discussed by Bruce
[31] and Binder [32]).

Finally, note that since we have Yc  1 for both
models, the behaviour of the pure spin - 2 Ising
model at y = 1 necessarily entails nonvanishing non-
analytic corrections associated with the exponent 6.
The trend in estimates visible in figure 2 (see also [17]
and below) shows that these corrections tend to

increase slightly, by 2 to 4 parts in the third decimal
place, the effective exponent y observable in the pure
Ising model. The apparent absence of these correc-
tions in the analysis of Ferer and Velgakis [16] seems
to be the reason for their somewhat high estimate of y.
(Calculations are under way to quantify these correc-
tions in more detail at the Ising limit using PDAs).

In order to estimate the exponent v one must study
the series for J.l2(X, y) and ç2(X, y) in the ferromagnetic
regime. These series can be investigated by PDA
methods and one obtains comparable results for the
multicritical location and for the exponents 2v and 0
although the dispersion is somewhat greater than
found with x(x, y). Likewise the antiferromagnetic
locus can be studied using PDAs for all three series
in order to estimate a. Reasonable results are again
found but, owing to the dispersion of estimates (and
the complexities of crossover at the antiferromagnetic
Gaussian multicritical point) the precision is too low
to provide a sharp test of hyperscaling. Accordingly,
we will utilise single-variable, fixed-y series to study
the issue but allow for their systematic bias in the light
of the multisingularity structure revealed by the
two-variable analysis.

3. Critical point estimates.

For the single variable analysis we adopt inhomoge-
neous differential approximants [21]. For fixed y the
approximant F(x ; y) =- [JIL9 M] f to f(x, y) is the
solution of the ordinary differential equation

satisfying F(0; y) = /(0, y). The polynomials Uj,
PL and QM of degrees J, L and M are calculated, as
usual, from the known series for f(x, y) by matching
coefficients to as high order as possible. If one sets
U == 0 (or J 0) one simply has D log Pade approxi-
mants [21]. The singular points are located by the
zeros of Q(x). As mentioned, inhomogeneous approxi-
mants can accurately represent functions behaving
like (18), i.e. consisting of a single power times an
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analytic amplitude plus a smooth background. Howe-
ver, further confluent nonanalyticities cannot be

accurately represented and, if present, will result in
systematic deviations in the estimates of critical points
and exponents from the true values. Our aim is to
capitalize on the systematic character of these devia-
tions which, since the amplitudes of the nonanalytic
and analytic corrections vary from one physical pro-
perty to another, will depend on the particular function
analysed as well as on any constraints imposed on the
approximants.
An important example of a constraint to be imposed

on some of the approximants is

which implies that Q is actually a polynomial in x2
rather than in x. This ensures that if x,,( &#x3E; 0) is a

singularity of an approximant then x = - x,, will
also be a singular point. The bipartite character of the
bcc lattice implies that the antiferromagnetic and
ferromagnetic singularities of the DG and Kl models
are symmetrically related in this way. The latter is a
strong singularity in x, 112 and ç2 and so will be more
reliably estimated than the former, which is weak. By
imposing (28) one thus expects improved accuracy
near the antiferromagnetic singularity and, perhaps,
even at the ferromagnetic singularity. If one is confi-
dent of the location, xr ,(y) of the ferromagnetic critical
point, one can merely impose the constraint

to a similar end.
We have used the following classes of approximants

to estimate the critical locus xr ,(y) for the DG and
Kl models :

(0) using x(x, y) with U 0 0 (adopted as a standard)
(i) using 92(XI y) with U :0 0 
(ii) using x(x, y) with U - 0 (D log Padé)
(iii) using x(x, y) with Q(x) = Q( - x)
(iv) using ç2(X, y) with U - 0
(v) using ç2(X, y) with Q(x) = Q(- x) .

The individual series were evaluated accurate to

28 decimal places and analysed using quadruple
precision. Some of the results for the Klauder model,
based in each case on a dozen or so of the highest
order approximants, are displayed in table I. (Provided
U J =/= 0 the estimates are not sensitive to the degree
J.) For a given model, fixed value of y, and particular
class of approximants, the precision of the estimates,
as gauged from the consistency between different

approximants, varies between 2 and 5 parts in 106.
On the other hand, in the range shown (y = 0.70 to
0.90 for the Klauder model) systematic differences
up to 6 or 7 parts in 101 are found between different
classes of approximant. The relative deviations from
the estimates x°(y), namely,

Fig. 3. - Estimates for the critical locus, x,(y), of the
Klauder model based on various classes of differential

approximant (see text of Sec. 3) and expressed as differences
from the standard estimates, x,’ ,(y), derived from unbiased
inhomogeneous differential approximants to the suscep-
tibility, x(x, y), at fixed y. Note that the sign of the differences
(iv) has been switched for clarity in the plot.

are plotted in figure 3 together with their apparent
uncertainty limits (except that, for clarity, the data for
(A) = (v) are not plotted while those for (À)=(iv) are
reversed in sign).
One observes a remarkable confluence of all

estimates to within one part in 105 or less when y
is close to j." = 0.815. Precisely similar behaviour
is found for the DG model in the region y = 0.80
to 1.0. Conservatively, we estimate the confluence
regions as

Evidently these values correspond closely to the
multicritical points located in the two-variable PDA
analysis see (26) and the horizontal bars in figure 3.
We interpret the agreement between the different
estimates when y’ -- 0.815 and jP’ -- 0.90 as strong
evidence that the amplitudes, cof(y) of the leading
nonanalytic corrections in x, 112 and ç2 all vanish in the
close neighbourhood, in agreement with the expected
scaling forms and the conclusion (25). Estimates of
exponents for these values of y should thus be close to
the true values. Note also, in relation to the discussion
at the end of the previous section, that the values (32)
correspond closely under the transformation (15).
The central values in (32) lead to the multicritical

point estimates

If the uncertainties in (32) are allowed for, the uncer-
tainties quoted here must be increased by 1 or 2 parts
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in 105 and a systematic increase in Xc with yr ,, corres-
ponding to the critical locus slopes

must also be recognized. However, the values of the
multicritical locations have no universal significance
so we turn directly to the exponent estimates.

4. Exponents and hyperscaling.

The estimates for the exponents v and a obtained
from various classes of approximant and for different
values of y are summarized graphically in figures 4
and 5 for the double-Gaussian and Klauder models,
respectively. Further and more detailed results are

Fig. 4. - Estimates for the exponent v, (i), (ii) and (iii), and
for the exponent a, (iv), (v) and (vi), for the double-Gaussian
model as obtained from various classes of differential

approximants : see text of section 4. Note that the vertical
scales are aligned so that dv = 2 - a. The open boxes at the
two sides indicate the old v and a estimates which suggested
the violation of hyperscaling.

Fig. 5. - Estimates of the exponents v and a for the
Klauder model, as in figure 4, indicating the validity of
hyperscaling.

in table I where some of the Klauder model data are

presented numerically. The table lists, in particular,
the standard estimates, y°(y), for the susceptibility :
these display a smoothly increasing trend with y.
(Compare also with the open chain curves, circles
and links, in figure 2 and in figure 3 of [17]). The
corresponding y estimates for the approximants of
classes (ii) and (iii) (of the previous section) behave
similarly but increase at a slightly different rate with y,
a confluence then being observed in the vicinity of
yKI ; likewise for the DG model. The central values
in (32) then yield y L-- 1.2395 with last-place uncertain-
ties of ± 3 and ± 4 for the DG and Kl models, res-
pectively, so justifying the overall estimate quoted in
(19). Changes in the value adopted for Yc within the
range specified in (32) lead to correlated changes of
± 12 in the last place of the y estimate. However, we
believe that this full uncertainty range is overconser-
vative.

Table I. - Single-variable estimates for the Klauder model of critical points, xc(y), and effective exponents as a
function of y. As in figure 3 the superscripts indicate : (0) « standard » using X series and general inhomogeneous
approximants ; (i) using Jl.2 and general approximants ; (iv) using ç2 and homogeneous approximants (U - 0) ;
in addition 2Vi/O == (y + 2v)’ - yo. The apparent uncertainties in the Xc estimates vary from 2 to 6 in the last
decimal place shown butjbr the exponents are only 1 or 2 in the last place. (For clarity thefirst jour digits of° x/ and
x’ v have been omitted.)
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Table I also lists the estimates of the compound
exponent (y + 2v) obtained from Jl2 and, by combin-
ing this with the estimates yO(y), the corresponding
estimates for 2v (labelled 2 v’/O). These latter values
may be compared directly with the estimates, labelled
2vi", obtained from the ç2 series using homogeneous
(i.e. D log) approximants. It is seen that the two routes
to estimating v yield very similar results in the vicinity
of the multicritical point y§f. Again quite comparable
behaviour is found for the double-Gaussian model.

Turning, finally, to figures 4 and 5 note, first, that
the lefthand and righthand vertical scales are aligned
so that dv( - 3 v) = 2 - a, in order to test hyperscaling :
the open boxes on the left and right sides of the figures
represent the original pure Ising model estimates (5),
which suggested that hyperscaling was violated. At
the top of each figure the upper open bar indicates
the PDA estimate (26) for the multicritical point, Yc;
the lower bar represents the present conclusion (32),
based on the confluence of estimates for x,(y) (see
Fig. 3). Each figure displays three independent esti-
mates for dv derived as follows :

(i) from ç2(X, y) with Q(x) = Q(- x) imposed
(ii) from ç2(X, y) with U = 0 (i.e. D log Pad6)
(iii) from Jl2(X,y) using y°(y) [labelled (iv) in table I].

The precision of the estimates for dv is as good as 2
or 3 parts in the fourth decimal place for (i) and (ii),
which is too small to indicate on the graphs ! Owing
partly to the differencing entailed, the uncertainties in
the estimates of class (iii) are two to three times larger.
As can be seen from the figures, the three sets of esti-
mates increase smoothly with y but agree to within
± 0.001 or better, when yDG = 0.90 and yKl = 0.815.
Indeed, it is striking that the confluence of these esti-
mates is even sharper, in terms of y, than that of the
xc(y) estimates ! From the DG data we thus estimate
dv = 1.895 ± 3; the Kl data indicate dv = 1.896 ± 4.
The close agreement is gratifying and justifies the v
estimate quoted in (19). Again, however, a change in
the assigned value of Yc results in correlated changes
in the dv estimates amounting, for the range (32), to
about ± 5 and ± 4 in the third place for DG and Kl
models, respectively.

Lastly, figures 4 and 5 display estimates of a deter-
mined by the antiferromagnetic singularity in approxi-
mants derived from :

(iv) ç2(X, y) with Q(x) = Q( - x) ; ;
(v) x(x, y) with Q(x) = Q( - x) ;
(vi) 92(XI y) with Q ( - I Xc I) = 0 imposed.

The estimates (v), for which the uncertainty range is
also displayed, show comparatively little variation
with y. By contrast the estimates (iv), derived from ç2,
vary surprisingly rapidly for both models (and are
less precise by factors of 2 to 3). Nevertheless, the
intersection of the estimates (iv) and (vi) once more
occurs close to the central multicritical estimates !
The data for y = y c indicate a = 0.104 ± 7 for the
DG model (or a slightly greater uncertainty if one

allows for changes in the Y. estimate) and cx = 0. 105 + 10
for the Kl model; on this basis we reach the conclusion
quoted in (19). For reasons that are not well under-
stood, the behaviour of 92-based estimates for a are
not as well behaved. As an illustration, the plot (vi)
is presented for the double-Gaussian model : the

antiferromagnetic critical point was imposed here
using the standard ferromagnetic estimates (based
on X). The estimates for a at y  0.90 are slightly
higher than (iv) and (v) but are still encompassed by
the conclusion (19). It would, however, clearly be of
interest to have high order series for the specific heat
itself in the hope of gaining more precise estimates
for a.
To conclude, note that the estimates (19) imply

m* v - dv - (2 - a) = 0.001 ± 10 : thus hyperscaling
is confirmed to well within the uncertainties. Indeed,
an a priori believer in hyperscaling might be inclined
to think that our quoted uncertainty limits are too
conservative ! However, even if the leading nonana-
lytic correction vanishes close to our estimates of y,,
the remaining higher order nonanalyticities have been
accounted for only in some average way so that we
should not be overconfident as to the accuracy of the
final exponent estimates despite the precision of the
check on hyperscaling.

Acknowledgments.

We are indebted to Professor B. G. Nickel for giving
us the series expansions on which our work is based.
Our researches have been supported by grants from
the National Science Foundation through the Applied
Mathematics Program with ancillary support through
the Materials Science Center at Cornell University.
One of us (M.E.F.) is grateful to Professor R. J. Elliott
and the Department of Theoretical Physics at Oxford
University for hospitality and to the Science and Engi-
neering Research Council of the United Kingdom for
partial support while this paper was being written.

References

[1] FISHER, M. E., Rep. Prog. Phys. 30 (1967) 615.
[2] FISHER, M. E., Proc. Nobel Symp. 24, Collective Pro-

perties of Physical Systems, edited by B. Lundqvist
and S. Lundqvist (New York, Academic Press)
1974, p. 16.

[3] DOMB, C. Phase Transitions and Critical Phenomena
3, edited by C. Domb and M. S. Green (New York,
Academic Press) 1974.

[4] BAKER, G. A., Jr., Phys. Rev. B 15 (1977) 1552.



1654

[5] For a review see : FISHER, M. E., Rev. Mod. Phys. 46
(1974) 597.

[6] FISHER, M. E. Advanced Course on Critical Phenomena
Lecture Notes in Physics 186, edited by F. J. W.
Hahne (Berlin, Springer-Verlag) 1983 : see espe-
cially Appendix D.

[7] BRÉZIN, E., LE GUILLOU, J. C. and ZINN-JUSTIN, J.,
Phase Transitions and Critical Phenomena edited

by C. Domb and M. S. Green (New York, Aca-
demic Press) 1976, vol. 6.

[8] FISHER, M. E., Renormalization Group and Quantum
Field Theory edited by J. D. Gunton and M. S.
Green (Philadelphia, Temple University) 1974,
p. 65.

[9] BAKER, G. A., Jr., NICKEL, B. G., GREEN, M. S. and
MEIRON, D. I., Phys. Rev. Lett. 36 (1976) 1351;

BAKER, G. A., Jr., NICKEL, B. G. and MEIRON, D. I.,
Phys. Rev. B 17 (1978) 1365.

[10] LE GUILLOU, J. C. and ZINN-JUSTIN, J., Phys. Rev.
Lett. 39 (1977) 95 ; Phys. Rev. B 21 (1980) 3976.

[11] ZINN-JUSTIN, J., J. Physique 40 (1979) 969.
[12] NICKEL, B. G. and SHARPE, B., J. Phys. A 12 (1979)

1819.

[13] REHR, J. J., J. Phys. A 12 (1979) L179.
[14] NICKEL, B. G. Phase Transitions-Cargese 1980, edited

by M. Levy, J. C. Le Guillou and J. Zinn-Justin
(New York, Plenum Publ. Corp.) 1982, p. 291.

[15] ZINN-JUSTIN, J., J. Physique 42 (1981) 783.
[16] FERER, M. and VELGAKIS, M. J., Phys. Rev. B 27 (1983)

2839.

[17] CHEN, J.-H., NICKEL, B. G. and FISHER, M. E., Phys.
Rev. Lett. 48 (1982) 630. Note that the expression
for b2(y) is misprinted in this reference : see

Eq. (14) here.
[18] BARMA, M., J. Phys. A 16 (1983) L745 and private

communication.

[19] BARMA, M. and FISHER, M. E., Phys. Rev. B 31 (1985)
5954.

[20] BAKER, G. A., Jr. and BISHOP, A. R., J. Phys. A 15
(1982) L201.

[21] FISHER, M. E. and AU-YANG, H., J. Phys. A 12 (1979)
1677; ibid. 13 (1980) 1517 ;

HUNTER, D. L. and BAKER, G. A., Jr., Phys. Rev. B 19
(1979) 3808.

[22] FISHER, M. E., Philos. Mag. 7 (1962) 1731 ;
LANGER, J. S. and FISHER, M. E., Phys. Rev. Lett. 20

(1968) 665.
[23] GEORGE, M. J. and REHR, J. J., Phys. Rev. Lett. 53

(1984) 2063.
[24] VLADIMIROV, A. A., KAZAKOV, D. I. and TARASOV,

O. V., Sov. Phys. JETP 50 (1979) 521;
GOROSHNY, S. G., LAVIN, S. A. and TKACHOV, F. V.,

Phys. Lett. A 101 (1981) 120.

[25] PAWLEY, G. S., SWENDSEN, R. H., WALLACE, D. J.
and WILSON, K. G., Phys. Rev. B 29 (1984) 4030.

[26] FISHER, M. E. and KERR, R. M., Phys. Rev. Lett. 39
(1977) 667.

[27] FISHER, M. E. and CHEN, J.-H. Phase Transitions-

Cargese 1980, edited by M. Levy, J. C. Le Guillou,
and J. Zinn-Justin (New York, Plenum Publ.

Corp.) 1982.
[28] STYER, D. F. and FISHER, M. E., Proc. R. Soc. A 384

(1982) 259 ; 388 (1983) 75.
[29] BAKER, G. A., Jr. and JOHNSON, J. D., J. Phys. A 17

(1984) L275 ; Phys. Rev. Lett. 54 (1985) 2461.
[30] BARMA, M. and FISHER, M. E., Phys. Rev. Lett. 53

(1984) 1935; ibid. 54 (1985) 2462.
’ [31] BRUCE, A. D., J. Phys. C 14 (1981) 3667.

[32] BINDER, K., Phys. Rev. Lett. 47 (1981) 693 ; Z. Phys.
B43 (1981) 119.


