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Résumé. 2014 L’équation intégrale de Sivashinsky gouvernant certaines instabilités hydrodynamiques de fronts de
flamme unidimensionnels est un cas particulier des modèles de plasma non linéaires de Lee et Chen; en tant que
telle elle possède une décomposition en pôles. Ceci explique les structures très organisées observées dans les simu-
lations numériques. L’équation de Sivashinsky a des solutions stationnaires stables avec les pôles alignés parallèle-
ment à l’axe imaginaire. Avec des conditions aux limites périodiques, quand le nombre de modes linéairement
instables est élevé, les pôles se condensent en une distribution In coth. Ceci est illustré par calcul numérique des
positions d’équilibre des pôles. La condensation des pôles explique les plis de certains fronts de flamme. Le spectre
d’ énergie du déplacement du front suit une loi en ln2 k.

Abstract. 2014 The Sivashinsky integral equation governing certain hydrodynamical instabilities of one-dimensional
flame fronts is a special case of Lee and Chen’s (Phys. Scr. 2 (1982) 41) non linear plasma models; as such it has a
pole decomposition. This explains the highly organized structures observed in numerical simulations. The Sivas-
hinsky equation has stable steady solutions with the poles aligned parallel to the imaginary axis. With periodic
boundary conditions, when the number of linearly unstable modes is large, the poles condense into a In coth
distribution. This is illustrated by numerical calculations of equilibrium positions of poles. The pole condensation
explains cusp-like wrinkles in certain flame fronts. The energy spectrum for the front displacement follows a
In2 k law.
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1. Introduction.

Sivashinsky [1] has shown that in a suitable asymptotic
regime the dynamics of wrinkled flame fronts is

governed by a non linear partial (pseudo)differential
equation. In the one-dimensional case it reads

tl is a linear singular operator defined conveniently
in terms of the spatial Fourier transform :

We here use notation different from Sivashinsky’s

in order to bring out similarities with Burgers’ equa-
tion

What is here denoted u is actually not a velocity but
0.0 where 0 is the flame front displacement; so it is
the slope of the flame front. Also we find it more con-
venient to vary the « viscosity » v rather than the size
of the domain.

Various studies of the Sivashinsky equation have
been reported [1-4]. The results indicate that the
solutions are highly organized in the form of one
or several wrinkles (see Figs. 2 and 3 of Ref. [3] and also
Figs. 2 and 3 of the present paper).
At the root of this simple behaviour of the Siva-

shinsky equation is the fact that it possesses a pole
decomposition : equation (1.1) admits solutions of the
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form

The z.’s are poles in the complex plane (coming in c.c.
pairs) moving according to the laws of motion of
poles (a = 1, 2,..., 2 N)

where 3 denotes the imaginary part. When 2 re spatial
periodicity is assumed it is enough to restrict atten-
tion to poles with real parts between 0 and 2 re. Instead
of equations (1. 5) and (1.6) one then uses

and

The existence of this pole decomposition follows
from a more general result of Lee and Chen [5] for a
class of non linear dynamical models arising in

plasma turbulence. In our notation the governing
equations for the Lee and Chen models are

which is a linear combination of the Sivashinsky
equation and the Benjamin-Ono [6-7] equation. For
the convenience of the reader a derivation of the pole
decomposition for the Sivashinsky equation is given
in the appendix A.
We shall not here review work on pole decomposi-

tions. A list of references up to 1981 may be found
in section 4 of reference [8]. We also mention a recent
application of pole decomposition to the formation
of cusp singularities in interface dynamics [9].

This paper is organized as follows : section 2 is a
systematic study of the two pole problem giving some
qualitative insight into N-pole dynamics; in particular
there is a tendency for the poles to align themselves
parallel to the imaginary axis. Subsequently the paper
is devoted essentially to the detailed study of such
« vertical alignments ». Section 3 is about the discrete
dynamics of N pairs of poles : for N large the poles
condense into a continuous distribution which is
determined analytically (Sect. 4). This is the analog
for the Sivashinsky equation of the pole condensations
for Burgers’ equation [10]. From the distribution of
poles we deduce the shape of flame wrinkles and the
high wavenumber behaviour of the energy spectrum.
In section 5 we mention some implications and open
problems.

2. The two-pole problem and qualitative dynamics.
We begin by studying the simplest dynamical situa-
tion with two poles at complex conjugate locations
z(t) = a(t) + ib(t) and z* = a - ib with b &#x3E; 0. From

equation (1.6), we have

It follows that a is a constant and that

Note that the - 2 v/(z - z*) term in equation (2.1),
already present in Burgers’ dynamics, tends to push
the poles away from the real axis while the - i term
produces a uniform drift towards the real axis. Their
competition leads for t -+ oo to a stable equilibrium
configuration with

beq = v . (2. 3)

The corresponding steady solution of the Sivashinsky
equation is

In the periodic case equations (2.3) and (2.4) become
respectively

and

A graph of u(x) for v = 5 x 10-2 is shown in figure 1.
The aspect is quite similar to the localized structures
appearing in figure 3 of reference [4], concerning an
equation differing very slightly from the Sivashinsky
equation.
Next we consider two poles z1 and z2 in the

upper half plane 3(z) &#x3E; 0 which we assume to be

sufficiently close to each other so that we can ignore
their interactions with other poles. We then have

When t varies from 0 to + oo, then j(C2) = 2 ab
remains constant so that the point (a, b) moves on a
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Fig. 1. - Structure of the slope of the flame front u(x)
for the steady space-periodic solution with two complex
conjugate poles.

hyperbola. For large times a - 0 and b --i. + oo :

poles tend to align on a parallel to the imaginary axis.
The above analysis indicates that, roughly, poles

tend to attract each other horizontally (parallel to the
real axis) and to repel each other vertically. In addi-
tion, they are subject to a drift towards the real axis.
Extrapolation of these qualitative features to a

situation with many poles suggests that the poles tend
to form vertical alignments, eventually coalescing
into a single one. This is indeed happening in Burgers’
dynamics and may be viewed as the mechanism for
the formation and coalescence of shocks. According
to Lee and Chen [5] this merging process is a universal
property of their non dispersive models.

In the periodic case the poles are constrained to be
on 2 x periodic arrays or, equivalently, to be all
contained in a domain of extension 2 x in the real
direction and to have cot rather than z-1 interactions.
The short distance behaviour is thus unaffected, but
the global dynamics are quite different. At the moment
there is no result concerning the eventual fate of a
system of poles (periodic or non periodic). In the
periodic case numerical integrations of the Sivas-
hinsky equation [3-4] indicate that for small v the
solutions often tend to a steady state with one or
several wrinkles in the flame front displacement (in
fact vertical pole condensations as we shall see).
These features are reproduced in simulations of our
own using a pseudo-spectral method with 512 Fou-
rier modes. Figure 2 shows a solution with one wrinkle
for v = 0.1. Figure 3 shows a solution with two

wrinkles, also for v = 0.1, but restricted to the class
of functions u(x) which are odd (otherwise this solu-
tion would be unstable). The labels a and b corres-

Fig. 2. - Structure of the flame front (a) and its slope (b)
for a steady one-wrinkle space-periodic solution obtained
by pseudo-spectral simulation of the Sivashinsky equation
with 512 Fourier modes and « viscosity ? coefficient v = 0.1.

pond respectively to the front displacement O(x)
and the front slope u(x).

Henceforth we shall consider a single vertical

alignment, possibly containing a large number of
poles, with or without periodicity.

3. Vertical alignments of poles : discrete dynamics.
We consider N pairs of complex conjugate poles
constrained to be on a parallel to the imaginary axis,
located at
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Fig. 3. - Same as figure 2, except that the solution

u(x) is restricted to odd functions, allowing stable coexis-
tence of two wrinkles.

Without loss of generality, we assume that xo = 0;
we also assume that the y J’s have been ordered :

This order will never change since the repulsion bet-
ween two poles becomes infinite when they approach
each other. For the same reason, we always have
strict inequalities in (3.2).
The motion of poles is given by a set of N simul-

taneous real differential equations :

with, in the non-periodic case

and in the periodic case

For N = 1, (3.4) reduces to (2.2). A steady state will
be a solution of the N simultaneous ordinary equations

f = 0 (i = 1,..., N). (3 . 6)

We note first some properties of these equations.
(i) In the non-periodic case, v can be eliminated

by the change of variables

v is therefore an irrelevant parameter. On the contrary,
in the periodic case a scale is prescribed so that the
value of v is relevant.

(ii) In the non-periodic case, multiplying (3.4)
by yj and summing over j, we obtain the virial-like
relation

The right-hand side must vanish at equilibrium;
this provides a test of computational accuracy.

(iii) In the periodic case, we derive from (3.5)
for the highest pole j = N, using the fact that

If the right-hand side is positive or zero, fN is always
positive, and no steady state can exist; the highest
pole moves towards y = + oo in the imaginary direc-
tion with an (asymptotically) constant speed. There-
fore a necessary condition for the existence of a steady
state in the periodic case is

(iv) The following properties hold in the non-perio-
dic case, and also in the periodic case when (3.10) is
satisfied :

1. There exists one and only one steady state.
2. Any solution of (3.3) tends towards the steady

state for t - + oo. The proof of these properties is
based on the existence of a Lyapunov function (see
Appendix B).

(v) The equations (3.6) are easily solved for
N = 1, 2, 3 in the non-periodic case. We take v = 1
for simplicity. For N = 1, the steady state solution is
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For N = 3, the yj are the three roots of the equation

These valus can also be used as a check on the pro-
gram for the numerical solution of (3.6).
We turn now to numerical determination of the

equilibrium positions. The equations (3.6) were

solved numerically by a relaxation method : the

position yi of each pole in turn is adjusted to a new
value

Ayj is computed by a one-step Newton formula :

with the constraint that it should not exceed one-
half of the distance to the next pole. A convenient
initial state is : yj = 2 vj. The computation is halted
when the relative changes I Ayi llyj becomes less than
some prescribed small number for all poles. This
method was found to always converge to the equili-
brium, although the convergence slows down for

large N.
The value

was used in all numerical computations, in order to
facilitate comparisons. As a consequence of (3.10), a
small value of v is necessary in order to allow a large
number of poles in the periodic case. With the value
(3. 17), the maximum of N in the periodic case is

Figures 4a and 4b show (full curves) the cumulative
distribution, i.e., the number of poles between 0 and
y as a function of y, for the non-periodic case and for
N = 10 and N = 100 respectively. The dotted and
dashed curves are analytic approximations which
will be described in section 4. Table I gives in columns 2

Fig. 4. - Cumulative distribution of poles along the ima-
ginary axis in the non-periodic case. Full curve (staircase) :
discrete distribution for (a) N = 10, (b) N = 100. Dotted
and dashed curves : asymptotic distribution (4.5) with
normalization given respectively by (4. 4) and (4. ).

and 3 the positions of the lowest and highest poles,
yi and yN, for various N. Column 4 is an analytic
estimate which will also be described in section 4.

Table I



1490

In the periodic case, when N is well below Nal
the distribution differs only slightly from the non-
periodic case. For N = 10, for instance, one obtains
a curve which is barely distinguishable from that of
figure 4a. The reason is simply that for small y, (3.5)
reduces to (3.4). As N increases and approaches Nmax,
however, the periodic case deviates from the non-
periodic case. Figure 5 shows the cumulative distribu-
tion of the periodic case for N = Nmax = 100. This
distribution differs noticeably from that of figure 4b
(the horizontal scale is not the same). The dashed
curve is again an analytic approximation which will
be described in section 4. Table II gives the positions of
the lowest and highest poles for various N. Comparing
with table I, we see again that the difference with the
non-periodic case is negligible for small N but increases
quickly as N approaches Nmax.

Table II.

N Yi YN

1 0.005000 0.005000
2 0.004394 0.025609
3 0.004094 0.049647
4 0.003902 0.075312
5 0.003765 0.10195
10 0.003389 0.24261
20 0.003083 0.54272
50 0.002775 1.6051
100 0.002663 9.3282

4. Continuous approximation and pole condensations.
We begin with the non-periodic case. The very regular
distribution of poles shown in figure 4 suggests going
over to a continuous approximation, with the indivi-
dual poles at locations + iyj replaced by a density of
poles p(y) &#x3E;, 0 normalized to the total number of
poles

Equation (3.6) is then replaced by an integral equa-
tion (the P in front of the integral means Cauchy Prin-
cipal value)

The general solution of ° ° ° gral equation,
which may be obtained by Fourier transformation, is

where c is an arbitrary positive constant. This solu-
tion is neither normalized nor positive (for  y &#x3E; c).

This is not surprising : we have assumed that (4.2)
is true for all y, but if the density drops to zero at
a finite distance ymax then there is no need for (4.2)

to be true for y &#x3E; Ymax. In fact (4.2) cannot be true
for all y : for any finite distribution, the first term in
(4.2) tends to zero for y - oo. Equation (4. 3) only
represents an inner expansion near the origin and c
must be determined by matching.
One method for determining the constant c is to

truncate the density (4. 3) to zero beyond y I = c,
and to use the normalization condition (4.1). This
gives

From (4. 3) we compute the cumulative distribution :

The curve R(y) is shown on figures 4a and 4b as a
dotted line, for c given by (4. 4). It reproduces correctly
the shape of the observed distribution, but stays
somewhat below. The optimal matching is obtained
with

which produces the dashed curve on figures 4a and 4b.
There is now very good agreement, except in the
outermost parts of the distribution for N = 100.
The discrete positions of the poles can be estimated

by solving the implicit equation

(This formula would give the exact pole positions if
the curve R(y) passed through the middle point of each
vertical step in Fig. 4.) The solution for the innermost
pole ( j = 1), using (4. 6) and (4. 7) is given in table I,
column 4. Agreement with the true value of yl is seen
to improve slowly as N increases.
For N --+ oo, (4.7) gives y1 -+ 0, and more gene-

rally yj --+ 0 : the concentration of poles near the origin
increases without limit (pole condensation). It increases
extremely slowly, however : yj varies to leading order
in N as 1 /ln N. The innermost poles get squeezed
in logarithmically with N due to the repulsion from
all other poles. 0

Now we turn to the periodic case and reinsert v.

By (3. 10), the maximum number of pole pairs that
can be put in an equilibrium configuration is inver-
sely proportional to v. We observe that when entire
initial data are prescribed for the Sivashinsky equa-
tion, poles are created at t = 0+ at infinity in arbitrary
large numbers by essentially the same mechanism
that operates for the Burgers equation [10-11]. We
shall therefore assume that the number of poles pre-
sent in the steady state is equal to its maximum accep-
table value, N Max. When v is small we then get order
1 / v very closely packed poles (pole condensation).
The distribution within the condensation can again-
be obtained by going to the continuum limit; the
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analog of equation (4.2) is

The general solution is

where cl is an arbitrary positive constant. This is again
an inner expansion. Since we know that there is only
a finite number of poles 0(v-1), we impose that the
density p - 0 as y - oo. This gives

Moreover p is then positive for all y and

Since we assume N to be large and equal to the
maximum value N Max allowed by (3.10), we have

so that the normalization condition (4.1) is fulfilled
to leading order.
We define again the cumulative distribution as

For p given by (4.9), this integral does not appear
to have a closed form, so we compute it numerically.
The integrand being singular at y = 0, it is convenient
to do first an integration by parts :

The singularity is then isolated in the first term, and
the second term is easily evaluated numerically. The
curve R(y) is shown on figure 5 as a dashed line.
The agreement with the observed distribution is
excellent over the whole y range.
Note that for small y, the density is to leading order

given by

We recover the form (4.3) of the non-periodic case,
with c = 4. The best-fit solution (4.6) for the non-
periodic case, together with (4.12) would have given

Fig. 5. - Cumulative distribution of poles along the ima-
ginary axis in the periodic case. Full curve : discrete dis-
tribution for v = 0.005, N = 100, Dashed curve : asymp-
totic distribution (4.14).

Thus, for given large N, the periodic and non-periodic
cases have the same functional form for R(y) near
y = 0 but different normalizations. We can again
estimate the position of the innermost pole yl from
(4.7) and (4.14) ; since y is small, the latter can be
replaced by

for v = 0.005, we obtain from this continuous approxi-
mation

to be compared with the value computed from the
discrete case

If v is varied, with N simultaneously changed so that
is always has its maximum value, then yi, the distance
of the innermost pole to the real axis, is given to leading
order in v by

Using the above asymptotic expansions we can
determine some key features of the small v steady
solutions in the periodic case. The solution of the q

Sivashinsky equation with a pole condensation on the
imaginary axis is given in real physical space by

Fori x  &#x3E;&#x3E; v/ln (1/v)we can use the continuous density
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and obtain

The asymptotic expansion of this integral for (not too)
small x gives

The corresponding expansion for the flame front
displacement §(x) is

Sivashinsky (1983) refers to a similar logarithmic
singularity at the cusps of the flame folds, obtained by
McConnaughey (1982). Actually there is no real

singularity : from equation (4.20) the closest complex
singularity is within a distance y, = 0(v/ln v-1) ;
thus the cusp is slightly rounded over a distance yl.
We now calculate the spectrum E(k) of the solution,

defined as the squared modulus of the Fourier trans-
form of the steady flame front displacement. Since
u(x) = O.,,O(x) we have

where

A simple residue calculation based on the pole de-
composition gives, for k &#x3E; 0

For large k we must distinguish two ranges :
(i) Dissipation range. When I k  y1 &#x3E;&#x3E; 1 only the

nearest pole singularity matters and we get

with y1 given by equation (4.20).
(ii) Inertial range. When 1  k  y1-1 we may

replace the sum in equation (4.27) by an integral over
the continuous distribution of poles; this gives to
leading order (for v -+ 0 first and then k -+ oo)

Note that the energy spectrum for u(x) follows a
k- 2 In2 I k I law; i.e. it is somewhat shallower than
the k-2 spectrum obtained for Burgers’ model. The
numerical simulation of Pumir [4] (his Fig. 5b) gives
for u(x) an energy spectrum that approximately

follows a k-a law with a N 1.23 which is also shallower
than k-2. Given that Pumir’s equation is not exactly
the Sivashinsky equation and given also the limited
range of wavenumbers involved there is probably no
genuine discrepancy.

5. Discussion.

We have found that the pole decomposition provides
a reduction of the Sivashinsky equation to a discrete
Dynamical System. The latter admits steady state

solutions with all the poles aligned parallel to the
imaginary axis. In the spatially periodic case the
maximum number N of complex conjugate pairs of
poles in an alignment is such that v(2 N - 1)  1.
We conjecture more general results for analytic
periodic initial data : (i) as t -+ oo all the singularities
(poles and others) are pushed off to infinity, except
a finite number N of pairs of poles satisfying the above
inequality; (ii) for real times poles stay uniformly
bounded away from the real axis. The former result
has been recently established for the case of initial
conditions with a finite but arbitrary number of poles
[13, 14]. In this context we also mention a result of
Foias, Nicolaenko, Sell and Temam [17] concerning
the family of equations

where the operator M. has the following represen-
tation in Fourier space

It is assumed that 0  8  1; 8 = 1 is the Sivashinsky
equation. For the case of space-periodic odd solutions
of equation (5. 2) Foias et al. [15] have shown that
when t -+ cc the solutions have a finite dimensional
attractor imbedded in a finite dimensional manifold

In the periodic case with small v we found that the
poles on a vertical alignment condense into a In coth
distribution the signature of which in real physical
space is a cusp in the flame front. This suggests a real
singularity. Actually, as we have seen in section 4
there are only complex poles, but the ones nearest to
the real axis are at a distance 0(v/ln v-1) so that the
cusp is slightly rounded. It is noteworthy that this
distance is smaller by a factor 1/ln v-1 to what would
have been inferred from a naive analysis based on the
observation that wavenumbers in excess of, v-1 are
linearly stable. This discrepancy is important when
attempting to numerically solve the Sivashinsky
equation : the number of Fourier modes that are
necessary scales like v-1 ln v-1 and not like v-1.
Otherwise the numerics will work well as long as the
poles stay within 0(v) of the real axis (as in the two-
pole solution); after some time however the poles
will start piling up vertically and spurious singularities
may be observed [4].
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We finally mention an open problem. We have
shown that the Sivashinsky equation has stable steady
solutions, which can be made trivially time-dependent
by a Galilean transformation. There may also be non-
trivial time-dependent solutions. In one spectral
simulation with 25 linearly unstable modes (v = 1/25)
we have observed a complicated time-dependent
regime going through a succession of single and
multi-wrinkle configurations. At the moment we
cannot rule out ever-lasting, possibly chaotic, time-
dependent solutions [16].
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Appendix A.

THE POLE DECOMPOSITION. - We wish to show that

equations (1.1)-(1.3) have pole solutions of the form

where A is the pseudo-differential operator defined
by (1. 3), i.e. multiplication by  k I in Fourier space.
A simple residue calculation gives the following
expression for the Fourier transform pz(k) of pz(x) :

where H(.) is the Heavyside function. Thus pz(k)
has its support in the negative or positive k-axis,
depending on the sign of the imaginary part of z.
Since the Fourier transform of 0,, is the multiplication
by ik (see (1. 2)), the operator A acting on the function
pz is equivalent to ± iax. This proves (A. 4). We may
thus interpret the operator A in the Sivashinsky
equation (1.1) as producing an advection in the

complex plane, in the imaginary direction towards
the real axis.

Finally, the proof that (A. 1) and (A. 2) satisfies the
Sivashinsky equation (1.1) is obtained by substitution
and straightforward algebra, using the identity

- 2 1

with

We note that u(x) is a linear combination of terms of
the form

We claim that

Appendix B.

We give here the proofs of the assertions made in
section 3. We remark first that the differential equa-
tions (3.3) may be written in terms of a Lyapunov
function U :

with, in the non-periodic case :

and in the periodic case :

A simple computation shows that the function

U( y1, ..., yN) has a negative curvature in every direc-
tion. Specifically, if we consider a linear displacement :
yj = a. + hj v, with aj, bj constants and v variable,
then d2Uldv2  0. An immediate consequence is
that there cannot exist more than one steady state :
if two existed, on the straight-line segment joining
them we would have d Uldv = 0 at each end, which is in
contradiction with the above property. Another

consequence is that if a steady state does exist, then
it is a global maximum for U.
Next we show that a steady state actually exists

(provided, in the periodic case, that the inequality
(3.10) holds). We consider a sub-problem in which
yp , 1, ..., YN have given values while yl, ..., yp are free,
and we look for a steady state for the free variables.
Specifically, we look for values of Yl’ ..., yp such that
(3.6) is satisfied for j = 1, ..., p. The accessible phase
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space is :

The same reasoning as above shows that there cannot
exist more than one equilibrium for y,, ..., yp. We
show now by recursion that one exists. Consider
first the case p = 1. The domain of variation of Y 1 is
0  yi  y2. For y, -+ 0, f1 -+ + oo ; and for y1  y2,
f1 - - oo. Therefore there exists a yi for which £
vanishes, i.e., a steady state for Y 1. Suppose now that
we have proved the existence of a steady state for p -1
poles and we want to prove it for p poles, with p  N.
We let yp vary in the interval 0  Yp  yp , 1, with
the other poles yl, ..., Yp-l continually adjusted to
their equilibrium position. For yp -+ 0, f p -+ + oo ;
and for yp -+ yp + 1, fp --+ - oo (it is easily. seen that
the distance yp - yp-1 remains finite in the limit).
Therefore there exists a yp for which fp = 0.
The last case p = N, is treated in the same fashion

but with a slight difference. The interval of variation

is now 0  yN  oo. For yN - oo, fN -+ - 1 in the

non-periodic case, and fN -+ v(2 N - 1) - 1 in the

periodic case. Therefore there exists a yN for which
YN = 0. This completes the proof of existence of a
steady state.

Finally, we have from (B .1) :

the equality being obtained only at a steady state.

Thus U always increases with time, except at equi-
librium. On the other hand, U is bounded from above
by its value at the steady state, which is a global
maximum. Therefore U is a genuine Lyapunov
function, and every solution of (3.3) tends toward
the steady state for t -+ oo. This completes the proof
of stability for pole-displacements parallel to the

imaginary axis. This result has been extended to

arbitrary displacements other than the trivial ones
where all the poles undergo a same real translation [17].
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