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Résumé. 2014 Dans le cadre de phénomènes critiques de mouillage, on observe souvent qu’un liquide plus dense peut
rester sur un liquide plus léger. Nous avons étudié ici les conséquences du mode d’instabilité de Rayleigh-Taylor
dans la couche de mouillage semicritique d’un mélange binaire de liquides. Pour soutenir nos hypothèses, nous
rapportons des observations expérimentales dans un mélange binaire de cyclohexane et acétonitrile.

Abstract. 2014 In critical wetting phenomena, the situation of a heavier liquid residing on top of lighter liquid is
observed. The consequences of the Rayleigh-Taylor mode of instability in the semicritical wetting layer in a binary
liquid mixture are investigated. We also report experimental observations in support of our theory, in the critical
binary liquid mixture cyclohexane + acetonitrile.
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1. Introduction.

The interesting phenomenon of complete wetting of a
semicritical interface by one of the critical phases in a
binary liquid mixture has now been conclusively
established [1-7]. The boundary between the liquids
and the vapour phase above the liquids and the
boundary of the container wall in contact with the
liquids are the two non-critical interfaces, while the
surface of separation between the two liquids forms
the critical interface. Complete wetting, either of the
vapour or of the wall of the container has been obser-
ved in systems like methanol + cyclohexane [2],
2,6 lutidine + water [3], perfluoromethyl cyclohexane
+ methylcyclohexane [4], cyclohexane + acetonitrile
[5], isopropanol + perfluoromethyl cyclohexane [6]
and a few other mixtures. The transition from complete
wetting to partial wetting as the system is brought
away from the critical temperature has also been
observed The two situations are schematically des-
cribed in figure 1.
We have already reported the occurrence of com-

plete wetting and the transition from complete wetting
to partial wetting at temperatures away from the
critical point, in the cyclohexane acetonitrile liquid
mixtures [5]. This system has a very small density
difference between the two constituent liquids and
consequently the above phenomena are quite conspi-
cuous and enable visual observations.

In the present paper we discuss the possibility of
hydrodynamic instabilities in wetting phenomena.

Fig. 1. - A schematic sketch of complete wetting and partial
wetting. The figure (a) shows complete wetting situation
and (b) shows the partial wetting situation.

In view of the fact that in the wetting interface a
heavier liquid layer resides over a lighter one, the
possibility of the Rayleigh-Taylor instability deserves
consideration. Our observations concerning the effect
of cell geometry on the stability of the wetting-layer
can be qualitatively identified as the manifestations
of the Rayleigh-Taylor instability. Some theoretical
studies on the stability of fluid layers were performed
by Maxwell [8] and some experimental work was
carried on earlier by Duprez.
The criteria for the occurrence of the above insta-

bility vis-a-vis the dimensions of the containing vessel
are theoretically discussed in the section 2 of the
paper. Section 3 gives an account of the observations
regarding the stability of the wetting layer with refe-
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rence to the dimensions of the container. Since our
present system shows a density inversion at about
42 OC, diverse meniscus shapes are observed as the
system is progressively cooled below the critical

temperature [5]. As is well known [2] cyclohexane +
methanol is another system having very low density
difference between its constituents but exhibits no

density inversion in the temperature range of our
interest For comparison, the meniscus shapes in this
system (for the critical concentration) are also repor-
ted The concluding section of the paper is devoted
to a qualitative comparison between the predictions
of the theory and our experiments.

2. Theory.

2.1 STABILITY OF FLUID SURFACES IN PRESENCE OF
CAPILLARY-GRAVITY WAVES. - The stability condition
for interfaces between fluids, in presence of capillary-
gravity waves is discussed on the basis of the familiar
hydrodynamic equations of the fluid [9-11]. In the
following we adopt the method given in reference [10,
11] and repeat their calculations in the case of a system
in which the upper liquid is heavier than the lower one.
As a matter of simplification, we shall consider the
interface to be flat and the layer to be of uniform
thickness. When the interface is given infinitesimal
perturbations, the equations of fluid motion are

[10,11]

where y is the surface-tension of the interface, pu
and PL denote the densities of the upper and lower
liquids respectively, p the mean density of the two
liquids (assumed to be of nearly equal density), 11(X, t)
denotes the vertical displacement of the interface

along the z-direction, where the mean position is
considered to be z = 0, with 0 representing the

velocity potential of the fluid for a three-dimensional
non-viscous, incompressible and irrotational flow.
The + z being vertically upwards, g has a value
- 9.8 m/s2.
In the following we consider a system with circular

geometry, symmetric about the vertical z-axis. The
solution of equation (3) in such a case, has a form

where the layer is bounded between z = 0 and
z = 1.

From the boundary condition that the radial
flow must vanish at the walls of the vessel i.e. at r = R
we get,

Jn(kR) = 0 (5)

which determines the eigen values k for the system.
The solution of equations (1-4) is sought perturba-

tively by expanding [10]

which yield in the linearized limit,

When pu  Pv the system is stable (recall that g is
- 9.8 m/s2) and this corresponds to stable ripples
on the interface.
We consider now pU &#x3E; pL. It is thus clear from

equation (7) that the system can be unstable for
(t)2 0, which corresponds to

Hence if km be the minimum eigenvalue of (5), no
instability can appear in any wave-vector provided
km satisfies the ,inequality

Taking into account the non-linear effects it is seen
that multiple hydrodynamic instabilities can appear
at wave-vectors kn, given by,

where n = 2, 3, 4 ...
Algebraic simplifications show that equation

(10) does not admit solutions in the range

kn &#x3E; ( - g) (pu - pL)/y; possible solutions, if any, lie
in the range kn  ( - g) (Pu - pL)/y. It is thus clear
that if the condition km &#x3E; (- g) (pu - PL)IY (11) be
satisfied non-linearities cannot produce instabilities
in any of the permissible wave vectors of the system.
Thus condition (9) guarantees hydrodynamic stability
of the system even when non-linearities are included.
Thus, in our discussion of the stability of the wetting
layer, it suffices if we consider condition (9) alone. In, 
our following calculations, we shall discuss the results
in the linearized limit.

Violation of (9) creates an instability in the system,
due to which the displacement q(x, t) grows exponen-
tially with time, which may disrupt the flat configu-
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ration of the liquid layer [12, 13]. These ideas have
been applied by one of us (E. S. R. Gopal) in reference
[14] to describe the dripping of liquids from the sur-
faces of metals. Although the stability criteria are
derived in the inviscid case, inclusion of viscosity
does not affect the stability condition for the surface
waves [9-11]. However, it is to be noted that the sta-
bility analysis is valid for small displacements of the
initially plane interface. In the following we examine
similar possibilities for liquid-liquid interfaces close
to the critical point.

2.2 RATE OF GROWTH OF INSTABILITIES. - For
k2  (- 9) (Pu - PL)ly one finds

or the disturbance q(k, t) grows as,

The fastest rate of growth is observed in the case of thin
layers (i.e. kl --+ 0) for the wave-vector

(the more commonly quoted result ko =
- g(pu - PL)/3 Y applies in the thick layer limit).
Solution of equation (5) show

so that the Rayleigh-Taylor instability is absent if

where a = [2 y/( - g) (po - PL)]1/2 is called the capil-
larity parameter. For a binary liquid mixture close to
the critical point, with T  Tc, we know, y ~ ’Yo tll
and (Pu - PL) ~ I KP I tfJ (where t = I (T - Tc)/Tc ’ )
so that for a stable wetting layer to be present, the
inequality,

must be satisfied From the stability condition in
equation (18) it is clear that there cannot be a stable
wetting layer very close to Tc. This is because y goes to
zero faster than I Ap I and close to Tc - g Ap 1/y
becomes very large and violates condition (9).
From the known values p - 1.33, p - 0.33, it is

seen from (13) that for a vessel of any arbitrary radius
the Rayleigh-Taylor instability is suppressed when
a value of t satisfying (18) is reached Similarly, with
reference to equation (13) we conclude that if condi-

tion (18) is not maintained the instability grows at a
faster rate in a vessel with smaller km i.e. with higher R.

In obtaining (18) we have used a scaled equation
for y as suggested by Van der Waals [15], Cahn and
Hilliard [16]. The scaled behaviour is expected to
breakdown beyond the critical region i.e. for t large.
However, in the large t region, mean-field theory being
valid, we get from the Cahn-Hilliard prediction [ 15],
Y N (LBC)2 I X{/2 where AC is the concentration dif-
ference between the two coexisting phases and XT
the osmotic compressibility. With (PIJ - pL) a AC
and xT decreasing with increasing t we find that the
capillarity parameter must increase with increasing t.
It thus ensures that at a certain value of t, for which
the capillarity parameter exceeds the radius of the
vessel, the system attains stability against the growth
of the surface waves.

Furthermore, we note that though the above
conclusions are drawn for the case of partial wetting
they are equally valid for the complete wetting situa-
tion. In the latter, represented in figure 1, the stability
condition for the stability of the AB interface against
the Rayleigh-Taylor instability is similar to that given
in (18) where R on the L.H.S. is to be replaced by R’.

In summary, the stability of the wetting layer is

expected to be drastically affected by the horizontal
dimensions of the container, such that the stable layer
is observed only if R2  4y/(- g) (PU - PL). This

suggests from equation (5) that for a cell of a given
diameter, stability against the Rayleigh-Taylor per-
turbations is ensured as we progressively lower the
temperature below Tc. Further, the stability condition
for a smaller cell is satisfied at a smaller value of t,
as compared, with a cell of wider diameter.

Qualitative support for these ideas is sought experi-
mentally. It should be noted, however, that our above
analysis is true for a plane interface. For an unstable
interface instabilities at wave vectors close to ko
give rise to large displacements distorting the inter-
face to a non-planar configuration. Complications in
mathematical treatment do not allow analytical cal-
culations to be presented in this case. However, it is
to be emphasized that the instability towards the
formation of non-planar interface is an evidence of
the growth of the Rayleigh-Taylor instability.

3. Observations.

The observations include the study of the effect of
cell geometry on the stability of the wetting layer and
the study of the meniscus shapes as different com-
positions of the liquid are filled into identical cells.

3.1 EFFECT OF CELL GEOMETRY. - Purified samples
of the liquids were filled at the critical composition
in five cells of different dimensions. First, with the
height of the liquid column fixed at 1.5 cm liquids
were filled in cylindrical cells of diameter 2 cm,
4.5 cm, 4.9 cm, 6.4 cm and 7.4 cm. They were mounted
adjacent to each other on the same stand in a thermo-
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statically controlled bath, with a millidegree control.
Due to the limitation in the size of the thermostat,
only two cells were mounted at a time for the obser-
vations. The Tc of the cells agreed within the errors
permissible.
The liquids were taken to the one-phase region by

heating above the critical temperature and were
cooled in steps of a few mK. A few mK below the
phase separation temperature, a droplet of the heavier
liquid was observed at the liquid vapour interface.
We observed the formation of one single droplet in
the smallest cell whereas multiple droplets could be
seen at the liquid-vapour interface of the larger cells
(Fig. 2). This is an evidence of the instability which
does not allow a single wetting layer to be stable in
a cell of larger diameter.

After the appearance of the droplets the temperature
was held fixed and the stability of the droplets was
observed as a function of time. In all such cases it
was observed that the droplet in the larger cell vanished
faster than the corresponding one in the smaller cell.
As an example we quote that at 200 mK below T,
the layer in the larger cell was stable for three hours
while that in the smaller cell was stable for more than
five hours after which the observations were dis-
continued. The same behaviour was observed at all

temperatures upto a temperature 1 K below Tc.
We found the layers to be more stable as the system
was cooled progressively, e.g. at 1 K below Tc the
layer in the larger cell was found to vanish after
seventeen hours while that in the smaller cell continued
to be stable for more than twenty-four hours. In view
of our prediction that far away from T, the capillarity
parameter is large enough to permit stability in both
cells, we cooled the system 5 degrees below Tc. At this
temperature the layers in both cells were found to be
stable for over one hundred hours. These observations
are thus in close conformity with the predictions of
Rayleigh-Taylor instability.
The densities of the two phases can be approximately

calculated from the study of the coexistence curve if
the densities of the pure individual components be
known. We have used the formula

to obtain the densities of the two phases, where va(t)
and va(t) are the volume fractions of component a in
the two coexisting phases and pa(t) and pb(t) denote
the densities of the pure individual components.
We have measured the densities at room temperature
and have used the standard formula [17].

to obtain the densities of the pure components at

Fig. 2. - Three photographs of the cell with a large diameter
where the liquid vapour interface has multiple droplets.
11 indicates the liquid-vapour interface and 1, indicates the
liquid-liquid interface. (a) Many small droplets can be seen
at I1. (b) Four droplets are seen at I1. Another droplet has
just dropped down and it can be seen at 12. (c) Two droplets
can be seen at 11. All three photographs were taken at
different temperatures as the system was cooled in steps
of a few mK from the critical temperature.

other temperatures where the parameters

are chosen from those given in the standard literature.
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Fig. 3. - The photographs show the presence or absence of a droplet at the 1-v interface of both the small and large cells.
The photographs were taken at a temperature 1 OC from Tc. Tll indicates the time when the system settled down after a
thorough agitation. TI2 indicates the time 12 h after the first photograph. TI3 indicates the time 20 h after TI1. Column (a)
shows three photographs of the smaller cell at TI1, TI2 and TI3. Column (b) shows the larger cell at TI1, TI2 and TI3. Column
(c) gives an enlarged version of the 1-v interface in the larger cell at TI1, TI2, and TI3. A droplet can be seen at the liquid-
vapour interface of the smaller cell even at TI3, but the larger cell has no droplet at TI3. This shows that the droplet is more
unstable in the larger cell than in the smaller cell. The smaller cell had the droplet even 24 h after TI1.

The calculated values of T(k.) at t "-I 10- 5 with
~ 0.01 cm are 10 and 3.5 s respectively for the cell
diameter 2 cm and 7.4 cm cells. In our observations,
the wetting layers were observed to be stable for
several hours. This wide deviation between the two
is attributed to the part that the wetting layers have
non-planar shapes before dripping. This corresponds
to a layer of varying I, whiler(k) has been calculated
for constant I. Further at these conditions (i.e. large
displacements of the planar interface) strong non-
linear effects come into play and the rates of growth
cannot be estimated exactly.
The time scales involved in these observations are

from 30 min to 100 h, where even a visual observation
is sufficient to decide whether the droplet vanishes
first in the smaller or in the larger cell.

In the next part of our observation, we filled the
system in cells of constant diameter 2 cm while the
height of the liquid column was varied between 0.8
and 6.5 cm. The change in the shape of the meniscus
in the different cells, was observed as the temperature

was lowered. The same qualitative trend as reported
earlier [5] was observed in all the cells. The different
meniscus shapes observed as the cell height was
varied are given in the photograph (Fig. 4).
3.2 STUDY OF MENISCUS SHAPES WITH TEMPERATURE
AND COMPOSITION. - The different shapes of the
meniscus and the wetting behaviour was also observed
as a function of the composition of the liquids. These
can be seen in the photograph (Fig. 5). The peculiar
meniscus shapes are due to the fact that there is a
density inversion between the two liquids in the

temperature range of interest. For comparison, we
also observed the change in the meniscus shape of
the binary liquid mixture cyclohexane + methanol.
This system also has a very low density difference
between the two liquids but do not exhibit density
inversion in the temperature range of our study.
This system also shows wetting property. There is no
notable change in the meniscus shape as the tem-
perature is lowered The plot of the density vs. tem-
perature for our liquid mixture can be seen in figure 6.



1538

Fig. 4. - Photographs of the meniscus shape when the height of the cell is varied keeping a constant diameter. Figure (a)
shows the change of the meniscus shape in a cell of length to diameter ratio 1.435. Figure (b) shows the change in the meniscus
shape for a cell have length/diameter = 2.990. No qualitative change is observed in the meniscus shape when the cell height
is varied.
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Fig. 5. - Photographs of the meniscus shape when the composition of the liquids are varied. (a) shows the meniscus shapes
at different temperature for a composition 0.221 mole fraction of C6H 12 ; (b) shows the meniscus shapes at different tempera-
ture for a composition 0.650 mole fractions of C6H12.
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Fig. 6. - Plot of density vs. temperature of the cyclohexane
and acetonitrile rich phases. The densities are very closely
matched and there is a density inversion as a function of
temperature.

4. Discussion.

In the present work we have investigated the

appearance of the Rayleigh-Taylor instability in the
wetting layer of a critical binary liquid mixture. Our
studies show that the stability of the wetting layer
depends very crucially on the diameter of the con-
taining vessel as also on the value of t. For example,
1 mK below T, the value of [(-g) (Pu-PL)ly]1/2 =
67.5 cm-1 which corresponds to a cell radius of
0.0304 cm. For a cell of radius larger than this value,
we cannot have a stable wetting layer. The stability
condition can be found graphically represented
in figure 7. Figure 7 shows a semi-log plot of

[( - 9) (Pu - PL)IYO ti,] 1/2 ys, t. If any wave vector

km falls below the curve then the wetting layer is
unstable. For known cell diameter the temperature
at which a stable layer becomes unstable, is also
indicated in the figure. For example, in a cell of radius
0.5 cm, the wetting layer is unstable above 76.5 OC.
The maximum wave vector is calculated from equa-
tion (17).
At a given temperature, the instability is found to

grow at a faster rate in a cell of larger diameter. In
addition, the wetting layer is found to be stable in the
cells when the temperature is sufficiently away from
the critical point. These qualitative observations show
remarkable consistency with the predictions based
on Rayleigh-Taylor instability.
As a matter of detail, we observe that the vibration

.

iog ,ot -

Fig. 7. - Plot of log t vs. [( - g) Asp !/vo tJl]1/2 indicates the
boundary between stable and unstable region. The cross
mark « x » shows the temperature at which the stable layer
becomes unstable for particular cell diameter which is
shown at the right side of the graph.

spectrum of the surface oscillations should be cal-
culated by taking into account the shape of the
meniscus, whereas we have used the approximation
that the interface is flat This consideration should
also incorporate the oscillations of the angle of
contact [18]. However, we note that though these
factors are necessary to obtain the details, these
should not significantly affect the condition of sta-
bility. Moreover, the calculation of the meniscus

shape is itself a complicated calculation [ 19].
To derive further justification of our theory, we

have undertaken the measurement of the capillarity
parameter a of the system at different temperatures.
With the help of these data we wish to obtain a quan-
titative verification of our ideas, the other alternative
being to conduct experiments under microgravity
conditions e. g. in space. In conclusion, we note that
there is qualitative evidence that the gravity-capillary
waves affect the stability of the wetting layer. Their
effect on the equilibrium value of the wetting layer
thickness will be reported in a subsequent work.
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